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Abstract

Individuals with overweight or obesity (OW/OB) are at increased risk for significant physical and 

psychological comorbidities. The current treatment for OW/OB is behavioral weight loss, which 

provides psychoeducation on nutrition and physical activity, as well as behavior therapy skills. 

However, behavioral weight loss is not effective for the majority of the individuals who 

participate. Research suggests that overeating, or eating past nutritional needs, is one of the 

leading causes of weight gain. Accumulating evidence suggests that appetitive traits, such as food 

cue responsiveness and satiety responsiveness, are associated with overeating and weight in youth 

and adults. The following review presents the current literature on the relationship between food 

cue responsiveness, satiety responsiveness, overeating, and OW/OB. Research suggests that higher 

food cue responsiveness and lower satiety responsiveness are associated with overeating and 

OW/OB cross-sectionally and longitudinally. Emerging data suggest that food cue responsiveness 

and satiety responsiveness may exist along the same continuum, and can be targeted to manage 

overeating and reduce weight. We have developed a treatment model targeting food cue 

responsiveness and satiety responsiveness, to reduce overeating and weight and have preliminary 

feasibility, acceptability, and efficacy data, with testing currently being conducting in larger trials. 

Through programs targeting appetitive traits we hope to develop an alternative weight loss model 

to assist individuals with a propensity to overeat.
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1. Introduction

Obesity is highly prevalent in the United States as approximately one third of children and 

two thirds of adults have overweight or obesity (OW/OB). (1, 2) OW/OB is associated with 

cardiovascular disease, type 2 diabetes, cancer, osteoarthritis, psychological impairment, 

poor quality of life and all-cause mortality. (3, 4) Medical care for individuals with OB costs 

nearly $150 billion across the United States, (5) and these costs are expected to rise by $48–

66 billion per year by the year 2030. (6) Considering the high prevalence rates, rising 

medical costs, and significant comorbidities, it is essential that more potent models are 

developed to treat OW/OB effectively.

The current empirically supported treatment for adults with OW/OB is behavioral weight 

loss (BWL). (7–12) BWL includes dietary and caloric recommendations, guidelines for 

physical activity, and behavior therapy skills to adhere to treatment recommendations. 

Although BWL is effective and provides clinically significant weight loss for some adults, 

(10) BWL is not effective for all individuals. Up to 50% of participants in BWL treatment 

programs fail to achieve meaningful weight loss. (11) Moreover, BWL is even less effective 

in providing long-term weight-loss maintenance, as 65% of participants no longer meet the 

initial 7% weight-loss goal 4 years post-treatment. (12) These results could be due to 

heterogeneity and a lack of consideration for individual characteristics that can impact 

treatment response. (13, 14) Thus, it is imperative to understand the individual 

characteristics that predict treatment outcomes in the short and long term, and to develop 

novel treatments to address mechanisms associated with non-response.

Eating past nutritional needs, or overeating, is one of the most proximal drivers of OB rates 

(15, 16) and is considered more important than metabolic changes. (17–19) Rates of 

overeating are especially high in OW/OB samples, with up to 80% of adults with OW/OB 

endorsing overeating regularly. (20) Overeating is a complex process which is influenced by 

individual behavior, the environment, genes, physiology, and neural processes. However, 

societal advances have created an “obesogenic” environment that encourages excess energy 

intake and discourages energy expenditure. (21–24) Calorically dense foods are easily 

available, highly variable, tasty, relatively inexpensive, and portable. (25–29) Overeating in 

today’s environment is incredibly easy, especially for those who have a propensity to 

overeat.

2. Behavioral susceptibility to overeating

Interestingly, not everyone who lives in this environment has OW/OB. In fact, within the 

same family there can be weight discordant children. It is possible that some individuals 

have a behavioral susceptibility to overeat. Behavioral susceptibility was first described by 

Stanley Schachter who hypothesized that individuals with OW/OB, compared to individuals 

with a healthy weight, are more reactive to external cues to eat and less sensitive to internal 

satiety signals. (30, 31) Jane Wardle and colleagues extended this theory and developed the 

behavioral susceptibility theory (BST), (32–35) which proposes that genetically determined 

appetitive traits interact with the environment and lead to overeating and weight gain in 

individuals with these risk factors. The BST focuses on two important aspects of appetite, 
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eating onset and eating offset. Within the context of BST, food cue responsiveness (FR) is 

considered the primary driver of eating onset, while satiety responsiveness (SR) is the 

primary driver of eating offset. FR conceptually relates to biological, cognitive and 

emotional responses to food cues, and includes concepts such as cravings, emotional eating, 

and reward-based eating. SR refers to perceiving and stopping eating based on satiety cues. 

