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Summary:

Gut microbiota metabolites may be important for host health yet few studies investigate the 

correlation between human gut microbiome and production of fecal metabolites and their impact 
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on the plasma metabolome. Since gut microbiota metabolites are influenced by diet, we performed 

a longitudinal analysis of the impact of three divergent diets, vegan, omnivore, and a synthetic 

enteral nutrition (EEN) diet lacking fiber, on the human gut microbiome and its metabolome, 

including after a microbiota depletion intervention. Omnivore and vegan, but not EEN, diets 

altered fecal amino acid levels by supporting the growth of Firmicutes capable of amino acid 

metabolism. This correlated with relative abundance of a sizable number of fecal amino acid 

metabolites, some not previously associated with the gut microbiota. The effect on the plasma 

metabolome, in contrast, were modest. The impact of diet, particularly fiber, on the human 

microbiome influences broad classes of metabolites that may modify health.

Graphical Abstract

eTOC blurb

Tanes et al. show that consumption of a fiber free diet shifts the human gut microbiome towards 

metabolism of simple carbohydrates. Following an ecological stress, omnivore and vegan diets, 

but not the fiber-free diet, support growth of Firmicutes capable of carbohydrate and amino acid 

metabolism, altering fecal amino acids level.
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Introduction

The gut microbiota produces bioactive small molecule metabolites (Donia and Fischbach, 

2015). Examples include carbohydrate derivatives such as short chain fatty acids, lipids such 

as N-acyl amides (Cohen et al., 2017), amino acid metabolites (Dodd et al., 2017; 

Wlodarska et al., 2017), and the modification of bile acids (Fiorucci and Distrutti, 2015). 

Many of these metabolites influence mammalian physiology as ligands for G-protein 

coupled receptors and nuclear hormone receptors (Chen et al., 2019; Colosimo et al., 2019; 

Venkatesh et al., 2014) that could be targets for small molecule drugs (Brown and Hazen, 

2017) to treat and/or prevent diseases such as coronary vascular disease (Wang et al., 2011), 

diabetes (Koh et al., 2018), inflammatory bowel disease (Furusawa et al., 2013; Venkatesh et 

al., 2014), and autism (Hsiao et al., 2013). The production and functionality of these 

molecules have been demonstrated primarily in animal model systems such as gnotobiotic 

mice; the relevance to human physiology remains to be determined (Walter et al., 2020).

Interventions directed at the composition or function of the gut microbiome often result in 

larger effects in murine models than in humans where inter-subject variability in microbiome 

composition is greater. For example, the impact of diet on the composition of the gut 

microbiota is larger in mice than in humans (Baxter et al., 2019; Johnson et al., 2019; Wu et 

al., 2011). The inter-subject variability of the gut microbiota’s response to diet is likely the 

result of complex community interactions. Better understanding these interactions can 

inform the design of precision diets that lead to a predictable human response (Johnson et 

al., 2019; Zeevi et al., 2015).

It is believed that interactions of diet and the microbiome influence the fecal and plasma 

metabolome, but this has not been well studied in humans. In some settings, diet appears to 

have a strong impact on the plasma metabolome independently of the gut microbiota. For 

example, the plasma metabolome differs among humans consuming an omnivore or vegan 

diet, with only few metabolites being produced primarily by the gut microbiota (Wu et al., 

2016). In contrast, with extreme dietary changes such as elimination of fruits and vegetables 

from a diet composed of either whole foods or dietary formulas, there are relatively large 

changes in the composition of the gut microbiota (David et al., 2013; Lewis et al., 2015). To 

what extent these taxonomic changes lead to alteration in the fecal and plasma metabolome 

remains to be determined.

Dietary fiber from fruits and vegetables has large effects on the structure and function of the 

murine microbiota, with some effects being reproducible in humans (David et al., 2014; 

Kovatcheva-Datchary et al., 2015). Dietary fiber influences the composition of the murine 

gut microbiome, helping to maintain the diversity of the community (Sonnenburg et al., 

2016) and leading to the production of SCFAs via fermentation. In part, this is due to the 

high representation of genes encoding glycan degrading enzymes in gut bacteria, such as 

glycoside hydrolases, where the bacterial contribution of these genes exceeds the 

mammalian host contribution by many-fold (Cantarel et al., 2012; El Kaoutari et al., 2013). 

The ability of dietary fiber to stimulate production of SCFAs by the gut microbiota may be 

greater and more consistent in murine models than in humans (Baxter et al., 2019; Wu et al., 

2016), which may be due in part to the loss of bacterial taxa well adapted to degrade 
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complex plant polysaccharides during the process of industrialization (Smits et al., 2017). 

The typical American diet is relatively low in fiber with less than 10% of Americans 

consuming the recommended daily intake of fiber (NHANES). In contrast, most, but not all, 

vegetarians and vegans consume a greater amount of dietary fiber. Based on this, we 

hypothesized that comparing the microbiome and metabolome of adults following divergent 

diets including a vegan diet that is relatively high in fiber, a typical American diet that 

contains intermediate amounts of fiber, and a formula-based diet that is devoid of fiber we 

could learn about the influence of diet on the gut microbiota composition and the fecal and 

plasma metabolome. Moreover, we hypothesized that by transiently reducing the gut 

bacterial load, we would be able to isolate the relationship between different bacterial taxa, 

diet and metabolite production. In the Food And Resulting Microbial Metabolites (FARMM) 

study described herein, we determined the effect of diet on the composition and metabolic 

function of the human gut microbiome using a controlled feeding experiment with three 

divergent diets - vegan, typical American (hereafter referred to as omnivore), and an 

exclusive enteral nutrition diet (EEN) devoid of dietary fiber. We included an antibiotic and 

polyethylene glycol (Abx/PEG) intervention to transiently reduce the concentration of 

bacteria within the gut, thereby allowing for an assessment of the effect of diet on the 

recovery of the gut microbiota and its associated fecal and plasma metabolome. The results 

of this study demonstrate the importance of diet on the human gut microbiota composition 

and the production of both carbohydrate dependent bacterial metabolites as well as those 

generated from amino acids, a number of which have not been previously associated with 

the gut microbiota.

Results

Analyzing the effects of exclusive enteral nutrition (EEN), vegan, or omnivore diets

We performed a controlled feeding study comparing the effect of three different diets: vegan, 

EEN (a liquid diet with no fiber), and omnivore. The microbiota and the metabolome were 

compared during three phases: the dietary phase (days 1–5), the Abx/PEG gut microbiota 

purge designed to reduce bacterial load (days 6–8), and the recovery phase (days 9–15). The 

purge involved treatment with oral antibiotics (vancomycin and neomycin) and polyethylene 

glycol (Abx/PEG) (Figure 1A). The fecal and plasma samples collected are summarized in 

Figure S1A. The analysis of fecal and plasma samples before and after the Abx/PEG 

intervention allowed us to interrogate the effects of these three diets on the gut microbiome, 

the fecal metabolome, and the plasma metabolome. The time points after the Abx/PEG 

intervention characterized the dietary effects on recovery of the gut microbiome.

Throughout the study, vegan participants continued their diet as outpatients. Participants 

who had been consuming an omnivore diet prior to the study were randomized 1:1 to 

consume either an omnivore or an EEN diet under direct supervision in an inpatient research 

unit. The omnivore diet was designed to have similar carbohydrate, protein, and fat 

composition as the EEN diet, however there were differences in the constituents of the 

macronutrients such as the lack of fiber and a lower ratio of unsaturated to saturated fats in 

the EEN diet (Figure 1B and C). Diet history questionnaires (DHQs) of baseline diets 

showed that the subjects consumed comparable levels of total carbohydrates, fats, and 
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proteins (Figure 1B, linear model p>0.05), however the vegan diet consisted of significantly 

fewer total calories, higher total fiber to sugar ratio, higher unsaturated to saturated fat ratio, 

and higher levels of both soluble and total dietary fiber compared to the omnivores (Figure 

S1B, linear model p<0.001 and Figure 1C). Baseline nutrient composition was not 

significantly different among omnivores assigned to consume either an omnivore diet or 

EEN (Figures 1B and C, linear model p>0.05). This is supported by the principal component 

plot of the nutrients normalized to amount per 1000 kcal consumed where the vegan diets 

are significantly different than the omnivores (Figure 1D, PERMANOVA p=0.04 and Figure 

S1C). The engineered omnivore diet was closer to the omnivore groups than the vegan group 

(Figure 1D, linear model p=0.001 and p<0.001 for EEN and omnivore groups, respectively).

