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Abstract

We report the preparation of enantioenriched secondary alkylcarbastannatranes via a 

stereoinvertive SN2 reaction of enantioenriched alkyl mesylates and carbastannatranyl anion 

equivalents. Using this process, enantioenriched secondary alcohols may be converted into highly 

enantioenriched alkylcarbastannatranes, which are useful in stereospecific cross-coupling 

reactions.

Graphical Abstract

The use of configurationally stable enantioenriched organometallic nucleophiles in 

stereospecific transformations constitutes a powerful approach to the preparation of 

complex, nonracemic molecules.1,2 Accordingly, enantioenriched organoboron and 

organotin compounds have been extensively used in metal-catalyzed cross-coupling 
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reactions. These transformations rely on stereospecific mechanisms that effectively translate 

chiral information from the starting materials to final products. Thus, it is vital that such 

precursors can be prepared with high enantiopurity in a straightforward manner.

Building upon the pioneering work of Jurkschat3 and Vedejs,4 in 2013, our laboratory 

developed a Stille cross-coupling reaction of enantioenriched secondary 

alkylcarbastannatrane nucleophiles and aryl electrophiles (Figure 1).5-7

This method afforded arylation products in high yields and with high enantiospecificity. The 

unique reactivity of alkylcarbastannatranes is attributed to the selective labilization of its 

apical alkyl substituent as a consequence of the dative N–Sn interaction in the “atrane” tin 

backbone.4 This approach enabled the first example of a stereospecific cross-coupling 

reaction using an unactivated secondary organotin species.8 Subsequently, we extended this 

chemistry to stereospecific acylation reactions, as well as stereospecific fluorination 

reactions.9,10

The lack of an efficient route to prepare enantioenriched carbastannatrane nucleophiles has 

been a major bottleneck to their broader synthetic application. Because unactivated 

secondary alkylstannanes typically exhibit low reactivity, there has previously been limited 

value in devising synthetic strategies to prepare enantioenriched variants. As a result, our 

laboratory has relied heavily on stereospecific lithiation/stannylation processes11 and chiral 

preparatory HPLC separation of racemates to obtain enantioenriched alkylcarbastannatrane 

nucleophiles. We set out to address this limitation by developing a more general approach to 

the preparation of enantioenriched alkylcarbastannatranes. Herein, we report a study of 

carbastannatranyl anion equivalents in stereoinvertive SN2 reactions with enantioenriched 

alkyl mesylates. We have found that carbastannatranyllithium (2) readily undergoes 

substitution reactions with secondary alkyl mesylates. This strategy enables the preparation 

of highly enantiopure secondary alkylcarbastannatranes from commercially available single-

enantiomer alcohols. With access to more diverse alkylcarbastannatrane nucleophiles, the 

scope of stereospecific Stille cross-coupling reactions is significantly broadened.

In 2015, Wang and Uchiyama reported the highly efficient lithiation of trialkyltin chlorides 

using in situ generated naphthalide radical anions.12 Using this method, clean substitution of 

methyl and primary allylic/benzylic halides was observed, which enabled preparation of the 

corresponding organostannanes in excellent yield. We hypothesized that 

carbastannatranyllithium (2) could be produced under similar reductive conditions and might 

be employed in SN2 reactions with enantioenriched secondary alkyl electrophiles to afford 

enantioenriched secondary alkylcarbastannatranes via stereoinversion. To circumvent 

potential racemization via a background radical pathway, we opted to investigate the use of 

secondary alkyl sulfonates, which have a lower propensity to form alkyl radicals than do 

alkyl halides. We quickly found that sec-butyl mesylate underwent efficient substitution with 

tributylstannyllithium prepared by the method of Wang and Uchiyama. However, an 

analogous approach using carbastannatranyl chloride failed to generate the corresponding 

secondary alkylcarbastannatrane. Ensuing studies revealed that carbastannatranyllithium (2) 

could be generated through sonication of the reaction mixture at 45 °C (see the Supporting 

Information).
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Having developed effective conditions for the in situ generation of tin lithium species 2, we 

investigated the enantiospecificity13 of the substitution reaction using enantioenriched alkyl 

mesylate 5 (Table 1). The reaction of 2 with 3 predissolved in THF resulted in eroded 

enantiopurity in the substitution product. However, we found that excellent 

enantiospecificity could be achieved when TMEDA was added to 2 or when ether or hexane 

was employed as the solvent. Access to carbastannatranyllithium (2) not only was found to 

be useful in forming tin–carbon bonds directly but could also be used as a precursor to other 

metalated tin nucleophiles.14 Using 5 as a model substrate for analysis, we examined the 

reactivity of carbastannatranyl anion equivalents 5–7 in this substitution reaction. Reactions 

involving 5 and 7 showed excellent enantiospecificity. Though none of these nucleophiles 

proved superior to the use of 2 in hexane or ether, the ability of attenuated nucleophiles such 

as 5 and 7 to undergo stereoinvertive substitution with high enantiospecificity suggests that 

alkyl mesylates bearing functional groups not compatible with tin lithium reagents will be 

still viable electrophiles in this process.

