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Abstract
Two errors in the article Best Match Graphs (Geiß et al. in JMB 78: 2015–2057, 2019)
are corrected. One concerns the tacit assumption that digraphs are sink-free, which
has to be added as an additional precondition in Lemma 9, Lemma 11, Theorem 4.
Correspondingly,Algorithm2 requires that its input is sink-free. The second correction
concerns an additional necessary condition in Theorem 9 required to characterize best
match graphs. The amended results simplify the construction of least resolved trees
for n-cBMGs, i.e., Algorithm 1. All other results remain unchanged and are correct
as stated.

Keywords Corrigendum · Phylogenetic Combinatorics · Colored digraph · Rooted
triples
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Best match graphs (BMGs) must be sink-free

Throughout Geiß et al. (2019) we have tacitly assumed that all vertex-colored digraphs
(G, σ ) satisfy the following property, which, by construction, is true for all colored
best match graphs (cBMGs):

For each vertex x with color σ(x), there is an arc xy to at least one vertex of y
every other color σ(y) �= σ(x).

All properly 2-colored digraphs appearing in the text are therefore assumed to be
sink-free, i.e., the out-neighborhoods of their∼• -classes are assumed to be non-empty:

(N4) N (α) �= ∅ for all α ∈ N .

This assumption was not clearly stated in the text.
Property (N4) is required in the proof of Lemma 9 [last line on page 2032]: Here

R(β) ∩ R(α∗) = ∅ only implies β ⊆ R(α) for the ∼• classes β with R(β) ⊆ R(α)
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47 Page 2 of 9 D. Schaller et al.

Fig. 1 Counterexample for the original version of Theorem 9. a A colored digraph with vertex set L that is
not a 3-cBMG. b The least resolved subtrees for the three 2-colored induced subgraphs. The union of their
triples is R:={a1b|a2, a1c1|a2, a1c1|c2, a2c2|a1, a2c2|c1}. c The Aho-graph [R, L]. In particular, R
forms a consistent set. d The tree T :=Aho(R). e The 3-cBMG G(T , σ ). The arc bc2 that was present in
(G, σ ) is missing in G(T , σ )

if R(β) �= ∅, which in turn is equivalent to N (β) �= ∅. Furthermore, N (α) = ∅
implies Q(α) = α and thus R′(α) = α. Property (N4) is therefore also necessary to
ensure that |R′(α)| > 1 and thus that the tree T (H′) is phylogenetic [page 2035, just
before Theorem 4]. In summary, Lemma 9, Lemma 11, and Theorem 4 require (N4)
as additional precondition.

Corrected characterization of n-cBMGs

The second paragraph of the proof of Theorem 9 in (Geiß et al. 2019, page 2045)
incorrectly states that “for any α ∈ Nand any color s �= σ(α) the out-neighborhood
Ns(α) is the same w.r.t. (Tst , σst ) and w.r.t.Aho(R).”, leading to the incorrect conclu-
sion that G(Aho(R), σ ) = (G, σ ) whenever Aho(R) exists. We recall that the triple
set R is defined as the union

R:=
⋃

s,t∈S
r(T ∗

st )

of all triples in the least resolved trees (T ∗
st , σst ) that explain the induced subgraphs

(Gst , σst ) of (G, σ ), and the Aho tree Aho(R) is defined on the leaf set L = V (G)

(which may not have been clear from the wording in the text). We shall show in
Proposition 3 below that G(Aho(R), σ ) is always a subgraph of (G, σ ) whenever R
is consistent. The example in Fig. 1 shows, however, that G(Aho(R), σ ) �= (G, σ ) is
possible becauseAho(R) can contain triples that are not present in any of the 2-colored
trees (Tst , σst ).
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As a consequence, the characterization of n-cBMGs requires the equality (G, σ ) =
G(Aho(R), σ ) as an additional condition. The corrected result, with the correction
underlined, reads as follows:

Theorem 9 A connected colored digraph (G, σ ) is an n-cBMG if and only if (1) all
induced subgraphs (Gst , σst ) on two colors are 2-cBMGs, (2) the union R of all
triples obtained from their least resolved trees (Tst , σst ) forms a consistent set, and
(3) G(Aho(R), σ ) = (G, σ ). In particular, (Aho(R), σ ) is the unique least resolved
tree that explains (G, σ ).