As previously reported, based on counting colony forming units (CFU), the Abx/PEG 

intervention reduced viable bacteria by approximately 5 logs (Figure 1E) (Ni et al., 2017). 

The Abx/PEG intervention led to a reversible reduction in microbial biomass as documented 

by the proportion of shotgun reads annotated “host” vs. “non-host” (Figure 1A) and 

quantitative 16S copy number (Figure 1F). The percent of host reads were not different 

between diets during the three phases of the study (linear mixed effects model). The 

bacterial load did not change during the diet phase amongst any group (linear mixed effects 

model, p>0.05). However, recovery of bacterial load in the EEN diet group was slower than 

in the omnivore diet group (p<0.001). Shannon diversity was also not significantly altered 

during the dietary phase of the study (p>0.05) but recovery was lower in the EEN group 

relative to the other two diets (Figures 1G, linear mixed effects model p<0.001). A longer 

dietary phase would be needed to determine if this is due to a delayed recovery of the 

microbiome following Abx/PEG or the natural trajectory of the microbiome composition 

over a longer period of time on an EEN diet in the absence of the Abx/PEG intervention. In 

addition, the vegan microbiota was more resilient to the effects of the Abx/PEG intervention 

with a smaller decrease and greater recovery of diversity; this may have resulted from the 

vegan diet or due to vegans participating in the study as outpatients and as such being 

exposed to a different environmental reservoir (Ng et al., 2013) (Figure 1G, p=0.003).

EEN led to a significant change in the microbiota composition within 3 days of the dietary 

phase relative to the vegan and omnivore groups (Figure 2A, PERMANOVA test on Bray-

Curtis distances p=0.03 and p=0.01 respectively). The vegan and omnivore groups were not 

significantly different from each other until day 7, which marks the introduction of PEG 

(Figure 2A, PERMANOVA test on Bray-Curtis distances). During the dietary phase of the 

study (days 1–5), two Rumincoccus genera belonging to Clostridia clade XIVa, R. gnavus 
and R. torques, increased in relative abundance on the EEN diet, and other taxa decreased, 

some also belonging to the same Clostridia clade (Figure 2B, linear mixed effects model).

Taxonomic alterations were more extreme during the recovery phase for all three diets 

(Figure 2A and Figure S2). Even though all three phyla showed an increase based on qPCR 

corrected relative abundances (linear mixed effects models q<0.001 for all three), the level 

of Proteobacteria during late recovery period was greater than the diet phase (linear mixed 

effects model q<0.001). However, only in the EEN group was the proportion of 

Proteobacteria greater relative to either Bacteroidetes or Firmicutes upon recovery (Figure 

2C). This was due to a dominance of Klebsiella pneumonia and Enterobacter cloacea 
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(Figure S2). At a Phylum level, this reflects the delayed return of Bacteroidetes and 

Firmicutes in the EEN group during the recovery phase since 16S rRNA gene copy number 

is much slower to recover in this group (Figure 2C). Best visualized in the PCoA analysis 

(Figure 2A), these results show that diet can be used to modify the human gut microbiota 

into alternative configurations upon recovery following a profound ecological community 

disturbance. The complete separation of the EEN group from vegans and omnivores with a 

predominance of Proteobacteria emphasizes the potential importance of diet in recovery of 

Bacteroidetes and Firmicutes in the human gut microbiota. However, these alterations were 

transient since assessment of the post study (PS) composition of the microbiome 14 to 28 

months after discontinuation of the study diets demonstrated a similar composition to 

baseline (Figure 2D, PERMANOVA test on Bray-Curtis distances p>0.05 for all study 

groups).

Glycoside hydrolase gene representation is associated with diet-dependent alterations in 
the composition of the gut microbiota and the production of short chain fatty acids during 
both dietary and recovery phases

The largest differences in composition of the gut microbiota were evident: 1) at the end of 

the diet phase with the EEN group changing relative to baseline and the other two groups 

and 2) during the recovery from the Abx/PEG intervention where the microbiome of the 

EEN group lagged behind the other two groups. We hypothesized that the absence of dietary 

fiber within the EEN formula could explain these related observations. Thus, we next 

examined representations of genes involved in the degradation of fiber and production of 

SCFAs (El Kaoutari et al., 2013; Louis and Flint, 2017). To provide evidence that fiber is a 

major dietary component responsible for the diet-associated compositional alterations in the 

gut microbiota described in Figures 1 and 2, we performed an analysis of reads that aligned 

to glycoside hydrolase genes as well as genomic pathways important in the production of the 

short chain fatty acid, butyrate (Figures 3 and 4).

Inferred protein sequences from metagenomic reads were aligned with the KEGG protein 

database focusing on the enzyme category 3.2.1, glycoside hydrolases. Relative to either 

omnivore or vegan diets, the EEN diet led to a reduction in the glycoside hydrolases 

responsible for degrading structural plant carbohydrates such as arabinoxylans (xylan 1,4 

beta-xylanase, alpha-N-arabinofuranosidase) and pectic polysaccharides (galacturan 1,4-

alpha-galacturonidase, arabinan endo-1,5-alpha-L-arabinosidase) and an increase in an 

enzyme, trehalose-6-phosphate hydrolase, as well as a trend for three others, involved in the 

digestion of sucrose or short fructooligosaccharides (Figure 3). This pattern is consistent 

with the abundance of simpler carbohydrates such as sucrose in EEN and absence of 

fermentable fiber. Similarly, during the recovery phase, subjects on the EEN diet showed a 

slower recovery of enzymes focused on plant-based glycans with a very robust increase in 

those involved in the digestion of more simple carbohydrates (Figure 3) consistent with the 

predominance of taxa belonging to the Proteobacteria phylum relative to either Firmicutes or 

Bacteroidetes phyla (Figure 2C) known to have a lower representation of glycoside 

hydrolases (El Kaoutari et al., 2013). The responsiveness of the human gut microbiome to 

dietary fiber is consistent with the transcriptomic signatures for the reduction in the mRNA 

expression of glycoside hydrolases in Bacteroides thetaiotomicron monoassociated 
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gnotobiotic mice fed a fiber-free diet (Sonnenburg et al., 2005). We did not observe a robust 

genomic signal for an increase in animal glycan-degrading glycoside hydrolases (Figure 3), 

contrary to studies in mice where a fiber-free diet led to an increase in expression of genes 

for animal glycan degrading enzymes (Desai et al., 2016; Sonnenburg et al., 2005).

Butyrate is produced in the gut mainly from breakdown of complex polysaccharides by 

resident gut microbes (Louis and Flint, 2017). Our mass spectrometry platform allows for 

quantification of butyrate levels, but not acetate or propionate. Fecal butyrate levels were 

comparable during the diet phase among the groups (linear mixed effects model, p>0.05), 

declined significantly and comparably among groups during the Abx/PEG intervention 

phase (p<0.001), and recovered to a greater degree in the vegan and omnivore groups than in 

the EEN group during the recovery phase (p<0.001) (Figure 4). Consistent with previous 

reports (Baxter et al., 2019), there was a significant level of inter-subject variability in fecal 

butyrate levels in all three dietary groups, including omnivores where there was no decrease 

in variability over time despite all subjects consuming the same diet (Table S1 and Figure 

S3A). To see the changes in butyrate producing potential of the microbiome, we aligned 

inferred protein sequences from metagenomic reads against the amino acid sequences of 

proteins responsible for butyrate production categorized into four pathways, the major one 

based on carbohydrate metabolism via acetyl-CoA and three involving amino acid 

metabolism-lysine, aminobutyrate/succinate, and glutarate (Vital et al., 2014) (Figures 4 and 

S3B). There were no differences between diets in the relative abundance of the genes during 

the dietary phase of the study (Figure 4). During the recovery phase, the recovery of the 

butyryl-CoA dehydrogenase (Bcd) electron transfer flavoprotein (EtfA) complex (q<0.001), 

which is a keystone gene to produce butyrate regardless of the starting substrate, was slower 

to recover in the EEN group compared to the omnivore group (Figure 4). Two of the 

terminal genes to produce butyrate, butyryl-CoA:acetate CoA transferase (But) (q<0.001) 

and butyryl-CoA:4-hydroxybutyrate CoA transferase (4Hbt) (q<0.001), decreased in the 

EEN group during the recovery phase in contrast to the other two diets which showed 

increases. Several genes in pathways that start with amino acids as their major substrates, 

including KamD, KamE, Kdd, and Kce, showed similar significant trends with negative 

slopes. GctA, GctB, and HgCoAd C in the glutarate pathway and 4Hbt and Afbt-Isom in the 

4-aminobutyrate pathway also showed reductions but these pathways were lower in 

abundance (Figure S3B). These results suggest that the lack of dietary fiber in EEN effects 

both carbohydrate- and amino acid-based production of butyrate.