The following review of the literature takes the perspective of the BST and briefly 

summarizes data to date on genetics, appetitive traits, interactions with the environment, 

overeating and body weight.

The BST states that genetic risk factors interact with appetitive traits and the environment to 

influence overeating. (35) Decades of research have shown that human body weight is 

highly heritable, with estimates ranging from 32% (36) to 90%, (37) with a median estimate 

of 73%. (38) The Collaborative Project of Development of Anthropometrical Measures in 

Twins (CODATwins), which includes over 200,000 twin pairs from 22 countries, (39) 

showed that the influence of genetic factors on BMI is lowest at age 4 years (40%) and 

highest at age 19 years (75%). (39, 40) Interestingly, the influence of the shared environment 

is not observed after age 15. These results suggest that over time, the genetic influence on 

BMI strengthens and the shared environment weakens, pointing to the importance of an 

individual’s interaction with the obesogenic environment. (35) Although the BST is an 

important theory, it does not specifically describe how these appetitive traits develop and 

more importantly, how the environment interacts with individual level variables. 

Theoretically, by decreasing FR (eating onset) and improving SR (eating offset), individuals 

could learn how to reduce overeating in the current obesogenic food environment.

3. Assessments of Food Cue Responsiveness (FR) and Satiety 

Responsiveness (SR)

A variety of measures exist that assess FR and SR. Jane Wardle and colleagues developed 

the Child Eating Behavior Questionnaire (CEBQ) (41) several years before the BST was 

formally articulated. The CEBQ was initially designed to be a parent report of children’s 

eating, and includes 8 subscales, FR, SR, emotional over-eating, enjoyment of food, desire 

to drink, slowness in eating, emotional under-eating and food fussiness. The FR subscale 

includes four items that assess desires to eat outside of physiological hunger and the SR 

subscale includes five items that evaluate a child’s sensitivity to stop eating or choosing not 

to eat in response to feeling full. The initial validation of the CEBQ was with 4–5 year olds 

in the US. (42) Since the initial publication, the CEBQ has been adapted to assess eating 

behaviors in babies (Baby Eating Behavior Questionnaire (43)) and adults (Adult Eating 

Behavior Questionnaire (44)).

FR can be assessed using neuroimaging techniques, such as MRI. Typically a food cue, 

either as a picture or as a taste, is presented and Blood Oxygenated Level Dependent 

(BOLD) response either in anticipation of the cue or delivery of the cue is assessed. Neural 

areas associated with the motivation to eat past nutritional requirements are the dopamine 

reward/motivation circuitry involving striatal limbic and cortical substrates. (45, 46) Key 

components of this hedonic pathway are located in the cortico-limbic areas of the brain and 
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include the nucleus accumbens and caudate nucleus (dopaminergic reward pathways which 

govern anticipation and motivation); amygdala and hippocampus (learning); anterior insula 

(sensory processing); and orbitofrontal cortex (reward value appraisal, executive control, and 

decision-making). (47) Consumption of palatable food (those high in fat and sugar) releases 

dopamine in the ventral and dorsal striatum. The release of dopamine in the dorsal striatum 

is proportional to the self-reported level of pleasure gained by eating the food. (48) High fat 

and high sugar foods may differentially affect these brain reward regions. One study 

compared high sugar milkshakes and high fat milkshakes on BOLD response and showed 

high fat milkshakes show higher levels of BOLD responses in caudate and somatosensory 

regions, but no significant bilateral insular changes while high sugar milkshakes showed 

higher levels of BOLD responses in putamen and gustatory regions and increased bilateral 

insula. (49)

Data suggest that these reward circuitry dysregulations differentiated those who have 

OW/OB and those who have a healthy weight. (50–52) For instance, children with OW/OB 

compared to those with healthy weight show higher levels of BOLD responses in the 

bilateral insula and bilateral amygdala in response to taste of sugar compared to water. (53) 

Another study compared children with OW/OB to children with healthy weight and showed 

greater BOLD responses in right insula, operculum, bilateral precuneus, and posterior 

cingulate cortex following milkshake consumption. (54) Studies also demonstrate greater 

increase in fronto-striatal circuitry activation during anticipation of high-caloric foods as 

compared with those with healthy weight. (55, 56) After eating a 500 calorie meal, 

participants with obesity, compared to participants with healthy weight, show greater 

activation in the medial prefrontal cortex, superior frontal gyrus, caudate, and hippocampus. 