Condition (1) in Theroem 9, i.e., the requirement that all 2-colored induced subgraphs
(Gst , σst ) of (G, σ ) are 2-cBMGs, is necessary to ensure that the least resolved trees
(Tst , σst ) exist and thus that the triple sets r(Tst ) – and therefore also the set R of all
triples displayed by the 2-colored induced subgraphs – are well-defined. Consistency
of R is necessary for the existence of Aho(R). Clearly, Condition (3) is sufficient to
ensure that (G, σ ) is an n-cBMG. Hence, it remains to show that Condition (3) is also
necessary. This is achieved in Proposition 2 below.

Proof of theorem 9

Instead of proving the corrected version of Theorem 9 directly, we first state and prove
a slightly stronger and more convenient result, Theorem 1 below, and then proceed to
derive Theroem 9. To this end, we first generalize Definition 8 in (Geiß et al. (2019),
page 2036) to digraphs with an arbitrary number of colors:

Definition 1 (Schaller et al. (2021), Definition 2.7) Let (G, σ ) be a colored digraph.
We say that a triple ab|b′ is informative for (G, σ ) if a, b and b′ are pairwise distinct
vertices in G such that (i) σ(a) �= σ(b) = σ(b′) and (ii) ab ∈ E(G) and ab′ /∈ E(G).
The set of informative triples is denoted by R(G, σ ).

We briefly argue that, for 2-colored digraphs, the definition of informative triples given
here is equivalent to the one given in Geiß et al. (2019): By definition, an informative
triple of some colored digraph has vertices with exactly two colors, and thus is also
an informative triple in one of its 2-colored induced subgraphs. It is easy to check
that, for 2-colored digraphs, Definition 1 is equivalent to Definition 8 in Geiß et al.
(2019), since the four induced subgraphs shown in Fig. 8 in (Geiß et al. (2019), page
2036) correspond to the presence or absence of the two optional arcs ba and ca in the
informative triple ab|c (as defined here).

We will also make use of a generalization of Lemma 12 in (Geiß et al. (2019), page
2036):

Lemma 1 (Schaller et al. (2021), Lemma 2.8) Let (G, σ ) be an n-cBMG and ab|b′
an informative triple for (G, σ ). Then, every tree (T , σ ) that explains (G, σ ) displays
the triple ab|b′, i.e. lcaT (a, b) ≺T lcaT (a, b′) = lcaT (b, b′).

Given a digraph (G, σ ) for which R exists, Lemma 1 in particular implies that

R(G, σ ) ⊆ R. (1)
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With these preliminaries, we are ready to formulate our new main result as

Theorem 1 Acoloreddigraph (G, σ ) is ann-cBMGif andonly if G(Aho(R(G, σ )), σ )

= (G, σ ). Moreover, Aho(R(G, σ )) is the unique least resolved tree explaining an
n-cBMG (G, σ ).

In order to prove Theorem 1, wewill first provide several technical results that make
use of the notion of (non-)redundant tree edges and, in particular, of least resolved
trees. Recall that an inner edge e in a leaf-colored tree (T , σ ) is redundant if the
tree (Te, σ ) obtained from T by contraction of e explains the same n-cBMG, i.e., if
G(T , σ ) = G(Te, σ ). A tree (T , σ ) is called least resolved if it does not contain any
redundant edges.Wewill need the following, simplified, characterization of redundant
edges:

Lemma 2 (Schaller et al. (2021), Lemma 2.10) Let (G, σ ) be an n-cBMG explained
by a tree (T , σ ). The edge e = uv with v ≺T u in (T , σ ) is redundant w.r.t. (G, σ )

if and only if (i) e is an inner edge of T and (ii) there is no arc ab ∈ E(G) such that
lcaT (a, b) = v and σ(b) ∈ σ(L(T (u)) \ L(T (v))).