Diet is a determinant of amino acid metabolism by the gut microbiome

Given that the analysis of butyrate production pathways revealed that both carbohydrate- and 

amino acid-based pathways were reduced in the EEN group upon the recovery of the 

microbiome (Figure 4), we sought to determine if there was a link between the resulting 

microbiome with the bacterial metabolite production dependent on non-carbohydrate 

substrates like amino acids. One example is the bacterial production of metabolites of 

aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Dodd et al., 2017). 

After production by the gut microbiota, some of these metabolites circulate systemically and 

can have physiologic effects on the host such as the enhancement of barrier (Venkatesh et 

al., 2014) and immune function (Zhang and Davies, 2016). We focused on indoleproprionic 
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acid (IPA), a bacterial metabolite produced by several Clostridium spp. through a series of 

reductive aromatic amino acid metabolism steps. These steps have been defined specifically 

in Clostridium sporogenes by phenylactate dehydratase (FldABC) and etfA, which encodes 

electron transport flavoprotein subunit A (Dodd et al., 2017). Proportional gene 

representation for all four of these genes were significantly reduced in the microbiome of the 

EEN group during the recovery phase of the study (q<0.005 for all comparisons; Figure 5A). 

The gene acdA was most strongly associated with IPA fecal and plasma levels using a 

generalized linear mixed effect model (Figure 5B). Fecal metabolomic analysis revealed 

similar levels of tryptophan, the precursor aromatic amino acid needed for IPA generation, 

across the diet groups during the dietary phase of the study. Likewise, fecal and plasma 

levels of IPA were similar among groups during the dietary phase of the study (Figure 5A, 

p>0.05). Immediately after the Abx/PEG intervention on day 9, non-host reads and 16S 

rRNA gene copy number were at their nadir (Figures 1A and F, respectively), plasma levels 

of tryptophan were similar among the three diet groups and fecal levels were increased 

(linear mixed effect model p<0.001), yet IPA levels were undetectable in fecal and plasma 

samples (Figure 5). This confirms that the gut microbiome is the predominant source for the 

production of IPA. During the recovery phase, fecal and plasma IPA levels rose in the 

omnivore and vegan groups (p<0.001), but not in the EEN group (p=0.002 and p<0.001 for 

fecal and plasma levels respectively), consistent with the lower abundance of phenylactate 

dehydratase cluster gene representation in the EEN group during these same time points 

(Figure 5A). Fecal levels of tryptophan were elevated during the recovery phase in the EEN 

group relative to the other two diets (p=0.004) suggesting that, at least in part, this may be 

due to lack of conversion to IPA. Thus, diet can shape the functionality of the gut 

microbiome by altering both carbohydrate- and amino acid-based metabolism.

Modeling of the metabolome reveals new associations between the gut microbiota, amino 
acids, and their metabolites

The robust reduction in bacterial biomass induced by the Abx/PEG intervention (Figure 1) 

allowed us to characterize the production of bacterial metabolites dependent upon 

carbohydrate and nitrogen metabolism via substrates delivered by diet. An untargeted 

analysis of known fecal metabolites at five time points across the sampling period showed 

that the trajectory of metabolite alteration was different for the EEN group on day 5 and 

onwards relative to the vegans and omnivores as visualized by a Principal Component 

Analysis (PCA) plot (Figure 6A, PERMANOVA fdr<0.01 for each time point). The fecal 

metabolomics profile of all three groups were the same at baseline (Figure 6A, 

PERMANOVA p>0.05). We developed a statistical nomenclature to classify longitudinal 

alterations in the abundance of fecal metabolites to specify metabolic functions contributed 

by the gut microbiome. We classified responses as an increase (coded as “1”), decrease 

(coded as a “3”), or no change (coded as a “2”) in the level of each fecal metabolite at each 

time interval based on the log ratio between each of the five sampled times points (four 

intervals) and a paired t-test corrected for multiple comparisons with q<0.1 (Figure 6B). In 

this manner, the pattern of each metabolite was assigned a 4-digit code (Table S2). The 

overall distribution of metabolites based on diet group classified by this code is shown in 

Figure 6C as relative proportions. The histogram to the right (log10 scale) shows the 

absolute numbers (Figure 6D). Among the 669 known metabolites identified in fecal 
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samples, 333, 246, and 325 (50%, 37%, and 49%) were coded “2222” for the EEN, 

omnivore, and vegan groups, respectively (i.e., the concentration of these fecal metabolites 

appears to be independent of both the gut microbiome and diet). All metabolites in the vegan 

group have the code pattern “2XXX” indicating that there was no significant alteration 

during the dietary phase, which was expected since all 10 vegans remained outpatients and 

did not alter their diets during the study. Another common pattern was “2XX2” which 

indicates that the metabolites were mostly perturbed during the Abx/PEG intervention and 

early recovery.

Based on the robust impact of the Abx/PEG intervention on bacterial load (Figure 1) and the 

effect of the EEN diet on the subsequent recovery of the gut microbiome and its impact on 

amino acid metabolism and IPA production (Figure 5), we performed an analysis focused on 

the effect of the Abx/PEG intervention (days 6–8) and the early recovery of the gut 

microbiome (days 9–12) on fecal and plasma amino acid levels and their derivatives. There 

was a consistent increase in fecal amino acids associated with the Abx/PEG intervention that 

was independent of diet (Figure 7A). This was likely a consequence of the purge of dietary 

nutrients from the gut before they can be absorbed in the small intestine, the colon, or 

metabolized by the gut microbiome given its low biomass immediately after the Abx/PEG 

intervention (Figures 1A and F). Most of these same amino acids decreased in the vegan and 

omnivore groups during the early recovery phase of the study (Figure 7A). It is likely that 

some of these amino acids, like tryptophan, tyrosine, and phenylalanine, are substrates for 

the production of amino acid metabolites as previously described (Dodd et al., 2017) (Figure 

7B, asterisks). However, most of these same amino acids did not decrease in the EEN group 

during the early recovery phase, possibly due to the lack of bacterial consumption because 

bacterial biomass remained low (Figures 7A and 1F). We observed the opposite relationship 

for amino acid derivatives and other nitrogen-based metabolites. These generally decreased 

during the Abx/PEG intervention phase in all three dietary group and increased during the 

early recovery phase in both the vegan and omnivore groups, but did not increase in the EEN 

group (Figure 7B). This is also consistent with the impaired recovery of the gut microbiota 

on the EEN diet (Figure 1F). Despite the nearly three dozen fecal amino acid and nitrogen-

based metabolites whose relative levels were significantly altered during either the Abx/PEG 

intervention and/or early recovery phases of the study, only a small fraction of these exhibit 

concurrent alterations in plasma levels (Figure 7). Interestingly, imidazole propionate, a 

product of bacterial histidine metabolism shown to be elevated in patients with type 2 

diabetes and induces insulin resistance in mice (Koh et al., 2018), show an opposite change 

in plasma concentration relative to stool in the omnivore group during the purge phase 

(Figure 7B). Quantification of this metabolite in all subjects reveals that alterations in stool 

levels throughout the different intervals in FARMM (Figure S4A) do not reflect those 

observed in plasma levels (Figure S4B). There were significant group, time, and group by 

time effects in stool whereas plasma levels are generally consistent throughout the study in 

all three groups. In total, these results indicate that the impact of the gut microbiota on the 

human plasma metabolome may be modest. It is possible that species-specific 

pharmacokinetics of specific metabolites as well as alterations in intestinal absorption, 

which is reduced during and immediately after PEG consumption due to short transit time, 

may also be factors.
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To identify those metabolites that are likely produced by the gut microbiota, we considered 

those amino acid metabolites that were reduced in the intervention phase across all three 

group and increased in the early recovery phase only among the vegan and omnivore groups. 

