Skip to main content
. 2021 Apr 5;16(4):e0249460. doi: 10.1371/journal.pone.0249460

Table 3. AUC analysis for WM detection using the myelin predictions.

Model Loss Lesion Mask Cohort(s) used AUC CI Low CI High
Linear GAM RMSE n all 0.832 0.822 0.832
MAE n all 0.833 0.823 0.834
Segmentation Regression RMSE n all 0.854 0.844 0.863
MAE n all 0.856 0.846 0.866
Markov- GAM RMSE n all 0.826 0.815 0.826
MAE n all 0.827 0.816 0.827
Markov GAM RMSE n all 0.844 0.835 0.855
MAE n all 0.843 0.833 0.853
Myelin Feature - n all 0.883 0.874 0.891
Segmentation Regression+ MAE y day 7 0.904 0.888 0.918
Markov+ GAM MAE y day 7 0.910 0.895 0.924
Myelin Featuree - y day 7 0.919 0.905 0.932

Note: Bold highlights the best results. CI: confidence interval, 95%. Segmentation Regression+: segmentation regression plus lesion masks; Markov- GAM: GAM based on T2 signal intensity alone; Markov+ GAM: Markov GAM plus lesion masks.