We note that the proofs of Lemma 1 (Schaller et al. (2021), Lemma 2.8) and Lemma 2
(Schaller et al. (2021), Lemma 2.10) only require the definition of best match graphs,
and are thus independent of the results proved in Geiß et al. (2019).

FollowingBryant andSteel (1995), an inner edge e of a rooted treeT isdistinguished
by a triple ab|c ∈ r(T ) if the path from a to c in T intersects the path from b to the
root ρT precisely on the edge e. In other words, e = uv with v ≺T u is distinguished
by ab|c if lcaT (a, b) = v and lcaT (a, b, c) = u. Lemma 2 immediately implies the
following generalization of Lemma 13 in Geiß et al. (2019):

Corollary 1 Let (G, σ ) be an n-cBMG explained by a tree (T , σ ). An inner edge e of
(T , σ ) is non-redundant w.r.t. (G, σ ) if and only if it is distinguished by an informative
triple ab|b′ for (G, σ ). In particular, if (T , σ ) is least resolved, then each of its inner
edges is distinguished by an informative triple.

In addition, we will need the following two technical results relating subtrees and
induced subgraphs of n-cBMGs.

Lemma 3 Let (T , σ ) be a tree explaining an n-cBMG (G, σ ). Then G(T (u), σ|L(T (u)))

= (G[L(T (u))], σ|L(T (u))) holds for every u ∈ V (T ).

Proof Let (G1, σ
′):=G

(
T (u), σ|L(T (u))

)
and (G2, σ

′):=(G[L(T (u))], σ|L(T (u))). By
definition, we have V (G1) = V (G2) = L(T (u)). First assume that xy ∈ E(G1)

for some x, y ∈ L(T (u)). Hence, it holds that lcaT (u)(x, y) �T (u) lcaT (u)(x, y′)
for all y′ with σ(y) = σ(y′) in T (u) and thus, since T (u) is a subtree of T , we
have lcaT (x, y) �T lcaT (x, y′) for all y′ with σ(y) = σ(y′) in T . Therefore, xy ∈
E(G). Since x, y ∈ L(T (u)) and G2 is the subgraph of G induced by L(T (u)), we
have xy ∈ E(G2) and thus E(G1) ⊆ E(G2). Now assume xy ∈ E(G2) for some
x, y ∈ L(T (u)). Hence, xy ∈ E(G). Consequently, there is no leaf y′ in T with
σ(y′) = σ(y) �= σ(x) such that lcaT (x, y′) ≺T lcaT (x, y) �T u. This clearly also
holds for the subtree T (u). Therefore,we have xy ∈ E(G1) and thus E(G2) ⊆ E(G1).
�
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Lemma 4 If (T , σ ) is least resolved for an n-cBMG (G, σ ), then the subtree T (u) is
least resolved for the n-cBMG G(T (u), σ|L(T (u))) for each u ∈ V (T ).

Proof The statement is trivially satisfied if T (u) does not contain any inner edges,
which is exactly the case if either u ∈ L(T ) or u ∈ V 0(T ) with childT (u) ⊆ L(T ).
Thus, let u ∈ V 0(T ) and childT (u) ∩ V 0(T ) �= ∅. Since (T , σ ) is least resolved,
it does not contain redundant edges. Let vw be an inner edge of T (u) with w ≺T

v �T u, and note that vw must also be an inner edge in T . By Lemma 2 and since
vw is not redundant in T , there is an arc ab ∈ E(G) such that lcaT (a, b) = w

and σ(b) ∈ σ(L(T (v)) \ L(T (w))). Since u �T v, Lemma 3 implies that ab is
also an arc in G(T (u), σ|L(T (u))) and lcaT (u)(a, b) = v. Hence, in particular, we have
σ(b) ∈ σ(L(T (v))\L(T (w))).We can now apply Lemma 2 to conclude that vw is not
redundant in T (u). Since vw was chosen arbitrarily, we conclude that T (u) does not
contain any redundant edge and thus, it must be least resolved for G(T (u), σ|L(T (u)))

for all u ∈ V (T ). �

We finally relate the subtrees T (u) to the construction of the Aho-graph as specified
in (Geiß et al. (2019), Sec. 3.4). Given a set of triples R on L , we will write R|L ′ for
the set of triples ab|c ∈ R with a, b, c ∈ L ′ ⊆ L .