(57) In addition, over time, individuals with obesity, compared to individuals with healthy 

weight, demonstrated greater activation in the corticolimbic regions (lateral orbital frontal 

cortex, caudate, anterior cingulate), suggesting that individuals with OB have sustained 

responses in brain regions implicated in reward, even after eating (58). Importantly, for 

individuals with OW/OB, greater activation of the hedonic pathways in response to food 

images has been shown to predict short-term weight loss (59, 60) and was associated with 

successful maintenance of ≥ 13.6 kg (30 lbs.) weight loss over 3 years or more. (61) 

Hypothesized mechanisms of action include impulsivity or lack of self-control, which when 

coupled with higher levels of reward, may contribute to the drive to overeat. (62, 63)

In addition to using the CEBQ and brain imaging, concepts related to FR and SR can also be 

assessed with a variety of other questionnaires and tasks. The eating in the absence of 

hunger (EAH) paradigm (64) and the EAH questionnaire (65, 66) assess eating when 

exposed to food when physically satiated. The EAH behavioral paradigm has been the focus 

of considerable research to understand appetitive mechanisms. Children with higher FR and 

lower SR have higher caloric intake during this paradigm. (42, 67) Furthermore, greater 

caloric consumption during EAH has been linked with weight gain in children and adults. 

(68, 69) Attention bias, or the direction and strength of attention associated with a cue, can 

also be considered an assessment of FR. Attentional bias can be measured by reaction time, 

eye movements, or brain activity in response to salient stimuli, using event related potentials 

(ERPs; see (70) for review).
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The remaining measures are self-report questionnaires that assess constructs closely related 

to FR. The Power of Food scale (PFS) (71) assesses appetite for high-palatable foods, and 

includes three levels of proximity, food available, food present and food tasted. The Food 

Craving Questionnaire (FCQ) (72, 73) assesses cravings using a multidimensional approach, 

with one subscale that queries about cues that may trigger eating. One study showed that 

individuals with higher FR, as assessed via physiological responsivity to a food cue, 

indicated higher subjective craving rating of those foods. (74) The Intuitive Eating Scale-2 

(IES-2) assesses eating when physically hungry and stopping when full, with one subscale 

that focuses on reliance on hunger and satiety cues. The water load test (75, 76) evaluates 

how much water is consumed until perceived satiation and then again until maximum 

fullness. More research is needed to understand how these assessments are interrelated and 

what aspects of FR and SR are measured.

4. Development of Food Cue Responsiveness (FR)

Changes in FR over time is considered a product of both genetic and environmental 

influences. Emerging quantitative genetic modeling suggests that FR may be up to 75% 

heritable, (77) with the most evidence to date focusing on the “high risk” FTO alleles at 

rs9939609 in children. (78) Presence of this FTO minor allele at rs9939609 was associated 

with greater consumption during an EAH task compared with children without any risk 

allele in multiple samples. (79–81) As these studies were conducted in children, how the 

potential genetic risk for high FR changes over the life course remains to be fully elucidated.

Beyond genetic susceptibility, overeating develops through basic learning processes, 

including Pavlovian conditioning and operant conditioning. (82, 83) In today’s obesogenic 

food environment there are a plethora of opportunities to overeat through associations of 

cues in the environment with food, and over time, these cues can trigger responding (i.e., 

FR). Through Pavlovian conditioning, these food cues become directly associated with food 

intake and can elicit arousal, cravings, expectancies, thoughts, urges, motivation to eat. (84) 

There are also opportunities for operant conditioning, where the association of food seeking 

actions or eating are paired with the reinforcing effects of eating. (85) Importantly, these two 

learning processes act in concert (86) and the presentation of Pavlovian food cues can 

increase the strength or of operant eating or food-seeking through Pavlovian Instrumental 

Transfer. (87, 88)

Food cues can also acquire secondary reinforcing properties through their direct association 

with food. (89) Discriminative stimuli, those stimuli that are present when operant actions 

are reinforced, can increase operant responding by “setting the occasion” for the action–

outcome relationship rather than eliciting or motivating behavior through their simple direct 

association with food. (90) Finally, with repetition and practice, stimuli associated with 

operant responding can eventually elicit the operant behavior directly. (91–93)

Increased FR may also provide opportunities for basic learning processes to take place. 

