Table 3. AUC analysis for WM detection using the myelin predictions.
Model | Loss | Lesion Mask | Cohort(s) used | AUC | CI Low | CI High |
---|---|---|---|---|---|---|
Linear GAM | RMSE | n | all | 0.832 | 0.822 | 0.832 |
MAE | n | all | 0.833 | 0.823 | 0.834 | |
Segmentation Regression | RMSE | n | all | 0.854 | 0.844 | 0.863 |
MAE | n | all | 0.856 | 0.846 | 0.866 | |
Markov- GAM | RMSE | n | all | 0.826 | 0.815 | 0.826 |
MAE | n | all | 0.827 | 0.816 | 0.827 | |
Markov GAM | RMSE | n | all | 0.844 | 0.835 | 0.855 |
MAE | n | all | 0.843 | 0.833 | 0.853 | |
Myelin Feature | - | n | all | 0.883 | 0.874 | 0.891 |
Segmentation Regression+ | MAE | y | day 7 | 0.904 | 0.888 | 0.918 |
Markov+ GAM | MAE | y | day 7 | 0.910 | 0.895 | 0.924 |
Myelin Featuree | - | y | day 7 | 0.919 | 0.905 | 0.932 |
Note: Bold highlights the best results. CI: confidence interval, 95%. Segmentation Regression+: segmentation regression plus lesion masks; Markov- GAM: GAM based on T2 signal intensity alone; Markov+ GAM: Markov GAM plus lesion masks.