The aromatic amino acid reduction pathway, which is critical for the production of IPA and 

was originally described for C. sporogenes, has also been identified in three strains of 

Clostridium cadaveris as well as in Peptostreptococcus anaerobius, where it can lead to the 

production of 12 metabolites-9 are known to accumulate in host plasma, at least 3 of which 

are exclusively produced by the gut microbiota (Dodd et al., 2017). Abx/PEG intervention 

greatly reduced the number of reads that aligned to the genomic region responsible for IPA 

production from these bacterial taxa in all three diet groups (Figures S5A and B, days 7 to 

9). During the recovery phase, there was a robust increase in the abundance of these taxa in 

the omnivore and vegan groups, but not the EEN group (Figures S5A and B, day 9 to 15). 

Five of these 12 metabolites were reduced during the Abx/PEG intervention phase of the 

study independent of diet whereas three were increased during the recovery phase of the 

study in both the omnivore and vegan groups but not the EEN group (Figure 7B, asterisks). 

There are about two dozen fecal metabolites that have similar patterns (i.e., decreased levels 

in the Abx/PEG intervention phase across all three dietary groups followed by increased 

levels in only the omnivore and vegan groups during the recovery phase) (Figure 7B). 

Production of some of these metabolites may also be dependent upon the gut microbiome. 

For example, cadaverine is a natural polyamine with multiple biological activities that has 

been characterized as a bacterial metabolite (Miller-Fleming et al., 2015).

With the notion that these metabolite patterns closely track with the bacterial load results 

(Figure 1F), we looked further into the possibility that the metabolites that decrease in 

abundance during the purge when there is low bacterial load and increase as the bacterial 

load recovers might be produced by or associated with gut bacteria. We reviewed data in the 

Human Metabolome Database (HMDB) v4.0 for the 36 metabolites listed in Figure 7B 

(Wishart et al., 2018). Eight of these metabolites have been described to be of microbial 

origin and found in feces (cadaverine, diaminopimelate, formylmethionine, hydrocinnamate/

phenylpropionate, indole-3-propionate, indole, indoleacetate, and phenyllactate) which, 

when added to others that have previously been shown to be generated from bacterial amino 

acid metabolism (indole lactate) (Dodd et al., 2017), leaves 27 metabolites that have not 

been previously annotated as having a microbial origin associated with a mammalian host. 

One of these, D-alany-D-alanine, is a constituent of peptidoglycan in bacterial cell walls. A 

manual literature search (PubMed and Google Scholar using a combination of the metabolite 

name/HMDB ID, “microbial production”, “microbial metabolism”, “bacterial production”, 

and “bacterial metabolism”) was conducted for the remaining 26 metabolites and identified 

primary source literature describing the involvement of the metabolite in a bacterial 

metabolic pathway for 24 of the 26 metabolites. Many of the studies identified are not in 

host-associated organisms or communities, and many were published prior to 2000 (Table 

S3). Thus, these represent known microbial metabolites that have not previously been linked 

to gut-associated communities.

The remaining two metabolites lack primary source literature linking them to bacterial 

metabolism. However, one (methylimidazole acetic acid) can be linked to bacterial processes 

via two-step pathways in the literature (e.g., the metabolite has been placed in a specific 
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pathway based on literature and/or available pathway descriptions [e.g., KEGG], and that 

pathway is present in bacteria, but the individual metabolite has not been studied in bacteria) 

(Table S3). The remaining metabolite, acetyltyrosine, to the best of our knowledge, has not 

been previously linked to microbial metabolism. It is possible that this represents a 

previously unknown microbial metabolite that is linked to host-associated communities. 

Together, through the manipulation of the gut microbiota with Abx/PEG purge and three 

different diets, we have identified 27 novel metabolites that appear to be a product of human 

gut microbiota metabolism.

Discussion

There is great interest in the impact of dietary fiber on health and disease, in part, mediated 

via its effects on the composition of the gut microbiota and its metabolites. Despite a 

multitude of studies in rodent models showing that dietary fiber supplementation has a large 

effect on the composition of the gut microbiota and the production of metabolites such as 

SCFAs, data in humans is more limited. Most studies observed that the effects are relatively 

modest (Baxter et al., 2019; Johnson et al., 2019; O’Keefe et al., 2015; Wu et al., 2016). In 

this study, the use of a fiber-free EEN formulation had pronounced effects on the human gut 

microbiome that exceeds the difference between the effects of an omnivore vs. vegan diet. 

We also assessed the impact of the EEN diet on the recovery of the microbiome after an 

intervention that reduced bacterial load by about 5 logs. The short-term recovery of the gut 

microbiome was dramatically reduced on an EEN diet, and, unexpectedly, the resulting 

bacterial metabolites of both carbohydrate and amino acid origins were altered suggesting a 

broad impact of dietary fiber on bacterial metabolome. This may represent a conceptual 

advance over the current thinking that the gut microbiota metabolizes a single substrate class 

into a similar class of small molecules. Rather, depriving or supplying the human 

microbiome with one dietary component (i.e., fiber) can directly impact metabolites of an 

unrelated portion of the diet (i.e., amino acids) via the induction of specific gut bacterial 

taxa. Based on statistical modeling of the latter, we provide evidence for a number of amino 

acid metabolites that are likely to be of bacterial origin but have not been previously 

associated with the gut microbiome providing additional support for the importance of 

dietary fiber on a broad spectrum of bacterial metabolites.

During the dietary phase of our FARMM study, the composition of the gut microbiota was 

similar between omnivores and vegans, consistent with our previous research (Wu et al., 

2016). In contrast, EEN consumption led to fecal microbiome composition and metabolites 

that were distinct from omnivores and vegans. These changes occurred within a few days 

and were notable for an induction of two bacterial taxa belonging to the Clostidium clade 

XIVa, Ruminococcus torques and gnavus. The lack of fiber in EEN may have led to a 

growth advantage of these taxa, which some strains are known to be mucinophilic (Crost et 

al., 2013; Henke et al., 2019; Png et al., 2010). Analysis of genomic representation of 

glycoside hydrolases showed that the fiber-free composition of the EEN diet led to a 

decrease in the ability to hydrolyze plant cell wall glycans with an increase in the ability to 

digest more simple carbohydrates found in the EEN formula. Consumption of EEN did not 

lead to a robust increase in glycoside hydrolases targeting animal glycans found in mucus, as 

has been observed in gnotobiotic mouse studies (Desai et al., 2016; Sonnenburg et al., 2005). 
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Although this might be an indication of the differences between murine models and human 

biology, it is also possible that 5 days on an EEN diet was not sufficient to observe such an 

effect. Indeed, we did not observe a decrease in fecal butyrate levels within the first 5 days.

The combination of antibiotics, a gut purge, and a diet free of fermentable carbohydrates 

profoundly altered the human gut microbiome configuration leading to a high proportions of 

Proteobacteria. This was due to the reduced ability of both Bacteroidetes and Firmicutes to 

repopulate the gut during the recovery phase, demonstrating the phylum-wide dependence 

on dietary fiber to re-establish their intestinal niche. Similar findings have been observed in 

humanized gnotobiotic mice where a fiber-deficient diet exacerbated microbiota collapse 

upon antibiotic treatment and delayed recovery (Ng et al., 2019). The presumed mechanism 

is the predominance of glycan degrading enzymes encoded in the genome of taxa in both the 

Bacteroidetes and Firmicutes phyla relative to Proteobacteria (El Kaoutari et al., 2013). 

Indeed, during the recovery phase of those subjects on an EEN diet, there was a reduction of 

glycoside hydrolases, a reduced representation of butyrate producing pathways, and a 

reduction in fecal butyrate levels relative to the other two diets.

