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Abstract
Brain extraction is an important first step in many magnetic resonance neuroimaging studies.

Due to variability in brain morphology and in the appearance of the brain due to differences in

scanner acquisition parameters, the development of a generally applicable brain extraction algo-

rithm has proven challenging. Learning-based brain extraction algorithms in particular perform

well when the target and training images are sufficiently similar, but often perform worse when

this condition is not met. In this study, we propose a new patch-based multi-atlas segmentation

method for brain extraction which is specifically developed for accurate and robust processing

across datasets. Using a diverse collection of labeled images from 5 different datasets, extensive

comparisons were made with 9 other commonly used brain extraction methods, both before

and after applying error correction (a machine learning method for automatically correcting seg-

mentation errors) to each method. The proposed method performed equal to or better than the

other methods in each of two segmentation scenarios: a challenging inter-dataset segmentation

scenario in which no dataset-specific atlases were used (mean Dice coefficient 98.57%, volu-

metric correlation 0.994 across datasets following error correction), and an intra-dataset

segmentation scenario in which only dataset-specific atlases were used (mean Dice coefficient

99.02%, volumetric correlation 0.998 across datasets following error correction). Furthermore,

combined with error correction, the proposed method runs in less than one-tenth of the time

required by the other top-performing methods in the challenging inter-dataset comparisons.

Validation on an independent multi-centre dataset also confirmed the excellent performance of

the proposed method.
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1 | INTRODUCTION

Brain extraction, also known as skull-stripping, is an important first

step in almost all brain magnetic resonance (MR) image analysis pipe-

lines. It consists of the removal of all tissues external to the brain, such

as skull, dura, and eyes, without removing any part of the brain itself.

Because brain extraction is performed early in the processing pipeline,

high accuracy is crucial to avoid propagating errors into subsequent

processing steps, such as tissue segmentation, registration, and corti-

cal surface reconstruction and analysis. For example, a failure to suffi-

ciently remove nonbrain tissue can result in over-estimation of

cortical thickness (van der Kouwe, Benner, Salat, & Fischl, 2008), or

add errors to regional volume and atrophy estimates (Battaglini, Smith,

Brogi, & De Stefano, 2008). On the other hand, over-segmentation

results in a permanent loss of information that cannot be recovered in

subsequent processing steps. Suboptimal outcomes of automatic brain

*Data used in preparation of this article were obtained from the Alzheimer's

Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As

such, the investigators within the ADNI contributed to the design and imple-

mentation of ADNI and/or provided data but did not participate in analysis or

writing of this report. A complete listing of ADNI investigators is available at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_

List.pdf

Received: 15 March 2018 Revised: 17 May 2018 Accepted: 27 May 2018

DOI: 10.1002/hbm.24243

Hum Brain Mapp. 2018;39:4241–4257. wileyonlinelibrary.com/journal/hbm © 2018 Wiley Periodicals, Inc. 4241

http://orcid.org/0000-0003-3431-6006
http://www.loni.ucla.edu/ADNI
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Authorship_List.pdf
http://wileyonlinelibrary.com/journal/hbm


extraction often require manual adjustment to ensure that the brain

mask is suitable for further processing. However, particularly in large

population studies, manual intervention is undesirable and possibly

infeasible, as it is extremely time-consuming process (manually cor-

recting poor initial segmentations can require up to 8 hr per image

[Puccio, Pooley, Pellman, Taverna, & Craddock, 2016]), and sensitive

to both inter- and intra-rater variability.

To address these concerns, numerous fully automatic brain

extraction methods have been developed. These methods can be

roughly categorized into nonlearning- and learning-based approaches.

Nonlearning based methods do not require training data. Instead, the

algorithms are driven with various heuristics. For example, the Brain

Extraction Toolbox (BET) (Smith, 2002) uses a deformable model that

iteratively evolves to fit the brain surface by locally adaptive forces,

whereas 3dSkullStrip (3DSS) from the AFNI toolkit (Cox, 1996) mod-

ifies BET to avoid segmentation of the eyes and ventricles and reduce

leakage into the skull. The Hybrid Watershed Algorithm (HWA)

(Ségonne et al., 2004), part of the FreeSurfer package (Fischl, 2012),

combines a watershed segmentation with a corrective deformable

model under geometric constraints, and the Brain Surface Extractor

(BSE) (Shattuck & Leahy, 2002) algorithm employs a series of proces-

sing steps such as image denoising, edge detection, and morphological

operations.

Learning-based methods, on the other hand, use a template or set

of atlases to drive the segmentation a target image (for clarity, we use

the term “atlas” to refer to an image with its corresponding reference

labeling). ROBEX (Iglesias, Liu, Thompson, & Tu, 2011), for instance,

combines a discriminative random forest classifier (to detect voxels

along the brain boundary) with a generative point distribution model

(to ensure that the result is plausible), whereas SPECTRE (Carass

et al., 2011) and ANTs (Avants et al., 2011) use prior-based tissue clas-

sification, the results of which are further modified using mathemati-

cal morphological operations to produce the final brain mask. Other

learning-based methods work by augmenting or combining other brain

extraction methods. For example, optiBET (Lutkenhoff et al., 2014)

refines an initial BET brain mask using nonlinear registration to a

labeled template, whereas LABEL (Shi et al., 2012) and the work of

Souza et al. (2017) combine, using machine learning classifiers, the

brain masks given by other methods.