Ferriday and Brunstrom (94) suggest that one mechanism by which FR can increase 

consumption is by individuals planning to consumer larger amounts, resulting in overeating. 

Another potential mechanism linking FR and consumption is the association between FR 
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and attention bias towards food cues, as there is some evidence that greater FR is associated 

with an increased attention bias toward foods. (95, 96) Increased attention to food cues may 

provide more opportunities for basic learning processes to occur, and lead to increased 

number of cues leading to consumption.

5. Development of Satiety Responsiveness (SR)

Conceptually, individuals will continue to eat in response to conditioned food-related cues 

until the intake is terminated by interoceptive satiety cues, (97) suggesting that SR is an 

inhibitory mechanism. SR develops early in life and is also considered an interaction of both 

genetic influences and factors in the environment. Several studies suggest that SR could be 

up to 63–72% heritable. (77, 98) Genetic mutations (such as in the leptin gene and 

melanocortin 4 receptor (MC4R) gene) are believed to contribute to OW/OB by disrupting 

satiety signaling. (99) One study evaluated the mechanisms by which a 16p11.2 deletion 

impacts BMI and found that altered SR preceded the development of obesity. (100) Research 

on FTO in children showed that the polymorphism rs9939609 is associated with reduced SR 

and that SR may mediate the relationship between FTO and BMI. (101) A more recent study 

(102) using participants from the same sample created a polygenetic risk score using 28 of 

34 known obesity single-nucleotide polymorphisms (SNPs) identified in meta-analyses (103, 

104) of children and adults. Results showed the polygenetic risk score to be positively 

associated with adiposity and negatively associated with SR, with SR mediating the 

association between the polygenetic risk score and adiposity. It is possible that decreased SR 

is a mechanism through which genetic risk accelerates weight gain and contributes to the 

development of OW/OB.

Some youth are born with this genetic risk factor of poorer SR. Beyond genetics, some data 

suggest that heightened SR during infancy may be promoted through breastfeeding. 

Research showed that breastfeeding during the first year of life (of at least 6 weeks in 

duration) is related to greater SR at 18–24 months (105) and that baby-led weaning 

compared to standard weaning is also related to greater SR at 18–24 months. (106) A study 

utilizing a sample from Amsterdam demonstrated that exclusively breastfed infants in the 

first four months have greater SR at age 5 than those who were introduced to solid foods 

during the first four months. (107) There is some conflicting research regarding 

breastfeeding, SR, and BMI such that one study found that breastfeeding exposure is related 

to higher SR at age 3–6, but not related to BMI change; (108) yet another study found 

breastfeeding intensity is related to obesity risk but not SR. (109)

It is also possible that factors in the environment can impact SR. Davidson and colleagues 

outline how interaction with the obesogenic environment can interfere with associative 

mechanisms that underlie the learned control of energy regulation. (110) Consistent with this 

analysis, overeating and the resulting excess weight gain is considered the result of 

physiological inhibitory signals (i.e. hormone cholecystokinin, leptin, Glucagon-like 

peptide-1) failing to suppress the capacity of cues in the environment (sight, smell, perceived 

palatability of a desirable food) from continuing to stimulate appetitive behaviors. (97) 

Excess energy intake and body weight gain is triggered by reducing the ability to inhibit 

appetitive and consummatory responses to food-related cues. (111–114) Practically, 
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consumption of a westernized diet that is high in sugar and saturated fat may promote higher 

FR because a reduction in inhibitory stimulus control by satiety signals can enable food cues 

to be more excitatory within a Pavlovian framework. (110)