The reconfiguration of the gut microbiome into a reduced fermentative state through a 

combination of both antibiotics and a fiber-free diet has a number of potentially important 

implications for gut microbiome-dependent outcomes in patients. Since an increased relative 

proportion of Proteobacteria, particularly Enterobacteriaceae, with a reduction in Firmicutes 

is a predominant signature for dysbiosis in inflammatory bowel diseases (Nagalingam and 

Lynch, 2012), a configuration known to be deleterious in animal models of colitis (Sartor 

and Wu, 2017; Zhu et al., 2018), our results suggest that the combination of antibiotics with 

EEN may be less effective in patients with Crohn’s disease than EEN alone, and could be 

potentially harmful. Although antibiotics with a gut purge (PEG) and EEN diet is not a 

standard clinical care of patients with Crohn’s disease, the results of this study suggest that 

there may be merit in testing supplementation of EEN diets with fermentable fiber for the 

treatment of Crohn’s disease and/or ulcerative colitis; in the latter EEN is thought to be 

ineffective. Similarly, there might be value in exploring the impact of dietary fiber 

supplementation to reduce the risk for bacterial sepsis in seriously ill patients receiving 

antibiotics plus enteral nutrition by reducing Proteobacteria-dominance of the gut microbiota 

and preserving richness (McDonald et al., 2016). Given the robust effect of a fiber-free diet 

coupled with antibiotics and bowel lavage on the human gut microbiome in this study and in 

mouse models where dietary fiber has been depleted (Desai et al., 2016; Sonnenburg et al., 

2016; Zou et al., 2018), we confirmed that EEN-induced alterations in the gut microbiota 

spontaneously resolved post-study.

The robust taxonomic and metabolomic alterations of the gut microbiome observed during 

the recovery phase of subjects consuming EEN, where there is a much lower abundance of 

Firmicutes relative to the other two diets (Figure 2C), led to an unexpected finding: not only 

does the lack of dietary fiber reduce the production of carbohydrate metabolites such as 

butyrate, but also a number of amino acid-based metabolites that have been shown to be 

produced by Clostridium spp. (Dodd et al., 2017; Wlodarska et al., 2017). As an example, 

we show that there is reduced production of indolepropionic acid from tryptophan upon the 

recovery phase in the EEN group (Figure 5) which corresponds to a lower abundance of 

Tanes et al. Page 12

Cell Host Microbe. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clostridium spp. known to express enzymes in the aromatic amino acid reductive pathway 

(Figure S5). Since four additional amino acid metabolites produced by similar pathways 

(Dodd et al., 2017) also do not increase in the EEN group during the recovery phase (see 

asterisks, Figure 7B), we believe that Firmicutes may play a role in a number of additional 

amino acid metabolites listed in Figure 7B and Table S3. The broad impact of dietary fiber 

on the microbiota-dependent generation of metabolites from both carbohydrate and amino 

acid components of diet suggests that the effects of fiber on host physiology has the 

capability to extend well beyond those only attributed to bacterial carbohydrate metabolism 

(Dodd et al., 2017; Zhang and Davies, 2016).

We extended this notion beyond previously described bacterial amino acid metabolites. 

From approximately 700 known metabolites in this non-targeted analysis, we identified a 

dozen additional amino acid derivatives that follow the same pattern of expression and 

which are known to be produced by bacteria as well as approximately an equal number not 

previously known to be microbial metabolites. The latter might serve as a starting point to 

identify novel bacterial metabolic pathways that may link diet to the health of humans. Only 

a small number of these fecal metabolites show similar alterations in plasma, possibly due to 

the impact of intestinal epithelial metabolism and/or first pass metabolism by the liver. One 

metabolite, imidazole propionate, showed opposite trends in the stool and plasma of the 

omnivore group. Despite a decrease in omnivore stool levels, imidazole propionate increased 

in the plasma of omnivores during the purge phase whereas plasma levels remained 

unchanged while stool levels increased during the recovery phase. Reasons that might 

explain these differences include variation in the half-life of this metabolite in stool vs. 

plasma or the altered metabolism of the subjects during the purge phase that might have led 

to an increase. With respect to the latter, germ-free mice have quantifiable levels of plasma 

imidazole propionate (Koh et al., 2018).

A challenge in most feeding studies is the inability to isolate the effect of a single dietary 

component. By conducting this study in an inpatient setting, we had complete control of the 

diet for participants in the omnivore and EEN arms. We used random assignment to balance 

known and unknown confounders. We also matched the omnivore diet to the overall 

macronutrient composition of the EEN formula. Nonetheless, by design it was necessary for 

the composition of the two diets to differ. EEN lacks complex carbohydrates and replaces 

these calories with simple sugars. Other components of the diets differed slightly and could 

potentially have contributed to the observations. Indeed, we only had access to publicly 

available information about the overall composition of Modulen®. However, the absence of 

fiber as well as the consistent changes in both the taxonomy of the microbiome and its gene 

representations all point to fiber as the driving force in the observed microbiome and 

metabolome alterations observed in this study. A future study of fiber-free EEN versus EEN 

plus fiber could further isolate the effect of fiber on these physiologic processes.

In summary, by characterizing the effect of three different diets in a controlled feeding 

experiment, we show the importance of dietary fiber on both the composition and metabolite 

production of the human gut microbiome. Effects were context-dependent, the greatest 

impact being on taxa belonging to the Firmicutes phylum. Normally, the absence of dietary 

fiber leads to the expansion of specific mucinophilic Clostridium spp. However, upon 
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depletion of the gut microbiota with antibiotics, fiber plays an important role in both 

preservation of microbial biomass and diversity and the recovery of the gut microbiome with 

an effect on a broad range of metabolites that are both carbon- and nitrogen-based. 

Furthermore, with this model, we have identified new metabolites that appear to be derived 

by the microbiota from dietary sources in humans. The lessons learned from the FARMM 

study may not only have direct and practical impact on the approach to patients consuming 

diets low in fermentable fiber in whom there has been a disruption of the gut microbiota, but 

also a more general impact focused on diet-dependent production of microbiota metabolites 

and their role in human health and disease.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources and reagents should be 

directed to Gary D. Wu (gdwu@pennmedicine.upenn.edu).

Materials Availability: This study did not generate new unique reagents.

Data and Code Availability: Shotgun metagenomic sequence files are available at the 

Sequence Read Archive (SRA) under accession number PRJNA675301. Metabolomics data 

are available at the National Metabolomics Data Repository 

(www.metabolomicsworkbench.org) under accession number PR001024. The code 

generated during this study are available at Github at https://github.com/

PennChopMicrobiomeProgram/FARMM.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects: Thirty-one healthy volunteers between the ages of 18 and 60 were 

included in the study, however one withdrew before completing the protocol. As a result, 30 

are included in the analysis, 10 in each group (for further characteristics of the participants, 

see Table S4). Self-reported vegans were required to have followed a vegan diet for a 

minimum of 6 months prior to enrollment. Key exclusion criteria included inflammatory 

bowel disease, celiac disease, or other chronic intestinal disorders; prior bowel resection 

surgery other than appendectomy; baseline bowel frequency less than every 2 days or greater 

than 3 times daily; creatinine concentration greater than the upper limit of normal; diabetes 

mellitus; currently smoking; body mass index (BMI) <18.5 or >35; and use of antibiotics or 

probiotics in the prior 6 months. The 10 vegans continued to follow their usual diet as 

outpatients. All participants completed the Diet History Questionnaire II (DHQ II), a food 

frequency questionnaire developed by the Risk Factor Monitoring and Methods Branch of 

the National Cancer Institute. The 10 vegans continued to follow their usual diet as 

outpatients. They also completed three 24-hour diet recalls with a dietitian in the week prior 

to starting antibiotics. We randomly assigned the 20 omnivores to receive an omnivore diet 

or EEN (Modulen® IBD) while residing in an inpatient research unit. The macronutrient 

composition of Modulen®, as per the manufacturer, is protein 36g, fat 47g, and 

carbohydrate 110g per 1000 Kcal (more detailed information about composition is not 

publicly available). The two omnivore diets were engineered to have a similar composition 
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to EEN. All the inpatient subjects consumed the menu A on day 11 and menu B on days 4 

and 14. The menus of the inpatient omnivores are listed in Table S1. A clear liquid diet was 

used on the day of the bowel purge for all participants. Diets for omnivores were constructed 

to provide the expected total calories required per day for the participant to maintain their 

current weight and were adjusted if there was weight gain or loss of more than 2.5 pounds. 