A common class of learning-based methods is that of multi-atlas

segmentation. In these methods, labels from multiple atlases are prop-

agated to the target image and then combined to form a consensus

solution. For example, Brain MAPS (Leung et al., 2011) combines lin-

ear registration with spline-based nonlinear registration algorithm

(Rueckert et al., 1999) to register a subset of similar atlases to a target

image, and then fuses the registered labels using shape-based averag-

ing (Rohlfing & Maurer, 2007) to form a consensus segmentation. Pin-

cram (Heckemann et al., 2015) uses a registration-based iterative

refinement approach to propagate labels from the atlases to a target

image. Instead of propagating labels via nonlinear registration, BEaST

(Eskildsen et al., 2012) requires only a coarse linear registration

between images, which translates into better runtime performance.

Label propagation is then accomplished using a multi-resolution

patch-based approach (Coupé et al., 2011; Rousseau, Habas, & Stud-

holme, 2011) where the label of each voxel in a target image is

determined by comparing its surrounding neighborhood with nearby

patches drawn from a subset of similar atlases. Other similar methods

include that of Huang et al. (2014), which is distinguished by its use of

a locally linear representation-based classification (Wang et al., 2010)

for patch-based segmentation, and that of Roy, Butman, and Pham

(2017), which combines multi-contrast patch-based segmentation

with nonlinear registration for more robust performance in the pres-

ence of brain pathologies.

Most brain extraction methods are designed to work on

T1-weighted (T1w) images. This is largely due to the popularity of the

T1w modality, as it produces images with excellent tissue contrast.

Even in the case that images from other modalities are to be seg-

mented, brain extraction can be performed on the same individual's

T1w image, and then accurately propagated by linear registration.

Nonetheless, the development of a generic, robust, and accurate brain

extraction method remains a difficult task because of the significant

variations in image characteristics that occur due to differences in

scanner manufacturer, acquisition sequence, and scanner strength. In

addition, neuroimaging studies are performed on individuals of all

ages, with and without tissue altered by various pathologies. Conse-

quently, nonlearning based methods for brain extraction algorithms

often need to be adapted specifically for a certain type of study, or, in

the best case, need to be fine-tuned (Fennema-Notestine et al., 2006;

Shattuck, Prasad, Mirza, Narr, & Toga, 2009). Learning-based methods

generally perform better than nonlearning based methods, offering

very high performance when the atlases are sufficiently similar to the

target images, but show substantially lower performance when this

condition is not met. This can be overcome by either manually cor-

recting poor segmentations, or by generating a new set of dataset-

specific atlases. Both options are impractical, and indeed infeasible for

modern large-scale multi-centre datasets consisting of hundreds or

thousands of images from many different sources. Recognizing these

considerations, other authors have focused on developing learning-

based methods that are more easily customizable to the study of

interest, for example by reducing the number of dataset-specific

atlases needed to obtain accurate segmentations (Doshi, Erus, Ou,

Gaonkar, & Davatzikos, 2013; Serag et al., 2016). However, these

methods still require dataset-specific atlases, which may still be

impractical.

Regardless of the choice of segmentation algorithm, some error is

unavoidable. Wang et al. (2011), proposed a novel generic method to

improve the performance of automated segmentation by correcting

systematic errors (i.e., errors that occur from subject to subject) using

a machine learning classifier to learn spatial, intensity, and contextual

patterns of segmentation errors in automated segmentation. Error

correction has been shown to boost performance in a wide variety of

automated segmentation tasks (Wang, Ngo, Hessl, Hagerman, &

Rivera, 2016; Wang & Yushkevich, 2013; Zandifar, Fonov, Coupé,

Pruessner, & Collins, 2017). However, like the learning-based methods

described above, it is generally assumed that dataset-specific atlases

are available. One exception is the work of Wang et al. (2016), which

assessed the usefulness of error correction applied to FreeSurfer seg-

mentations of the cerebellum and brainstem, when trained using

atlases differing from the target images with respect to the type of

head coil used during scan acquisition and the level of brain atrophy.
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However, the efficacy of error correction under still more challenging

circumstances, that is, when the training subjects differ from the tar-

get images more drastically (e.g., with respect to the age of the sub-

jects, the scanner acquisition protocol, and the scanner strength) has

not been evaluated, particularly for brain extraction algorithms.

The primary goal of this article is twofold. First, we outline and

validate a new brain extraction method that is specifically designed

for robust and accurate processing across datasets, that is, without

requiring additional and potentially costly dataset-specific atlases. Like

BEaST, our proposed method incorporates a patch-based label fusion

technique within a multi-resolution framework. We present several

modifications to this algorithm that increase its performance, including

the use of a more robust patch-based label fusion scheme based on

discriminative sparse representation (Huang & Aviyente, 2006; Tong,

Wolz, Coupé, Hajnal, & Rueckert, 2013), and the application of a mod-

ified error correction algorithm. Second, we compare the proposed

method with 9 other commonly used brain extraction methods, both

with and without error correction, in two extensive scenarios. The

first is a challenging inter-dataset segmentation scenario, in which no

dataset-specific atlases are used. The second is a simpler intra-dataset

segmentation scenario, in which only dataset-specific atlases are used.

For evaluation, we use a diverse collection of labeled images from 5

distinct datasets, covering subjects of all ages (from children to the

elderly), with varying atrophy, and acquired from varying scanning

machines with different acquisition protocols and scanner strengths.

We additionally validate our proposed method on a secondary multi-

centre publicly available dataset (Souza et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Image data

We used T1w MR images of the human brain acquired from a variety

of datasets, which are briefly described below.