Lemma 5 Let (T , σ ) be least resolved for an n-cBMG (G, σ ) with informative
triple set R:=R(G, σ ). Then, L(T (v)) is a connected component in the Aho-graph
[R|L(T (u)), L(T (u))] for every inner vertex u and each of its children v ∈ childT (u).

Proof We proceed by induction on L:=V (G). The statement trivially holds for |L| =
1. Hence, suppose that |L| > 1 and assume that the statement is true for every n-cBMG
with less than |L| vertices.

Let u be an inner vertex of T and v ∈ childT (u). We first show that L(T (v)) is
connected in [R|L(T (u)), L(T (u))], and then argue that there are no edges between
L(T (v)) and L(T (u)) \ L(T (v)), i.e., that L(T (v)) forms a connected component.

If uv is an outer edge, i.e. v is a leaf, then L(T (v)) is trivially connected. Now
suppose that uv is an inner edge of T . By Lemmas 3 and 4, (G[L(T (v))], σ|L(T (v)))

is explained by the least resolved tree (T (v), σ|L(T (v))). By the induction hypothesis,
L(T (w)) forms a connected component in [R|L(T (v)), L(T (v))] for all children w ∈
childT (v). Together with R|L(T (v)) ⊆ R|L(T (u)), this implies that the elements in
L(T (w)) are also connected in [R|L(T (u)), L(T (u))] for all w ∈ childT (v). Since
uv is an inner edge of the least resolved tree (T , σ ), we can apply Corollary 1 to
conclude that there is an informative triple ab|b′ in (G, σ ) that distinguishes uv, i.e.
lcaT (a, b) = v and b′ ∈ L(T (u)) \ L(T (v)) with color σ(b′) = σ(b). Hence, ab|b′
is also contained in [R|L(T (u)), L(T (u))]. In particular, there are children w,w′ ∈
childT (v) such that a �T w and b �T w′, and the edge ab connects L(T (w)) and
L(T (w′)) in [R|L(T (u)), L(T (u))].

Now suppose that there is an additional child w′′ ∈ childT (v) \ {w,w′}. We dis-
tinguish two cases. Either there is a leaf b′′ �T w′′ with σ(b′′) = σ(b) or no such
leaf exists. If there is such a leaf b′′, then ab′′ forms an arc in (G, σ ) and ab′′|b′ is an
informative triplemaking L(T (w)) and L(T (w′′)) connected in [R|L(T (u)), L(T (u))].
Otherwise, take an arbitrary leaf c �T w′′. Since σ(b) /∈ σ(L(T (w′′))), we have
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σ(c) �= σ(b) and thus, there is an arc cb in (G, σ ). Since lcaT (c, b′) = u �T v =
lcaT (c, b), the arc cb′ is not contained in (G, σ ). Hence, cb|b′ is an informative triple
making L(T (w′)) and L(T (w′′)) connected in [R|L(T (u)), L(T (u))].

Therefore, the subgraph in [R|L(T (u)), L(T (u))] induced by L(T (v)) must be con-
nected.