On days 6, 7, and 8, inpatient participants received vancomycin 500mg orally every 6 hours 

and neomycin 1000mg orally every 6 hours. On day 7, participants consumed 4L of 

polyethylene glycol (PEG) based bowel purgative (GoLytely®). Participants in the omnivore 

and EEN arms left the inpatient research unit only under the direct supervision of a research 

staff member. The vegan outpatients reported to the hospital twice on days 6, 7 and 8 to 

receive antibiotics and to consume PEG on day 7. The first stool sample of each day of the 

inpatient groups was collected, aliquoted and frozen immediately at −80°C. Blood was 

collected on days 1, 5, 9, 12 and 15 from which plasma aliquots were immediately isolated 

and frozen at −80°C. The outpatient participants following the vegan diet also had blood 

collected on days 1, 5, 9, 12, and 15 from which plasma aliquots were immediately isolated 

and frozen at −80°C. Among these participants, the first stool of the day was collected at 

home daily and kept on ice packs until it was brought to the research unit where it could be 

aliquoted and frozen. Samples from vegans were received for aliquoting within 24 hours and 

on average within 4 hours (Wu et al., 2010). Day 0 stool was not collected from vegans since 

their diet did not change. Follow-up samples were collected from participants 14–28 months 

after completion of the study at an outpatient visit. The aliquoted amounts for all samples 

ranged from 500 mg to 1 g. The aliquots were taken from different areas of the sample. 

Remaining sample was then collected into one residual 50 ml conical tube with a tongue 

depressor. Any remaining stool was discarded. The University of Pennsylvania Institutional 

Review Board (IRB) approved the research protocol and considered it exempt from clinical 

trial registration requirements based on the protocol’s stated objectives.

METHOD DETAILS

DNA purification, library preparation and sequencing: DNA was extracted from 

approximately 200 mg of stool using the Qiagen DNeasy PowerSoil kit. Extracted DNA was 

quantified with the Quant-iT PicoGreen® dsDNA assay kit (ThermoFisher). Shotgun 

libraries were generated using the NexteraXT kit and sequenced on the Illumina HiSeq 2500 

using 2x125 bp chemistry. Extraction blanks and DNA free water were included to 

empirically assess environmental and reagent contamination. Laboratory-generated mock 

communities consisting of DNA from Vibrio campbellii and Lambda phage were included 

as positive sequencing controls (Figure S6).

qPCR analysis: A quantitative PCR (qPCR) assay targeting the 16S rRNA gene was used 

to estimate bacterial abundance. Primer sequences were 5’-

AGAGTTTGATCCTGGCTCAG-3’ and 5’-CTGCTGCCTYCCGTA-3’. The probe 

sequence was 5’-TAACACATGCAAGTCGA-3’(Hill et al., 2010). Reactions were 

performed in triplicate with TaqMan™ Fast Universal PCR Master Mix (Thermo Fisher 

Scientific, Waltham, MA) with the conditions: 20 s at 95°C followed by 40 cycles of 3 s at 

95°C and 30 s at 60°C. A plasmid containing the full length 16S rRNA gene from 

Streptococcus was used to generate the standard curve.
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Microbial Culturing: Freshly voided fecal samples were weighed and placed in an 

anaerobic chamber (2.5% H2, balance nitrogen; Coy Labs, Grass Lake, MI) within one hour 

of collection. The samples were homogenized in phosphate buffered saline with 0.1% 

cysteine, and serial dilutions were plated on gut microbiota medium (Goodman et al., 2011) 

and incubated at 37°C for 24 hours.

Bioinformatics processing: Sequences from the Illumina HiSeq 2500 were 

demultiplexed (https://github.com/PennChopMicrobiomeProgram/dnabc). The average read 

depth of the samples were 10.6 ± 4.7 million read pairs. The adapters were trimmed with the 

Trimmomatic software using default parameters(Bolger et al., 2014). Host and phiX derived 

reads were removed from the samples by aligning the reads to the Human genome version 

hg38.v4 and the phiX genome obtained from NCBI (Li and Durbin, 2009). The abundance 

of bacteria was estimated using MetaPhlAn software(Segata et al., 2012). Sample similarity 

was assessed by Bray-Curtis distance and alpha diversity was assessed by Shannon diversity 

metric (https://github.com/PennChopMicrobiomeProgram/PathwayAbundanceFinder). 

Reads were mapped to the KEGG protein database (Ogata et al., 1999) to estimate the 

abundance of bacterial gene orthologs using RAPSearch2(Zhao et al., 2012). The abundance 

of orthologs were then mapped to Enzyme Commission (EC) numbers annotations already 

present in the KEGG database. The enzymes related to glycoside hydrolases were defined as 

all the enzymes that start with an EC number of EC:3.2.1 and analyzed further. The reads 

were also aligned to curated databases of proteins involved in butyrate production(Vital et 

al., 2014) and amino acid reduction into indole propionic acid (IPA) (Dodd et al., 2017) 

using DIAMOND search(Buchfink et al., 2015). Additionally, the reads were aligned against 

the genomic regions responsible for IPA production using bwa(Li and Durbin, 2009). 

Quality control, read filtering, and the number of reads to these databases are provided in 

Supplementary Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis: Sample size and statistical power was estimated based on detecting a 

difference in metabolite concentration between two time periods using a paired t-test. With a 

sample size of 10 per group and 80% power, the detectable difference for an alpha error of 

0.05 is 1 unit of standard deviation. Using a Bonferroni correction for 600 metabolites, the 

detectable difference is 2.42 units of standard deviation. Ultimately, we included 669 

metabolites in the analyses. The differences between diet groups across time in qPCR levels 

and Shannon diversity were assessed using linear mixed effects models with the diet groups 

and study days as fixed effects and the subject IDs as random effects. The models were built 

for each arm of the study separately (diet, antibiotics, recovery). Community-level 

differences between sample groups were assessed using the PERMANOVA test. Bacterial 

species and gene abundance levels were tested using linear mixed effects models on logit 

transformed relative abundances. When multiple tests were performed, the p-values were 

corrected for false discovery rate using Benjamini-Hochberg method. Subjects’ BMI and age 

were added as covariates in all of the regression models.

Metabolomic analyses of fecal and plasma samples.—Stool samples were 

homogenized using a bead mill (TissueLyser II, QIAGEN), and the aqueous homogenates 
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were aliquoted for metabolite profiling analyses. Four separate LC–tandem MS methods 

were used to measure polar metabolites and lipids in each sample. Methods 1, 2, and 3 were 

conducted using two LC-MS systems composed of Nexera X2 UHPLC systems (Shimadzu 

Scientific Instruments) and Q Exactive Hybrid Quadrupole-Orbitrap MSs (Thermo Fisher 

Scientific), and method 4 was conducted using a Nexera X2 UHPLC (Shimadzu Scientific 

Instruments) coupled to an Exactive Plus Orbitrap MS (Thermo Fisher Scientific). Raw data 

were processed using Progenesis QI software (NonLinear Dynamics) for feature alignment, 

nontargeted signal detection, and signal integration. Targeted processing of a subset of 

known metabolites was conducted using TraceFinder 3.3 software (Thermo Fisher 

Scientific).. Statistical analyses were conducted on log10 transformed area under the curve 

values, and metabolite values below the limit of detection were imputed as 1 to allow for log 

transformation. PERMANOVA on Euclidian distances was used to establish metabolomic 

composition differences between diets at each time point. Paired t-tests on individual 

metabolites over each of the 4 time intervals for each diet group was done (with Bonferroni 

multiple comparison adjustments). The results were then classified as an increase (coded as 

“1”), decrease (coded as a “3”) or no change (coded as a “2”). For each metabolite, to 

summarize the significance over 4 time intervals, we took the smallest of the Bonferonni 

adjusted p value and then performed FDR control over all the metabolites.

Method 1 – positive ion mode MS analyses of polar metabolites.—LC-MS 

samples were prepared from stool homogenates (10 μL) via protein precipitation with the 

addition of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid containing 

stable isotope-labeled internal standards (valine-d8, Isotec; and phenylalanine-d8, 

Cambridge Isotope Laboratories; Andover, MA). The samples are centrifuged (10 min, 

9,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 mm Atlantis 

HILIC column (Waters; Milford, MA). The column was eluted isocratically at a flow rate of 

250 μL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in 

water) for 1 minute followed by a linear gradient to 40% mobile phase B (acetonitrile with 

0.1% formic acid) over 10 minutes. MS analyses were carried out using electrospray 

ionization in the positive ion mode using full scan analysis over m/z 70–800 at 70,000 

resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, 

3.5 kV; capillary temperature, 350°C; probe heater temperature, 300°C; sheath gas, 40; 

auxiliary gas, 15; and S-lens RF level 40.