(1) The Alzheimer's Disease Neuroimaging Initiative (ADNI)

(Mueller et al., 2005) dataset used in this study contains images of

30 elderly adults (mean age 74.9 � 7.0 years). Images of 10 subjects

from each of the following three subgroups were included: cognitively

normal subjects, subjects with mild cognitive impairment, and subjects

with Alzheimer's disease. These data were acquired on 1.5 T General

Electric (GE), Philips, and Siemens scanners using a magnetization-

prepared rapid acquisition gradient-echo (MP-RAGE) sequence. Semi-

automatically generated brain masks are available as part of the

publicly available BEaST atlas set. Specifically, these brain masks were

originally made by manually correcting initial segmentations produced

by fitting a spherical mesh to the publicly available automatic segmen-

tations produced by Brain MAPS (Leung et al., 2011) (see Eskildsen

et al. [2012] for details).

(2) The International Consortium for Brain Mapping (ICBM)

(Mazziotta et al., 2001) dataset used in this study contains images of

10 healthy young adults (mean age 23.8 � 4.0 years) acquired on a

Philips 1.5 T Gyroscan scanner using a spoiled gradient-echo

sequence. Semi-automatically generated brain masks are available as

part of the publicly available BEaST atlas set. Specifically, these brain

masks were originally made by manually correcting initial segmenta-

tions produced by applying BET (Smith, 2002) to fused-modality

images (see Eskildsen et al. [2012] for details).

(3) The Neurofeedback Skull-stripped (NFBS) repository (Puccio

et al., 2016) dataset used in this study contains images of 20 adults

(mean age 33.2 � 4.9 years) acquired on a Siemens 3 T Magnetom

TIM Trio Scanner using an MP-RAGE sequence. The publicly available

brain masks were previously semi-automatically constructed in accor-

dance with a brain mask definition similar to that of Eskildsen

et al. (2012).

(4) The National Institute of Health Pediatric Database (NIHPD)

(Evans, 2006) dataset used in this study contains images of 10 healthy

children (mean age 12.0 � 4.0 years) acquired on either Siemens or

GE 1.5 T scanners, using a spoiled gradient-echo sequence. Semi-

automatically generated brain masks are available as part of the pub-

licly available BEaST atlas set. These masks were originally made in

the same way as the ICBM masks.

(5) The Open Access Series of Imaging Studies (OASIS) (Marcus

et al., 2007) dataset used in this study contains images of 20 healthy

young adults (mean age 23.4 � 4.0 years) acquired on a Siemens

1.5 T Vision scanner using an MP-RAGE sequence. Manually gener-

ated multi-label volumes, provided by Neuromorphometrics, Inc.

(Somerville, MA, under academic subscription, available at http://

neuromorphometrics.com), were merged into a single binary volume

which includes cerebral and cerebellar white and gray matter, and

excludes all nonbrain tissue in addition to some ventricular and

sulcal cerebrospinal fluid (CSF).

2.2 | Preprocessing

The following preprocessing steps are applied to all the images

described above:

(1) Spatial normalization is achieved by affine (12 parameter) reg-

istration to the stereotaxic MNI-ICBM152 template (Fonov et al.,

2011) using the in-house script bestlinreg.pl, based on the open source

MINC toolkit, which optimizes a normalized mutual information (NMI)

similarity measure in a multi-resolution fashion. Nearest-neighbor

interpolation was used when applying the estimated transformation

to the label images to preserve their binary nature. The resulting

images had a size of 193 × 229 × 193 with an isotropic voxel size

of 1 mm3.

(2) Image nonuniformity is corrected using the N3 (Sled,

Zijdenbos, & Evans, 1998) method (nu_correct in the MINC toolkit).

Instead of correcting for nonuniformity in native space, we observed

better results when applying N3 on spatially normalized images, using

the MNI-ICBM152 template brain mask. As recommended in other

studies (Boyes et al., 2008), we used a smaller -distance parameter

(an estimate of the distance over which the nonuniformity field varies)

of 50 mm for images acquired on 3 T scanners, and a larger parameter

of 200 mm for images acquired on 1.5 T scanners.

(3) Intensity normalization is performed on the spatially normal-

ized and nonuniformity corrected images by linearly scaling the inten-

sities to the range 0–100 using 0.1–99.9% of the voxels in the

intensity histogram within the MNI-ICBM152 template brain mask.
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2.3 | Definition of brain mask

Our definition of the brain is largely the same as that of Eskildsen

et al. (2012), however the brain masks in this study are constructed in

a different way (see Section 2.4). Nonbrain tissue is defined as skin,

skull, eyes, dura mater, external blood vessels, and nerves (e.g., optic

chiasm, carotid arteries, and the superior and transverse sinus). Brain

tissue is defined as all cerebral and cerebellar white and gray matter,

in addition to the brainstem, pons, penduncles, and CSF in the

ventricles and in deep sulci.

2.4 | Construction of reference brain masks

The labeled brain masks acquired from the datasets described above

contain some differences which, without modification, would make

comparisons across different datasets difficult and possibly biased.

For example, the brain mask closely follows the boundary of the cor-

tex in the ICBM and NIHPD datasets, but includes more subarachnoid

CSF in the ADNI (particularly in brains with a large degree of atrophy),

OASIS, and the NFBS datasets. In addition, some internal and sulcal

CSF is excluded in the OASIS masks. Since a primary focus of this

study is to assess the efficacy of brain extraction algorithms when

using atlases consisting of labeled images from different datasets, it is

crucial that the brain masks are consistent across the datasets.