A number of factors in the environment can contribute to this mechanism, although a full 

review is available elsewhere. (110) Research in animals showed that consumption of non-

caloric sweeteners can reduce the validity of sweet tastes as predictors of post-ingestive 

outcomes; (114, 115) however, data in humans tends to be more mixed. (116) Data suggest 

that SR depends, at least in part, on the hippocampus. (117) The hippocampus is involved in 

the encoding and retrieval of spatial relations among objects in the environment and the 

formation and recall of memories about events and facts. (118) However, more recently, the 

hippocampus has been associated with the utilization of hunger signals (119) and resolving 

“predictable ambiguities” when a single stimulus signals different outcomes dependent on 

other cues. (120) Data suggest that a diet that is high in sugar and saturated fat impacts the 

function of the blood brain barrier and the hippocampus itself. (121–123) Thus, the 

consumption of a western diet may promote overeating by affecting the hippocampus and 

other brain substrates that are involved in Pavlovian learning, ultimately reducing the ability 

of satiety cues to be inhibitory. (123, 124)

6. Relationship between appetitive traits, eating behavior, and body 

weight

In both children and adults, studies suggest that FR is associated with greater food 

consumption, while SR is associated with less food consumption. In children, higher FR is 

related to faster eating rate and increased energy intake during an EAH paradigm, while 

higher SR is associated with lower energy intake in the EAH paradigm and lower overall 

energy intake measured across 5 days. (42) The Gemini Birth Cohort collected data from 

over 1000 families with children 16 to 21 months old, and revealed that higher FR is 

associated with more frequent meals, but not larger meals. (125) Furthermore, it suggested 

that SR is inversely related to meal size (125) and is associated with consumption and post-

meal satiety. (126) A study employing ecological momentary assessment found a significant 

positive relationship between food cues and snacking behavior, with FR moderating the 

relationship. (127)

Studies among toddlers show an inverse relationship between SR and energy intake during a 

lunch meal; but not during subsequent snack intake (EAH). (128) Similarly, adolescents 

classified as having greater SR (based on latent profile analyses) consume less food in an 

EAH paradigm. (129) There is also some evidence that SR, as measured by the Satiety 

Quotient, is related to subsequent ad libitum eating and self-reported food intake. (130, 131) 

These data provide a wide breadth of literature supporting the positive association between 

FR and eating behaviors and negative association between SR and eating behaviors across 

the lifespan.

FR is also consistently associated with higher body weight, while SR is inversely associated 

with BMI. (34, 109, 128, 132–135) Higher FR and lower SR are related to higher 

standardized child BMI, (136) with these associations demonstrated in multiple samples, 
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including school aged Latino children, (137) preschool children of families of low 

socioeconomic status, (138) and Dutch children aged 6–7. (139) Similarly higher FR is 

associated with higher BMI in adults, (140) while SR in adults is inversely associated with 

BMI. (44, 141) Further, self-reported intuitive eating is consistently inversely associated 

with BMI. (142–149) Longitudinal investigations of these associations are more limited but 

reflect the same effect. Higher FR in children at the age of 6 is a significant predictor of a 

greater increase in BMI from age 6 to 8. (135) The same study showed that higher BMIz at 

age 4 predicted lower SR at age 6, and the increase in BMIz from age 4 to age 6 predicted 

decreased SR between ages 6 and 8. (135) In a sample children ages 7 to 9, one year 

changes in BMI were significantly predicted by scores on a relative reinforcing value of food 

task at baseline. (150) In infants, SR at age 3 months is inversely related to weight SD scores 

at age 15 months independent of weight at 3 months. (151) One study demonstrated that SR 

at age 2 is negatively associated with BMIz at age 4 controlling for birth weight Z score. 

(128) A separate study found that SR at 5–6 years is negatively associated with BMI at age 

7–8 while controlling for birth weight. (152) Taken together, sufficient evidence suggests 

that SR is inversely related to BMI, while higher FR is associated with higher BMI. 

Longitudinal associations suggest the predictive power of FR and SR on BMI but additional 

studies are warranted.

Furthermore, data suggest that adults with OW/OB, compared to those with healthy weight, 

differentially respond to external food cues, with increases in both subjective ratings 

(increased desire to eat) and physiological responses (increased salivary response) to food 

cues. (153, 154) Our group demonstrated a stronger conditioned salivary response to 

innocuous food cues for individuals with obesity compared to those with healthy weight. 