It remains to show that L(T (v)) is a connected component in [R|L(T (u)), L(T (u))]
and thus, that there are no edges ab in [R|L(T (u)), L(T (u))] with a ∈ L(T (v)) and
b ∈ L(T (u)) \ L(T (v)). Assume, for contradiction, that there exists such an edge
ab. Hence, this edge must be supported by an informative triple w.l.o.g. ab|b′ with
σ(a) �= σ(b) = σ(b′) and b′ ∈ L(T (u)). Lemma 1 implies that ab|b′ must be
displayed by T . However, lcaT (a, b) = u = lcaT (a, b, b′) implies that such a triple
cannot exist. Thus, L(T (v)) is a connected component in [R|L(T (u)), L(T (u))]. �

The least resolved tree of an n-cBMG therefore coincides with the Aho tree of its
informative triples. In more detail, we have

Proposition 1 If (G, σ ) is an n-cBMG, then (Aho(R(G, σ )), σ ) is the unique least
resolved tree for (G, σ ).

Proof Since (G, σ ) is an n-cBMG, Lemma 1 implies that there is a tree displaying
all triples inR(G, σ ). In particular, therefore, Aho(R(G, σ )) exists. Moreover, there
must be a least resolved tree (T ∗, σ ) for (G, σ ). To see this, consider an arbitrary tree
(T , σ ) that explains (G, σ ), and repeatedly identify and contract a redundant edge
until no redundant edges remain. By definition, the resulting tree still explains (G, σ )

and is least resolved. By Lemma 5 and by construction of (Aho(R(G, σ )), σ ), any
least resolved tree (T ∗, σ ) for (G, σ ) coincides with the latter. The uniqueness of
Aho(R(G, σ )) therefore implies that the least resolved tree is also unique. �


We now have all the pieces in place to complete the proof of the main result:

Proof of Theorem 1 If (G, σ ) is an n-cBMG, then Proposition 1 implies that (Aho(R
(G, σ )), σ ) is its unique least resolved tree, and thus G(Aho(R(G, σ )), σ ) = (G, σ ).
Conversely, G(Aho(R(G, σ )), σ ) is an n-cBMG. �


None of the intermediate results used to prove Theorem 9 in Geiß et al. (2019)
is used below in our proof of Theorem 1. However, to the best of our knowledge,
all results in Geiß et al. (2019) with the exception of the aforementioned Lemmas 9
and 11, and Thms. 4 and 9 are correct as stated. It is worth noting, furthermore, that
Theorem 1 immediately implies Thms. 5, 6, and 7, as well as the existence of a unique
least resolved tree in Thms. 2 and 8 of Geiß et al. (2019). In particular, Theorem 1
allows us to obtain the least resolved tree of an n-cBMGwithout the need to explicitly
construct the least resolved trees of all its 2-colored induced subgraphs.

To prove the correctness of the amended version of Theorem 9, it only remains to
show

Proposition 2 If (G, σ ) is a n-cBMG, then Aho(R(G, σ )) = Aho(R).

Proof For brevity setR:=R(G, σ ). From Eq. (1), i.e.,R ⊆ R, we immediately have
R|L(T (u)) ⊆ R|L(T (u)) for every inner vertex u of T . Moreover, by Theorem 1, (T , σ )

with T :=Aho(R) is the least resolved tree that explains (G, σ ).
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Hence, we can apply the same arguments as in the proof of Lemma 5 to conclude
that L(T (v)) forms a connected component in the Aho-graph [R|L(T (u)), L(T (u))]
for every inner vertex u and each of its children v ∈ childT (u). More precisely,
note that connectedness of any such L(T (v)) is guaranteed by the informative triples.
Now assume, for contradiction, that there is an edge ab in [R|L(T (u)), L(T (u))] with
a ∈ L(T (v)) and b ∈ L(T (u))\ L(T (v)) connecting L(T (v)) and L(T (v′)) for some
child v′ ∈ childT (u) \ {v}. In this case, there is a triple ab|c ∈ R|L(T (u)) and thus,
a, b, c ∈ L(T (u)) and lcaT (a, b, c) = u. By definition of R and Observation 4 in
Geiß et al. (2019), ab|c must be displayed by T . However, a, b, c ∈ L(T (u)) and
lcaT (a, b) = u = lcaT (a, b, c) imply that ab|c is not displayed by T ; a contradiction.
Therefore, (T , σ ) = (Aho(R), σ ), which completes the proof. �


For completeness, we show that conditions (i) and (ii) of Theorem 9 ensure that
G(Aho(R), σ ) and G(Aho(R(G, σ )), σ ) are subgraphs of (G, σ ).