To improve the anatomical consistency of the masks across data-

sets without spending an inordinate amount of time, we used a semi-

automated method to modify the original brain masks. In the first step,

manual thresholding was applied to remove excessive CSF from the

pre-processed original brain masks, yielding combined white/gray

matter masks. For this step, denoised (Manjón, Coupé, Martí-Bonmatí,

Collins, & Robles, 2010) versions of the images were used to obtain

smoother thresholded masks. Second, to recover ventricular and sulcal

CSF from the white/gray matter masks, we adapted a procedure

recommended by Heckemann et al. (2015) by blurring with a Gaussian

kernel (8 mm standard deviation [SD]), thresholding at 0.5, erosion

with a box kernel (3 mm width) in two iterations, and merging with

the original white/gray matter mask. Finally, the masks were examined

and manually corrected, where necessary, to suit the definition of the

brain mask described in Section 2.3. Examples of the final brain masks

resulting from this process are shown in Figure 1.

2.5 | Proposed method for robust brain extraction

As described earlier, our proposed method modifies the BEaST

method with the goal of improving not only the accuracy of the seg-

mentation but also the robustness to differences between the target

image and the available atlases. We summarize our proposed method,

emphasizing the differences with respect to the BEaST method, as

follows.

2.5.1 | Preprocessing

The target image is affinely aligned with the atlases, corrected for

nonuniformity, and intensity normalized using the preprocessing pipe-

line described in Section 2.2.

2.5.2 | Atlas selection

Following preprocessing, the N closest atlases to the target image are

selected based on the sum of squared distances (SSD) between each

atlas and the target image. In our preliminary experiments, other simi-

larity metrics (such as normalized mutual information and global cross-

correlation) were considered, but were not found to improve results.

In BEaST, N possibly different atlases are selected at each successively

finer resolution by calculating the SSD within an increasingly narrow

initialization mask. In our preliminary experiments, we found that this

tended to result in the selection of some visually dissimilar atlases,

and slightly worse results. In this study, we therefore select the

N atlases only once, at the native resolution, calculating the SSD

within a brain margin mask; these same atlases are then used for

every level of the multi-resolution segmentation (Section 2.5.4). The

margin mask is obtained by subtracting the intersection of the atlas

masks from the union of the atlas masks.

2.5.3 | Patch-based label fusion

In BEaST, classical patch-based label fusion (Coupé et al., 2011) is

used to automatically segment the preprocessed target image using

FIGURE 1 Example reference labels. One labeled image is displayed

from each of the 5 datasets used in this study [Color figure can be
viewed at wileyonlinelibrary.com]
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the N selected atlases. For a given target voxel in the target image,

the surrounding patch is first extracted (denoted by p) and then

re-shaped into a column vector. Then, a cubic search volume is

defined around the target voxel, and all patches within the search vol-

ume are extracted from each of the selected atlases. The resulting

patch library is generally very large. Therefore, one can use patch pre-

selection (Coupé et al., 2011) to prune the library before the computa-

tionally expensive weight estimation step. Patch preselection can be

done very efficiently using the structural similarity (ss) index (Wang,

Bovik, Sheikh, & Simoncelli, 2004) between the target patch p and

each patch pj in the patch library:

ssj =
2μμj

μ2 + μ2j
×

2σσj
σ2 + σ2j

ð1Þ

where μ and σ denote the mean and SD, respectively, of target

patch p, and μj and σj denote the same for library patch pj. Patches

pj in the patch library with ssj < γ can be discarded, where γ is a pre-

defined patch preselection threshold. Since the computation of ss

between two patches requires only the value of their mean and

SDs, preselection can be accelerated using pre-computed maps of

local means and SDs to avoid repeated calculations. Supposing

there are n patches in the pruned patch library, the preselected

patches are re-shaped into column vectors and grouped into a

matrix L = [p1, p2 …, pn].

In classical patch-based label fusion, a label probability is assigned

to the target voxel based on the similarity of its surrounding patch

p to all the patches in the patch library L. The label probability v can

be estimated as:

v =

Pn
j=1wjljPn
j=1wj

ð2Þ

where lj is the label for the central voxel of patch pj in the library. Note

that because the segmentation problem is here binary, the probability

v is always between 0 and 1. The weight wj assigned to label lj

depends on the intensity similarity between p and pj, the jth patch in

the patch library:

wj = exp − p−pj
�� ��2

2=h
� �

ð3Þ

where h is the smoothing parameter, which is locally adapted in pro-

portion to the minimal distance between p and the library patches as

h= β argmin
j

p−pj
�� ��2

2
+ ϵ ð4Þ

where β is a free parameter and ϵ is a small constant to ensure numer-

ical stability.

Whereas classical patch-based label fusion has been shown to be

highly accurate in many cases, there are nonetheless several limita-

tions that hinder its performance in certain tasks. First, the weighting

function in Equation (3) is based on a simple intensity similarity, which

assumes that not only the overall brightness but also the tissue con-

trast between images is sufficiently similar. When the target image

and the atlases come from different sources, that is, different scanners

and/or acquisition protocols, it is unlikely that this assumption is satis-

fied, even after intensity normalization. Second, given the weight

formulation in Equation (3), even dissimilar patches will be assigned a

nonzero weight, limiting segmentation accuracy.