(155) Several studies have shown that individuals with obesity, and those with binge eating, 

compared to those with healthy weight, display greater attention bias to food words and 

pictures. (156–164)

Emerging research also suggests that SR is related to weight loss. (165) Our group 

conducted a secondary data analysis among 150 children enrolled in family-based treatment 

for weight loss. (166) Latent class analyses revealed 3 trajectories of appetitive traits: high 

SR group (47.4%), high FR group (34.6%), and high emotional eating group (18.0%). (167) 

Interestingly, children in all three trajectories lost weight during treatment, however, only the 

children in the high SR group maintained their weight loss at the 12- and the 24-month 

follow-ups. Similarly, a study in adult men demonstrated that those with poorer SR lose less 

weight than those with high SR immediately following a 16-week randomized control trial 

of a satiating diet (higher protein; lower carbohydrate) to control diet (lower protein, higher 

carbohydrate) irrespective of group assignment. (165)

More recently, emerging research suggests that FR and SR may exist along the same 

continuum. Data in children and adults consistently show a significant negative relationship 

between FR and SR. (44, 168, 169) Additionally, more recent understandings suggest that 

the brain circuitry involved in both energy homeostasis and hedonic eating overlap and are 

less distinct than previously considered. (170) Thus, it is possible that these two appetitive 

traits may influence the impact of each other on overeating. This is similar to models in 

addiction research between reward (FR) and inhibition (SR). Considering this profile of 
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appetitive traits, there may be intervention opportunities related to decreasing FR and 

increasing SR.

In summary, appetitive traits are associated with overeating and body weight. The BST 

outlined the interaction between appetitive traits, genetics and the environment. As part of 

this paper, we extended the BST by elucidating pathways showing how the environment 

interacts with individual appetitive characteristics. Figure 1 presents our extension of the 

original BST (solid lines) with the addition of these pathways that further explain the 

mechanisms of how genetics and environment interact with appetitive traits.

7. Treatment development of a program designed to target FR and SR

Based on the theory and existing literature, we believe that FR and SR are emerging, 

important variables related to overeating and OW/OB and could be potential mechanisms for 

the development of a novel model for weight loss. We developed a treatment program that 

specifically targets both FR and SR, called Regulation of Cues (ROC). To target 

improvement in SR, we adapted Appetite Awareness Training (AAT). AAT focuses on rating 

hunger and satiety and learning to stop eating when physically full, and has been tested in 

children and adults. (171–173) To target decreases in FR, we developed a cue-exposure 

treatment for food (CET-Food) to reduce eating in response to food cues while sated. CET-

Food involves exposure to food without consuming it while sated. CET-Food can teach 

people to resist eating when they are not physically hungry even though food is present by 

improving inhibitory learning. (174–177) ROC incorporates these two skill sets with 

psychoeducation, coping skills, experiential learning and parenting skills (when applied with 

children). Our pilot studies to date have shown feasibility, acceptability and initial efficacy 

with children (178, 179) and adults. (180) Large randomized control trials are needed to 

establish ROC as an evidence-based treatment for obesity, overeating, and/or binge eating. 

Two large studies among adults in our lab are currently underway (NCT02516839, 

NCT03678766 (181)) and will help elucidate whether ROC is an effective weight-loss 

treatment targeting the mechanisms of FR and SR. To date, it is unclear whether ROC can be 

a stand-alone treatment or if it can be used to improve the potency of BWL. It is also unclear 

how to optimize inhibitory learning with food cues. (175–177)

8. Conclusions

In summary, we believe that FR and SR are important variables related to overeating and 

weight gain, and it is possible that these two appetitive characteristics may exist along the 

same continuum. We have outlined the methods for the development of these appetitive traits 

and how they contribute to overeating in the current food environment. In particular, we have 

outlined options for intervening with these two mechanisms, by focusing on improving SR 

by training participants to respond to their appetite and on changing responses to FR by 

training inhibitory learning. We have developed the ROC program which targets these two 

mechanisms and are testing this program in larger trials. We believe that by targeting 

mechanisms of overeating, we may be able to develop more potent and durable interventions 

to decrease overeating and weight.
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Figure 1: 
Extension of the Behavioral Susceptibility Theory which elaborates on the mechanisms of 

the development of higher food cue responsiveness (FR) and lower satiety responsiveness 

(SR) and relation to overeating and weight gain (adapted from Llewellyn & Fildes, 2017 

(35))
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