Proposition 3 Let (G, σ ) be a properly n-colored digraph with all 2-colored induced
subgraphs being 2-cBMGs. Then the following two statements hold:

(1) IfR(G, σ ) is consistent, then G(Aho(R(G, σ )), σ ) ⊆ (G, σ ).
(2) If R is consistent, then G(Aho(R), σ ) ⊆ (G, σ ).

Proof We set (G ′, σ ′):=G(Aho(R(G, σ )), σ ). Since Aho(R(G, σ )) is defined on
V (G), we have V (G ′) = V (G) and σ ′ = σ . Now assume, for contradiction, that there
is an arc ab ∈ E(G ′) such that ab /∈ E(G). By assumption, the induced subgraph
(Gst , σst ) of (G, σ ), where s = σ(a) and t = σ(b), is a 2-cBMG and thus sink-
free. Therefore, there must be a vertex b′ of color σ(b) with ab′ ∈ E(G). Hence,
ab′|b is informative for (G, σ ) and contained in R(G, σ ). In particular, ab′|b must
be displayed by Aho(R(G, σ )); contradicting that ab is an arc in (G ′, σ ′). Hence,
statement (i) is true.

Statement (ii) can be shown usingEq. (1), i.e.,R(G, σ ) ⊆ R, and arguments similar
to the previous paragraph. �


Consequences for the algorithms

Finally, we discuss the consequences of the corrections for the algorithmic aspects
outlined in Section 5 of Geiß et al. (2019).

Algorithm 2 constructs the least resolved tree for 2-cBMGs based on Theorem 4
in Geiß et al. (2019). It therefore requires a sink-free graph as input, or needs to be
amended to check that its input satisfies condition (N4). This can be done trivially
in O(|E |) time. The statements concerning its complexity, i.e., Lemmas 18 and 19,
therefore are still correct.

Regarding the recognition of n-cBMGs, we have noted above that the consistency
of the triple set R and the fact that all 2-colored induced subgraphs are 2-BMGs are not
sufficient. Algorithm 1 of Geiß et al. (2019) therefore also needs to be corrected. By
Theorem 1, it suffices to construct the tree T :=Aho(R(G, σ )) and to check whether
G(T , σ ) = (G, σ ). On the other hand, it is no longer necessary to require connect-
edness of the input graph. We therefore obtain a considerably simpler procedure, see
Alg. 1.
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Algorithm 1: Unique least resolved tree of n-cBMG.
Input: Properly colored digraph (G = (L, E), σ )

Output: Least resolved tree (T , σ ) if (G, σ ) is an n-cBMG, false otherwise.
1 T ← Aho(R(G, σ ))

2 if G(T , σ ) = (G, σ ) then
3 return (T , σ )

4 else
5 return false

The same arguments as in Geiß et al. (2019) show that T = Aho(R(G, σ )) can
be constructed in O(|E ||L| log2(|E ||L|))= O(|E ||L| log2 |L|) time using the algo-
rithm by Deng and Fernández-Baca (2018). The construction of G(T , σ ) can then
be achieved in O(|L|2) time e.g. using Algorithm 1 of the Supplement of Geiß et al.
(2020). The equality G(T , σ ) = (G, σ ) can be checked in O(|L|2) operations. The
total effort therefore remains dominated by the construction of the least resolved tree
T .