To address both limitations, we estimate the weights using a

sparse representation framework (Huang & Aviyente, 2006; Tong

et al., 2013). In the sparse representation method, rather than assign-

ing weights to the library patches independently based on patch-wise

intensity similarity, the problem is re-framed in terms of reconstruc-

tion, and all the weights are simultaneously estimated by a sparse rep-

resentation problem:

w = argmin
a≥0

1
2

p−aLk k22 + λ ak k1 ð5Þ

where L is the patch library matrix. The l1 penalty, weighted by the

free parameter λ, encourages sparse solutions (e.g., only a few patches

in the library are assigned a nonzero weight). In our study, Equation (5)

was optimized using the SPAMS toolbox (Mairal, Bach, & Ponce,

2014). As noted in other studies using sparse representation

(Huang & Aviyente, 2006; Mairal et al., 2014; Tong et al., 2013), to

get a meaningful estimate of the weights, it is important to normalize

both the target patch p and the patches in the patch library. To this

end, we normalize each patch to zero mean and unit l2 norm. By nor-

malizing in this way, the weight estimation in Equation (5) is more

robust to differences in overall brightness and contrast.

Finally, we use a multi-point label estimation such that label esti-

mates for whole patches are estimated (Rousseau et al., 2011) rather

than for the central pixel of each patch. This is advantageous because

each voxel benefits from multiple label estimates from neighboring

points (depending on the spatial distribution of voxels that are flagged

for processing, see Section 2.5.4). We use simple averaging to fuse

these multiple estimates.

2.5.4 | Multi-resolution implementation

In order to increase accuracy and to drastically reduce processing

time, the patch-based label fusion is embedded in a multi-resolution

framework as done in BEaST. In brief, the multi-resolution framework

enables propagation of the segmentation across scales using the seg-

mentations at coarser scales to initialize the segmentation at the sub-

sequent finer scale. First, all atlases are isotropically downsampled

using trilinear interpolation to the lowest resolution, and patch-based

label fusion is carried out. The whole estimated probability map is

then isotropically upsampled to the next finer resolution using trilinear

interpolation, and voxels for which the estimated probability is less

than a pre-defined constant α are set to 0. Similarly, voxels for which

the estimated probability is greater than (1 − α) are set to 1. The

remaining voxels are then flagged for processing with patch-based

label fusion (in the BEaST paper, this set of flagged voxels is called the

initialization mask). This procedure is repeated until the final resolu-

tion is met, and the final binary label is obtained by thresholding the

final estimated probability map at 0.5.

2.5.5 | Parameters

The proposed method has a number of parameters to select. For a fair

comparison to BEaST, the same patch preselection threshold γ and

multi-resolution configuration (i.e., downsampling factors and multi-

resolution propagation parameter α) as used in the latest version of
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the software (1.12.00) are also used in this study. However, as our

modified method solves a computationally expensive sparse represen-

tation problem to calculate patch weights, we use slightly smaller

search volumes at the 2 and 1 mm resolutions to reduce processing

time. Also as in BEaST, we select up to N = 20 atlases for segmenting

each target image. If fewer than 20 atlases are available, then all avail-

able atlases are used. The remaining parameters were empirically cho-

sen. A summary of the parameter settings used in this study are

presented in Table 1.

2.6 | Compared methods

In this section, we briefly describe the methods for brain extraction

that have been chosen for comparison.

2.6.1 | ANTs

Brain extraction using ANTs combines template priors, high-

performance nonlinear image registration (Avants, Tustison, Song,

et al., 2011), and tissue classification (Avants, Tustison, Wu, Cook, &

Gee, 2011) with topological refinements based on morphological

operations. We used the MNI-ICBM152 template and corresponding

brain mask prior (Fonov et al., 2011). The default parameters were

used for all steps with the exception of the similarity measure used

for the nonlinear image registration. We changed the measure from

local cross-correlation to mutual information, which resulted in con-

siderably better performance.

2.6.2 | BEaST

As described in Section 2.5, the latest version at the time of writing

(1.12.00) from the MINC toolkit (http://bic-mni.github.io) with the

default parameters was used.

2.6.3 | BET

The BET (Smith, 2002) from the FMRIB Software Library (FSL)

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) uses a

deformable model that iteratively evolves to fit the brain surface by

local intensity-based adaptive forces and smoothness criteria. We

used the latest version of FSL at the time of writing (5.0) with the

default parameters.

2.6.4 | Brain MAPS

Brain MAPS (Leung et al., 2011) is a multi-atlas segmentation

approach based on the multi-atlas segmentation framework. In the

original article, the definition of the brain mask excludes all CSF. To

ensure that all CSF is removed, the method described in the original

article includes an automated thresholding step, followed by a dilation

step to ensure that any accidentally removed brain tissue is recovered.

Because our definition of the brain mask includes internal and some

sulcal CSF, we implemented the method as closely as possible, but

omitting the thresholding and dilation steps. In brief, our implemented

method consists of the following steps.

Atlas selection

As suggested in the original article, the closest N = 19 atlases to the

target image are selected using the cross-correlation measure. If fewer

than 19 atlases are available, then all the available atlases are used for

label propagation.

Label propagation

The selected atlases are registered to the target image using linear fol-

lowed by nonlinear registration. The nonlinear registration is based on

a multi-resolution free-form deformation (Rueckert et al., 1999), based

on a normalized mutual information similarity measure, with three

isotropic control point spacings of 16, 8, and 4 mm. The correspond-

ing reference label images are re-sampled to the target image using

the results of the registrations. For both linear and nonlinear registra-

tion, we used the NiftyReg package (https://sourceforge.net/

projects/niftyreg), which implements fast multi-threaded variants of

the registration algorithms used in the original Brain MAPS paper.

Apart from the control point spacings, the default parameters for the

registration algorithms were used.