Using the conditions developed in Table 1, a series of secondary alkylcarbastannatrane 

nucleophiles was prepared from their corresponding mesylates (Table 2). Yields of ca. 50% 

were typically obtained alongside high levels of enantioenrichment, with separable 

elimination products accounting for the remaining mass balance. These unactivated 

enantioenriched secondary alkylcarbastannatranes (8) are completely tolerant of air and 

water. They are also inert to neutral, basic, and reductive reaction conditions, which enables 

synthetic modifications to be performed following installation of the carbastannatrane unit. 

For instance, desilylation of 12 was readily achieved by treatment with TBAF. Previously, 

we have demonstrated that diborylation of olefins and LiAlH4 reduction of esters do not 

affect the integrity of the carbastannatrane unit.10,15,16 The majority of the enantioenriched 

alkylcarbastannatranes prepared using this method contain a methyl group on the 

stereogenic carbon center. Unfortunately, analytical chiral HPLC conditions could not be 

found to separate enantiomers of carbastannatrane 13, in which an ethyl group replaces the 

methyl group. Though the enantiopurity of 13 could not be determined, we feel that the 

enantiospecificity would likely be very high from the enantioenriched alkyl mesylate, as was 

observed when other mesylates were employed alongside our standard conditions.

Previously, we had only reported two examples of stereospecific arylation reactions using 

unactivated secondary alkylcarbastannatranes (prepared using preparatory chiral HPLC).5 

Now having broader access to enantioenriched alkylcarbastannatranes nucleophiles, we 

conducted an investigation of their use in stereospecific Stille reactions. The cross-coupling 

products in Table 3 were all generated with high enantiospecificity. In contrast to our 

observations for stereospecific Suzuki reactions,2 the electronic properties of the 

electrophilic component did not influence the transfer of stereochemistry during the cross-

coupling reaction. Both electron-rich and electron-deficient electrophiles underwent 

coupling with nearly perfect transfer of the initial stereochemistry. The presence of 

heteroatoms and acidic protons was well tolerated in these reactions. The free alcohol 

formed from desilylation of (S)-12 underwent arylation with high yield and excellent 

enantiospecificity. Use of (rac)-13 as a nucleophile resulted in the formation of arylation 

product 14h in high yield. Thus, transmetalation of a secondary alkylcarbastannatrane still 
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occurs efficiently from the bulkier, non-methyl-containing alkylcarbastannatrane 

nucleophile. Finally, when (S)-11 was employed in a coupling reaction with the thioester of 

(S)-naproxen, acylation product 14j was obtained with completely reagent controlled 

diastereoselectivity.

In summary, we have developed a reliable synthetic method to access enantioenriched 

secondary alkylcarbastannatrane from their corresponding alkyl mesylates. Treatment of 

enantioenriched alkyl mesylates with stannatranyllithium (2) results in the formation of 

highly enantioenriched secondary alkylcarbastannatranes via a stereoinvertive SN2 pathway 

Other carbastannatranyl anion equivalents (e.g., 5 and 7 were also shown to undergo 

substitution reactions with high enantiospecificity. We subsequently demonstrated that these 

enantioenriched alkylcarbastannatrane nucleophiles readily undergo cross-coupling reactions 

with aryl bromides, with highly general preference for retention of stereochemistry. We 

expect that this method to access enantioenriched alkylcarbastannatranes will facilitate the 

future development of new stereospecific transformations of alkylcarbastannatrane 

compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stereospecific Stille cross-coupling reaction using enantioenriched secondary 

alkylcarbastannatranes.
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Table 1.

Optimization of Enantiospecificity in the Reaction of Carbastannatranyl Anion Equivalents and Alkyl 

Mesylate 5

Entry Tin
Entry Nucleophile Solvent Yield (%)

a
% es

b

1 2 THF 74 74

2 2 (with TMEDA) THF 65 98

3 2 ether 63 99

4 2 hexane 68 99

5 5 hexane 30 99

6 6 hexane <5 --

7 7 hexane 65 98

a
Calibrated 1H NMR yields.

b
Determined by chiral HPLC.
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Table 2.

Preparation of Enantioenriched Secondary Alkylcarbastannatranes from Their Corresponding Mesylates
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Table 3.

Stereospecific Stille Cross-Coupling Reactions Using Enantioenriched Secondary Alkylcarbastannatranes
a

a
Isolated yields of duplicate runs.

b
Using racemic 13.

c
Using the thioester of naproxen as electrophile; no KF added.
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