Method 2 – negative ion mode MS analysis of polar metabolites.—LC-MS 

samples were prepared from stool homogenates (30 μL) via protein precipitation with the 

addition of four volumes of 80% methanol containing inosine-15N4, thymine-d4 and 

glycocholate-d4 internal standards (Cambridge Isotope Laboratories; Andover, MA). The 

samples were centrifuged (10 min, 9,000 x g, 4°C) and the supernatants were injected 

directly onto a 150 x 2.0 mm Luna NH2 column (Phenomenex; Torrance, CA). The column 

was eluted at a flow rate of 400 μL/min with initial conditions of 10% mobile phase A (20 

mM ammonium acetate and 20 mM ammonium hydroxide in water) and 90% mobile phase 

B (10 mM ammonium hydroxide in 75:25 v/v acetonitrile/methanol) followed by a 10 min 

linear gradient to 100% mobile phase A. MS analyses were carried out using electrospray 

ionization in the negative ion mode using full scan analysis over m/z 60–750 at 70,000 
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resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, 

−3.0 kV; capillary temperature, 350°C; probe heater temperature, 325°C; sheath gas, 55; 

auxiliary gas, 10; and S-lens RF level 40.

Method 3 – negative ion mode analysis of metabolites of intermediate polarity 
(e.g. bile acids and free fatty acids).—Stool homogenates (30 μL) were extracted 

using 90 μL of methanol containing PGE2-d4 as an internal standard (Cayman Chemical 

Co.; Ann Arbor, MI) and centrifuged (10 min, 9,000 x g, 4°C). The supernatants (10 μL) 

were injected onto a 150 x 2 mm ACQUITY T3 column (Waters; Milford, MA). The column 

was eluted isocratically at a flow rate of 400 μL/min with 25% mobile phase A (0.1% formic 

acid in water) for 1 minute followed by a linear gradient to 100% mobile phase B 

(acetonitrile with 0.1% formic acid) over 11 minutes. MS analyses were carried out using 

electrospray ionization in the negative ion mode using full scan analysis over m/z 200–550 

at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray 

voltage, −3.5 kV; capillary temperature, 320°C; probe heater temperature, 300°C; sheath 

gas, 45; auxiliary gas, 10; and S-lens RF level 60.

Method 4 – polar and nonpolar lipids.—Lipids were extracted from stool 

homogenates (10 μL) using 190 μL of isopropanol containing 1-dodecanoyl-2-tridecanoyl-

sn-glycero-3-phosphocholine as an internal standard (Avanti Polar Lipids; Alabaster, AL). 

After centrifugation (10 min, 9,000 x g, ambient temperature), supernatants (10 μL) were 

injected directly onto a 100 x 2.1 mm ACQUITY BEH C8 column (1.7 μm; Waters; Milford, 

MA). The column was eluted at a flow rate of 450 μL/min isocratically for 1 minute at 80% 

mobile phase A (95:5:0.1 vol/vol/vol 10 mM ammonium acetate/methanol/acetic acid), 

followed by a linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/acetic acid) 

over 2 minutes, a linear gradient to 100% mobile phase B over 7 minutes, and then 3 

minutes at 100% mobile-phase B. MS analyses were carried out using electrospray 

ionization in the positive ion mode using full scan analysis over m/z 200–1100 at 70,000 

resolution and 3 Hz data acquisition rate. Additional MS settings were: ion spray voltage, 

3.0 kV; capillary temperature, 300°C; probe heater temperature, 300°C; sheath gas, 50; 

auxiliary gas, 15; and S-lens RF level 60. All raw data were processed using Progenesis QI 

software (NonLinear Dynamics) for feature alignment, nontargeted signal detection, and 

signal integration. Targeted processing of a subset of known metabolites was conducted 

using TraceFinder software (Thermo Fisher Scientific; Waltham, MA). Compound identities 

were confirmed using reference standards and reference samples.

Metabolite classification analysis.—Databases of metabolites with known 

biospecimen locations (i.e., blood, urine, saliva, cerebrospinal fluid, feces, sweat, breast 

milk, bile, amniotic fluid, or other) and origins (i.e., exogenous, endogenous, food, plant, 

microbial, toxin/pollutant, cosmetic, drug, or drug metabolite) were obtained from The 

Human Metabolome Database (HMDB) v4.0 (Wishart et al., 2018). There are 114,085 

metabolites in the HMDB. Of these, 6,815 are classified as having been identified in fecal 

samples, and 172 are classified as being of microbial origin. There are 117 metabolites that 

are classified as identified in fecal samples and having a microbial origin. Manual literature 

searches were conducted on Pubmed and Google Scholar using a combination of the 
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metabolite name/HMDB ID, ‘microbial production’, ‘microbial metabolism’, ‘bacterial 

production’, and ‘bacterial metabolism’).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• The gut microbiome on a fiber-free diet differs from that of an omnivore or 

vegan.

• The lack of dietary fiber slows microbiome recovery after an ecological 

stress.

• Dietary effects on Firmicutes alter carbohydrate and amino acid gut 

metabolites.

• The effect of diet-based microbiota metabolites on the plasma metabolome is 

modest.
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Figure 1. 
General response of the human gut microbiota during the three phases of the Food and 

Resulting Microbiota and Metabolite (FARMM) study. A) Overall study design is annotated 

at the top of the figure. The dots at the bottom of the figure represent the study days where 

either the fecal samples or plasma samples were collected. The plot shows the percentage of 

reads that were filtered for having low quality and for matching to the human genome (host) 

for each sample grouped by study day. The remaining non-host reads were further annotated 

with bacterial taxonomy and gene databases. B) Macronutrient compositions obtained from 

the NDSR analysis of the diet history questionnaires (DHQ) collected before the start of the 

study as well as the compositions of the study diets (N=17 for omnivores, N=5 for vegans). 

The omnivores were randomized to either receive the engineered omnivore diet or the EEN 

diet. C) Amounts of insoluble, soluble and total fiber consumed at baseline by all the diet 

groups as well as the levels in the engineered omnivore diet and EEN. Baseline diets were 

compared using linear models as shown (*q<0.05, **q<0.01, ***q<0.001). Ages of the 

subjects were added as a covariate. D) A Principal Component Analysis of the nutrient 

compositions from DHQ data with respect to the engineered omnivore diet. The sub plot 

shows the Euclidean distance between the DHQ data points and the engineered omnivore 

diet (*p<0.05, **p<0.01, ***p<0.001). Statistical testing was not performed for engineered 

omnivore diet and EEN diet since their composition does not vary from subject to subject 

(standard deviation is 0). E) The colony forming units (CFU) and 16S qPCR data in 

response to Abx/PEG intervention from a previous study (Ni et al., 2017). Data are 

represented as mean +/− standard error of the mean (SEM). F) qPCR results showing copy 
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number of 16S genes per gram feces for each day in the study. The confidence intervals 

represent the SEM. The gray shaded area represents the antibiotic/PEG phase of the study. 

Linear mixed effects model was used to assess differences in copy number for each diet per 

study phase. G) Shannon diversity of the samples throughout the study. The confidence 

intervals represent the SEM. Linear mixed effects model was used to assess differences in 

diversity for each diet per study phase.
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Figure 2. 
Taxonomic alterations of the human gut microbiome throughout the course of the FARMM 

study. A) Principal coordinate analysis of Bray-Curtis distances. All three facets share the 

same axes and can be overlaid. The axes are labeled with the percent variance explained. 