Label fusion

The multiple re-sampled label images are fused into a consensus seg-

mentation using shape-based averaging (SBA) (Rohlfing & Maurer,

2007). However, the authors also evaluated two other label fusion

techniques: simultaneous truth and performance level estimation

(STAPLE) (Warfield, Zou, & Wells, 2004) and majority vote (MV). In

this study, we also evaluate all three label fusion techniques.

2.6.5 | Optimized BET

Optimized BET (optiBET; Lutkenhoff et al., 2014) augments BET by

refining an initial (BET-derived) mask using nonlinear registration to a

labeled template. We used the default parameters. The brain masks

produced by optiBET exclude some ventricular CSF, which is inconsis-

tent with the definition of the brain mask used in this study. There-

fore, we postprocess all optiBET brain masks using hole-filling.

2.6.6 | Pincram

Pincram is unique among the compared methods in that it was also

specifically developed for robust cross-dataset segmentation. Pincram

(Heckemann et al., 2015) is an augmented multi-atlas segmentation

method in which a progressively more accurate segmentation is esti-

mated by applying increasingly more accurate registration techniques

(6-parameter linear, affine, and nonlinear). At each step, a consensus

segmentation is generated by thresholding the mean of the registered

labels (the thresholds at each step are configurable parameters). At

the subsequent step, the search for the brain boundary is constrained

TABLE 1 Multi-scale parameters used for proposed method at each

resolution level

Voxel
size

Patch
size

Search
volume γ λ α

Level 1 4 mm3 3 × 3 × 3 5 × 5 × 5 0.95 0.15 0.2

Level 2 2 mm3 3 × 3 × 3 7 × 7 × 7 0.95 0.15 0.2

Level 3 1 mm3 5 × 5 × 5 11 × 11 × 11 0.95 0.15 –

γ = Patch preselection threshold; α = multi-resolution propagation param-
eter; λ = l1 term penalty for sparse patch-based label fusion. Patch sizes
and search volumes are reported in voxel units.
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to the neighborhood of this consensus segmentation. Note that, by

default, Pincram uses all available atlases in the first refinement step.

Pincram is freely available (http://soundray.org/pincram). The latest

version at the time of writing (0.2.7) was used.

2.6.7 | ROBEX

ROBEX (Iglesias et al., 2011) combines a random forest classifier

(Breiman, 2001) to detect the brain boundary, with a generative point

distribution model to enforce smoothness and plausibility of the

resulting segmentation. ROBEX is freely available (http://www.nitrc.

org/projects/robex), and has no parameters to tune. The latest version

at the time of writing (1.2) was used.

2.7 | Error correction

Error correction (Wang et al., 2011) uses a voxel-wise classifier to

automatically detect and correct systematic errors produced by a

“host” segmentation method. In brief, error correction requires a set

of atlases to which the particular host segmentation method has been

applied. A classifier is then trained to discriminate between voxels cor-

rectly or incorrectly labeled by the host method on the basis of voxel-

specific feature sets. When segmenting a new target image, the host

segmentation method is first applied, and then each voxel is examined

by the classifier. In the context of binary segmentation, if the classifier

determines that a voxel was mislabeled, then its label is flipped.

The features used to describe each voxel include spatial, appear-

ance, and contextual information. Since all images considered in this

study undergo a pre-processing step in which they are linearly spa-

tially aligned, the spatial features for each voxel consists of its (x, y, z)

position in MNI-ICBM152 space. The appearance feature for each

voxel is directly derived by extracting a patch from the image centered

on the same voxel, and the contextual feature is similarly derived by

extracting a patch from the initial segmentation produced by the host

segmentation method. Furthermore, joint spatial-appearance and joint

spatial-contextual features are included by multiplying each spatial

feature with each of the appearance and contextual features.

As discussed in Section 2.5.3, using raw intensity patches may

lead to poor results if the atlases differ from the target image with

respect to overall brightness and contrast. In the original work on

error correction, the authors suggest to normalize each appearance

feature using the mean of the working region of interest (obtained by

dilating the initial segmentation produced by the host method) from

which the appearance feature is drawn. We instead normalized each

appearance feature to zero mean and unit l2 norm, which we found

resulted in improved performance for cases in which the atlases dif-

fered significantly from the target image. Also in our implementation,

we use a fast multi-threaded implementation (http://scikit-learn.org/

stable) of the random forests classifier (Breiman, 2001), rather than

the AdaBoost classifier (Freund & Schapire, 1995) used in the publicly

available error correction tool (Wang & Yushkevich, 2013). The

parameters for error correction (patch size, dilation radius, and sam-

pling rate for training) were set to values suggested by the original

authors (Wang et al., 2011) in their experiments on error correction

applied to the BET method (patch size of 5 × 5 × 5 voxels, dilation

radius of 1 voxel, and sampling rate of 1%).

2.8 | Performance measures

The similarity between the automatically segmented labels image and

the reference label images were quantified using the following 5

metrics.

Dice coefficient

The Dice coefficient measures the extent of spatial overlap between

two binary images. The Dice coefficient is defined as 100% × 2|A \
R|/(|A| + |R|) where A is an automatically segmented label image, R is

the reference label image, \ is the intersection, and |�| counts the

number of nonzero elements. We here express the Dice coefficient as

a percentage, with 100% indicating perfect overlap.

Sensitivity and specificity

Sensitivity and specificity measures provide information that comple-

ments overlap measures (such as the Dice coefficient) by separately

assessing the ability of the algorithm to correctly classify either fore-

ground (sensitivity) or background (specificity) voxels. The sensitivity

is defined as 100% × TP/(TP + FN) where TP is the number of true

positives and FP is the number of false positives. The specificity is

defined as 100% × TN/(TN + FP) where TN is the number of true

negatives and FP is the number of false positives. These measures are

also reported as percentages, and values closer to 100% are better.