We note that Algorithm 3 in Geiß et al. (2019) is essentially the simplified Algo-
rithm 1 above with its input restricted to 2-colored connected digraphs. Its correctness
therefore follows immediately from Theorem 1.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bryant D, Steel M (1995) Extension operations on sets of leaf-labeled trees. Adv Appl Math 16:425–453.
https://doi.org/10.1006/aama.1995.1020

Deng Y, Fernández-Baca D (2018) Fast compatibility testing for rooted phylogenetic trees. Algorithmica
80:2453–2477. https://doi.org/10.1007/s00453-017-0330-4

Geiß M, Chávez E, González Laffitte M, López Sánchez A, Stadler BMR, Valdivia DI, Hellmuth M,
Hernández Rosales M, Stadler PF (2019) Best match graphs. J Math Biol 78:2015–2057. https://doi.
org/10.1007/s00285-019-01332-9

Geiß M, González Laffitte ME, López Sánchez A, Valdivia DI, Hellmuth M, Hernández Rosales M, Stadler
PF (2020) Best match graphs and reconciliation of gene trees with species trees. J Math Biol 80:1459–
1495. https://doi.org/10.1007/s00285-020-01469-y

Schaller D, Geiß M, Stadler PF, Hellmuth M (2021) Complete characterization of incorrect orthology
assignments in best match graphs. J Math Biol. https://doi.org/10.1007/s00285-021-01564-8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1006/aama.1995.1020
https://doi.org/10.1007/s00453-017-0330-4
https://doi.org/10.1007/s00285-019-01332-9
https://doi.org/10.1007/s00285-019-01332-9
https://doi.org/10.1007/s00285-020-01469-y
https://doi.org/10.1007/s00285-021-01564-8


Corrigendum to “best match graphs” Page 9 of 9 47

Affiliations

David Schaller1 ·Manuela Geiß2 · Edgar Chávez3 ·Marcos González Laffitte4 ·
Alitzel López Sánchez5 · Bärbel M. R. Stadler1 · Dulce I. Valdivia6 ·
Marc Hellmuth7 ·Maribel Hernández Rosales6 · Peter F. Stadler1,8,9,10,11,12

David Schaller
sdavid@bioinf.uni-leipzig.de

Manuela Geiß
manuela.geiss@scch.at

Edgar Chávez
echavezaparicio@gmail.com

Marcos González Laffitte
marcoslaffitte@im.unam.mx

Alitzel López Sánchez
Alitzel.Lopez.Sanchez@USherbrooke.ca

Bärbel M. R. Stadler
baer@bioinf.uni-leipzig.de

Dulce I. Valdivia
dulce.valdivia@cinvestav.mx

Marc Hellmuth
mhellmuth@mailbox.org

Maribel Hernández Rosales
maribel.hr@cinvestav.mx

1 Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany

2 Software Competence Center Hagenberg GmbH, Softwarepark 21, 4232 Hagenberg, Austria

3 Centro de Física Aplicada y Tecnología Avanzada, UNAM, 76230 Juriquilla, QRO, México

4 Instituto de Matemáticas, UNAM Juriquilla, Blvd. Juriquilla 3001, 76230 Juriquilla, Querétaro,
QRO, México

5 Department of Computer Science, Université de Sherbrooke, 2500 Boul. de l’Université,
Sherbrooke J1K 2R1, Canada

6 Centro de Investigación y de Estudios Avanzandos del IPN (CINVESTAV), Irapuato Unit,
Libramiento Norte, Carretera Panamericana Irapuato-León Kilómetro 9.6, 36821 Irapuato,
Guanajuato, México

7 Department of Mathematics, Faculty of Science, Stockholm University, SE - 106 91 Stockholm,
Sweden

8 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center of
Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig,
Competence Center for Scalable Data Services and Solutions, Leipzig, Germany

9 Leipzig Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18,
04107 Leipzig, Germany

10 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Wien,
Austria

11 Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia

12 Santa Fe Institute, 1399 Hyde Park Rd. , Santa Fe, NM 87501, USA

123

http://orcid.org/0000-0002-5016-5191

	Corrigendum to ``Best match graphs''
	Abstract
	Best match graphs (BMGs) must be sink-free
	Corrected characterization of n-cBMGs
	Proof of theorem 9
	Consequences for the algorithms
	References