The arrows connect the centroids of consecutive time points for each diet. PERMANOVA 

test on Bray-Curtis distances was used to assess if the microbiome communities of the diet 

groups are different for each day. B) The taxa that are significantly different in EEN diet 

compared to the omnivore diet during the diet phase based on linear mixed effects models 

(q<0.05). The taxa that increase during the diet phase with the EEN diet are annotated in 

black and the taxa that decrease in abundance are annotated with white squares. Taxa are 

further annotated with the Clostridia clade to which they belong. C) The qPCR corrected 

relative abundance of three major phyla in three diets studied. The confidence intervals 

represent the SEM. The gray shaded areas represent the antibiotic/PEG phase of the study. 
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Linear mixed effects model was used to assess differences in copy number corrected relative 

abundances for each diet per study phase. D) Principal coordinate analysis of Bray-Curtis 

distances of shotgun metagenomics data representing the samples collected 14–28 months 

after the Abx/PEG intervention (PS) from the subjects that participated in the original study 

as well as the samples collected on day 1 (pre Abx/PEG intervention), 5 (end of the diet 

phase), and 15 (end of study) of the original study.
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Figure 3. 
Genomic representation of glycoside hydrolase genes throughout the duration of the 

FARMM study. The glycoside hydrolase genes that have significantly different progression 

profiles in the EEN diet compared to the omnivore diet using linear mixed effects models on 

log transformed relative abundance of enzymes (q<0.05) are shown. The values represent the 

Z-scores of study day averages calculated per enzyme. The enzymes are grouped by their 

substrate category of plant based (storage, arabinoxylan, pectic polysaccharide), animal 

based, simple sugars or miscellaneous. The upper half of the plot shows any enzyme that 

shows a decreasing trend in EEN diet and the lower half of the plot shows an increasing 

trend in EEN diet compared to Omnivore diet. The black boxes denote if the statistically 

significant change was observed during the diet, recovery, or both phases. No enzymes had a 

statistically significant increase in one period and decrease in the other period.
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Figure 4. 
The human gut microbiome and butyrate production. Left Panel: The change in relative 

abundance of genes in four pathways responsible for butyrate production as curated by Vital 

et al.(Vital et al., 2014). Linear mixed effects models were fit to logit transformed gene 

relative abundance levels for each diet and study phase (diet or recovery) separately. Each 6 

grid heatmap represents the slopes obtained from these linear mixed effects models where 

the rows represent the diet slopes and the columns represent the study phase. The stars 

within the heatmap boxes represent if the slope is significantly different than 0 based on 

linear mixed effects models. The p values were corrected for false discovery rate using 

Benjamini-Hochberg method (q<0.05). A separate linear mixed effects model was built to 

find the genes that show a different slope profile in EEN group compared to the omnivore 

group during the recovery phase. The stars next to the gene names represent if this 

progression profile of gene abundance is significantly different (*q<0.05, **q<0.01, 

***q<0.001). Right Panel: Fecal butyrate levels throughout the duration of the FARMM 

study from untargeted metabolomics results. The confidence intervals represent the SEM. 

The gray shaded areas represent the antibiotic/PEG phase of the study.
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Figure 5. 
The reduction pathway of tryptophan to indole propionic acid. A) The intermediate 

metabolite levels in plasma and stool are shown for each diet group connected by the arrows 

to denote the progression of enzymatic reactions. The relative abundance of genes and their 

co-activators responsible for a reaction are denoted next to the arrows. The confidence 

intervals represent the SEM and the gray shaded areas represent the antibiotic/PEG phase of 

the study. Linear mixed effects model was used to assess differences in gene relative 

abundances or metabolite log area under the curve (AUC) values for each diet per study 

phase. B) Results of the generalized linear mixed effects model to determine which enzyme 

is a better predictor of indolepropionic acid levels in the plasma or the stool. The outcome 

was the presence or absence of indole propionic acid in stool or plasma (binary outcome 

transformed with binomial link) and the predictors were limited to the main enzymes and 

did not include any co-activators or cofactors to avoid collinearity.
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Figure 6. 
A statistical model to describe alterations in fecal metabolite levels across the four time 

intervals in the FARMM study. A) A Principal component analysis of fecal metabolites 

across the three diets (symbols) with colors representing each day of the study as indicated. 

The arrows connect the centroids of consecutive time points for each diet. B) Statistical 

model to provide a four-digit code per diet showing statistically-significant alterations of 

fecal metabolites across each of four time intervals using paired t-tests. Metabolite level 

changes in each interval were coded as an increase, no change or decrease (coded as a 1, 2, 

and 3, respectively) based on the criteria shown. C) Percent of fecal metabolites assigned to 

each of the four-digit codes that showed statistically-significant changes color coded by diet. 

D) Count of metabolites assigned to each four-digit code, log scale.

Tanes et al. Page 31

Cell Host Microbe. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Lists of fecal metabolites, annotated as “amino acids” by the Human Metabolome Database 

(HMDB) with statistically-significant interval changes in both the plasma and stool using the 

paradigm described in Figure 6B. Interval changes during both the “Abx/PEG intervention” 

and “Early Recovery” phases of the FARMM study for each of the three diets are shown. A) 

Amino acids, many purged from the gut and likely to be consumed by the gut microbiota 

upon early recovery. B) Amino acid and other nitrogen-based metabolites likely to be 

produced by the gut microbiota.*=Bacterially-produced amino acid metabolites described 

in(Dodd et al., 2017). Green=Interval increase in relative abundance. Orange=Interval 

decrease relative abundance. Orientation of the triangle symbol indicates whether the 

interval alteration in the metabolite was observed in the plasma or stool. HMBD annotations 

are provided for each metabolite.

Tanes et al. Page 32

Cell Host Microbe. Author manuscript; available in PMC 2022 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tanes et al. Page 33

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human fecal and plasma samples This study N/A

Critical Commercial Assays

DNeasy PowerSoil Kit QIAGEN 12888-100

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

Nextera XT Index Kit v2, Set A/B/C/D Illumina FC-131-2001/2/3/4

Quant-iT™ PicoGreen™ dsDNA Assay Kit ThermoFisher Scientific P7589

High Sensitivity NGS Fragment Analysis Kit 
(1-6000 bp), 500 Samples

Agilent Technologies, Inc. DNF-474-0500

HiSeq PE Cluster Kit v4 cBot Illumina PE-401-4001

HiSeq SBS Kit V4 250 Cycle Kit Illumina FC-401-4003

TaqMan™ Fast Universal PCR Master Mix (2X), 
no AmpErase™ UNG

ThermoFisher Scientific CAT# 4352042

Deposited Data

Metagenomics sequencing This paper SUB7782171

Human genome NCBI GRCh38.p4

Metabolomics data This paper http://dx.doi.org/10.17632/
ykb5wh3gn3.1

Stool metabolomics data: identified metabolites 
from HILIC-pos, C8-pos, HILIC-neg, and C18-neg 
methods

National Metabolomics Data Repository 
(www.metabolomicsworkbench.org)

Accession number:
PR001024

Stool metabolomics data: unknown peak data from 
HILIC-pos, C8-pos, HILIC-neg, and C18-neg 
methods

National Metabolomics Data Repository 
(www.metabolomicsworkbench.org)

Accession number:
PR001024

Plasma metabolomics data: identified metabolites 
from HILIC-pos, C8-pos, HILIC-neg, and C18-neg 
methods

National Metabolomics Data Repository 
(www.metabolomicsworkbench.org)

Accession number:
PR001024

Plasma metabolomics data: unknown peak data 
from HILIC-pos, C8-pos, HILIC-neg, and C18-neg 
methods

National Metabolomics Data Repository 
(www.metabolomicsworkbench.org)

Accession number:
PR001024

Oligonucleotides

BSF8, 16S qPCR forward primer: 
AGAGTTTGATCCTGGCTCAG

Hill et al, 2010 N/A

BSR357, 16S qPCR reverse primer:
CTGCTGCCTYCCGTA

Hill et al., 2010 N/A

16S qPCR probe (+ indicates locked nucleic acid 
base):
/56-FAM/TAA +CA+C ATG +CA+A GT+C GA/
3BHQ_1/

Hill et al., 2010 N/A

Software and Algorithms

Demultiplexing software This paper https://github.com/
PennChopMicrobiomeProgram/dnabc

Trimmomatic Bolger et al., 2014 https://github.com/
PennChopMicrobiomeProgram/illqc,
http://www.usadellab.org/cms/
index.php?page=trimmomatic
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bwa2 Li et al., 2009 https://github.com/
PennChopMicrobiomeProgram/
decontam

MetaPhlAn2 Truong et al., 2015 https://huttenhower.sph.harvard.edu/
metaphlan

Gene assignments This paper https://github.com/
PennChopMicrobiomeProgram/
PathwayAbundanceFinder

RAPSearch2 and DIAMOND search Zhao et al., 2012
Buchfink et al., 2015

https://
omics.informatics.indiana.edu/mg/
RAPSearch2/
http://www.diamondsearch.org/
index.php

The Human Metabolome Database Wishart et al., 2018 www.hmdb.ca/
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