Normalized volume difference

As overlap measures do not provide information about volumetric dif-

ferences between the label pairs, we also consider the normalized vol-

ume difference (NVD), defined as 200% × abs((A| − |R|)/(|A| + |R|))

where abs(�) is the absolute value function. The NVD is reported as a

percentage. Values closer to 0% are better.

Volumetric correlation

Finally, we also calculate the Pearson correlation coefficient r between

the volumes of the reference and automatic segmentations.

2.9 | Error visualization

To visualize errors, we generated mean false-positive and mean false-

negative images as suggested by Shattuck et al. (2009). False-negative

and false-positive images for each subject were nonlinearly deformed

and then averaged in MNI-ICBM152 stereotaxic space, and the result-

ing images were summed in the direction perpendicular to the sagittal

plane for visualization.

3 | EXPERIMENTS AND RESULTS

We consider two distinct scenarios in our experiments: an inter-dataset

segmentation scenario and an intra-dataset segmentation scenario. In

the inter-dataset segmentation scenario, no dataset-specific atlases

were used, either for the multi-atlas segmentation methods or for

training the corrective classifier. Each dataset was processed using a

set of atlases consisting of all the labeled images from the other

respective datasets. In the intra-dataset segmentation scenario, only
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dataset-specific atlases were used. Each dataset was processed using

a 5-fold cross-validation strategy. As mentioned in Section 2.7, to

train a corrective classifier on a set of atlases, the host segmentation

method must be applied to each atlas first. For the multi-atlas seg-

mentation methods, this was achieved using a leave-one-out strategy

among the set of atlases.

3.1 | Multi-resolution label fusion and error
correction: Improving efficiency

Unlike classical patch-based segmentation, the sparse representation

method for patch-based label fusion requires solving a more complex

optimization problem (Equation (5)) for each target patch and is there-

fore much more computationally demanding. The processing time

required for the proposed method, like BEaST, can be substantially

reduced by forgoing patch-based label fusion at the higher resolu-

tions, but the resulting segmentations are correspondingly coarse.

While computationally efficient intensity-based algorithms, such as

graph-cuts (Tong et al., 2015) or expectation–maximization models

(Ledig et al., 2012) can be used to recover high-resolution detail, it has

been recently suggested that error correction can also be used for this

purpose (Wang, Prasanna, & Syeda-Mahmood, 2017). We therefore

assessed the impact of error correction on the proposed method

when terminating the multi-scale patch-based label fusion at various

resolutions (Table 1) in both the inter- and intra-dataset experiments.

Distributions of Dice coefficients and NVD values, over all 90 images

from the 5 datasets, are shown in Figure 2.

Although there remain significant performance gaps between the

full multi-resolution patch-based label fusion and the early terminated

versions before applying error correction, the differences between

methods greatly diminished after applying error correction. After error

correction, the performance of the full multi-resolution version (operat-

ing at 4, 2, and 1 mm resolutions) was comparable with version termi-

nated after the 2 mm resolution. On the other hand, terminating the

patch-based label fusion after the lowest resolution (4 mm) resulted in

degraded performance, persisting even after applying error correction.

We therefore chose to forgo patch-based label fusion at the highest res-

olution level, which resulted in a substantial reduction in processing time

from roughly 22 min per subject to 1.5 min per subject (Section 3.3). This

accelerated method, used in the comparison experiments below, is here-

after referred to as the “proposed method” for brevity.

3.2 | Comparison of methods

All 10 methods were compared in both the inter- and intra-dataset

segmentation scenarios. In both segmentation scenarios, each method
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FIGURE 2 Effect of early termination on the multi-scale patch-based label fusion. Distributions of Dice coefficients and NVD values are shown

both before and after error correction (EC), in the inter- and intra-dataset segmentation experiments. Centre lines: median, boxes: interquartile
range, whiskers: truncated range, “+”: outliers [Color figure can be viewed at wileyonlinelibrary.com]
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was applied to segment each of the 5 datasets, and error correction

was applied to each of the 10 methods. These comparisons of brain

extraction methods are among the most comprehensive in the litera-

ture, requiring a total of 5,760 brain extractions. While this number

seems large, it is the result of applying each multi-atlas segmentation

method to both the test images and the training images for each com-

bination of testing/training images, as required for training the correc-

tive classifier (note that, for non-multi-atlas segmentation methods

which do not require explicitly provided training data, each image

needs to be segmented only once).

3.2.1 | Inter-dataset segmentation scenario

Distributions of Dice coefficients and NVD values for each segmenta-

tion method, both before and after error correction, are shown in

Figure 3. Table 2 summarizes the performance of each method, over

all 90 images from the 5 datasets, with respect to all 5 performance

measures outlined in Section 2.8. Wilcoxon signed-rank tests were

used to test for significant differences between all pairs of methods

both before and after applying error correction. Fisher r-to-z trans-

forms were used to similarly test for significant differences with

respect to volumetric correlation. Detailed results of the significance

tests between methods are shown in Figure 4. All p values were cor-

rected for multiple comparisons using false discovery rate (FDR).

As shown in Figure 3 and Table 2, error correction increased the

performance of all methods with respect to mean Dice coefficient,

mean NVD, and volumetric correlation with the reference labels. We

therefore restrict our discussion to comparing the error-corrected

methods (“+ EC”). While Proposed + EC performed better than Pin-

cram + EC in terms of mean Dice coefficient, mean NVD, and volu-

metric correlation, the differences were not statistically significant

(p > .05). However, while both Proposed + EC and Pincram + EC pro-

duced segmentations with similar specificity (p = .18), Proposed + EC

produced segmentations with higher sensitivity (p < 1 × 10−7), better

avoiding false negatives. Compared to all other methods, Proposed +

EC also produced generally tighter distributions marked by

lower SDs.

Among the remaining methods, MV + EC performed second best,

followed by BEaST + EC. Compared to Proposed + EC, MV + EC

produced more drastic outliers (Figure 3) and a lower mean Dice coef-

ficient (98.35%, p < 1 × 10−9 compared to Proposed + EC), corre-

sponding to a 14.2% difference in the mean number of misclassified

voxels. BEaST + EC produced segmentations with lower overlap

(mean Dice coefficient = 98.26%, p < 1 × 10−9 compared to Pro-

posed + EC), corresponding to a 20.6% difference in the mean num-

ber of misclassified voxels (or an average of roughly 12,000 more

misclassified voxels per segmentation) compared to Proposed + EC, in

addition to comparatively poor volumetric agreement with reference

labels (NVD = 1.73%, r = .9718). Among the non-multi-atlas segmen-

tation methods (ANTs, BET, optiBET, and ROBEX), ANTs + EC per-

formed best in terms of mean Dice coefficient, but performed

relatively poorly on volumetric performance measures. ROBEX + EC

achieved the best volumetric performance measures when compared

to the other non-multi-atlas segmentation methods. Following error

correction, the three Brain MAPS methods were the most sensitive

methods, best avoiding false negative errors, whereas Pincram and

the proposed method were the most specific, best avoiding false posi-

tive errors.

To visualize the spatial distribution of errors, mean error images

both before and after error correction are shown in Figure 5. ANTs,

BET, optiBET, and ROBEX show general under-segmentation,

whereas BET and optiBET show specific over-segmentation in the

frontal lobe. BET showed several failures which manifested as large

segments of additional tissue inferior to the brain. While the error pat-

terns of the multi-atlas segmentation methods are considerably more

uniform and show less overall segmentation error, Pincram better

avoided false positive errors, at the cost of increased false negative

errors. In contrast, BEaST and Brain MAPS with each of the three label

fusion techniques had a slight tendency toward under-segmentation,

FIGURE 3 Distributions of Dice coefficients and normalized volume difference (NVD) values for each method, both before and after error

correction (EC), in the inter-dataset segmentation scenario. Centre lines: median, boxes: interquartile range, whiskers: truncated range, “+”:
outliers [Color figure can be viewed at wileyonlinelibrary.com]
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particularly along the boundary of the cortex. In individual cases, this

usually manifested as the erroneous inclusion of dura in the segmen-

tations, which can pose problems for subsequent surface-based pro-

cessing tasks. Compared to the other multi-atlas segmentation

methods, the proposed method produced segmentations with a more

balanced ratio of false negatives to false positives. As shown in

Figure 5, error correction successfully improved the performance of

each method by reducing overall error and by better balancing the

TABLE 2 Summary of 5 performance measures for each method in the inter-dataset segmentation scenario, both before and after error

correction (EC)

Dice Sens. Spec. NVD r

ANTs 95.30 (1.12) 99.58 (0.85) 97.43 (0.70) 8.74 (2.97) .9064

ANTs + EC 98.14 (0.75) 98.42 (1.73) 99.42 (0.29) 2.00 (1.85) .9426

BEaST 97.80 (0.50) 98.69 (0.94) 99.16 (0.38) 2.46 (1.63) .9592

BEaST + EC 98.26 (0.37) 98.38 (1.08) 99.50 (0.24) 1.73 (0.88) .9718

BET 95.69 (0.91) 97.62 (2.19) 98.22 (0.70) 4.72 (3.01) .9224

BET + EC 97.48 (0.95) 97.17 (2.38) 99.39 (0.40) 2.94 (1.96) .9478

MV 97.76 (0.88) 98.71 (0.64) 99.14 (0.49) 2.22 (2.17) .9588

MV + EC 98.35 (0.59) 98.85 (0.56) 99.42 (0.32) 1.42 (1.33) .9807

optiBET 95.87 (1.24) 97.97 (1.48) 98.28 (0.89) 5.38 (3.17) .8037

optiBET + EC 97.80 (0.64) 98.08 (1.19) 99.33 (0.38) 1.92 (1.60) .9562

Pincram 97.76 (0.65) 96.41 (1.18) 99.78 (0.10) 2.81 (1.26) .9871

Pincram + EC 98.45 (0.45) 98.29 (0.76) 99.62 (0.13) 0.80 (0.57) .9932

Proposed 98.12 (0.49) 98.28 (0.53) 99.45 (0.24) 1.08 (0.84) .9897

Proposed + EC 98.57 (0.34) 98.60 (0.52) 99.61 (0.14) 0.74 (0.52) .9938

ROBEX 94.84 (1.06) 98.97 (0.89) 97.33 (0.61) 8.33 (2.58) .9467

ROBEX + EC 97.74 (0.70) 98.26 (1.10) 99.24 (0.29) 1.60 (1.30) .9759

SBA 97.63 (0.98) 98.67 (0.67) 99.08 (0.56) 2.43 (2.45) .9471

SBA + EC 98.33 (0.62) 98.84 (0.57) 99.41 (0.34) 1.48 (1.43) .9781

STAPLE 97.48 (1.14) 99.19 (0.47) 98.84 (0.61) 3.47 (2.72) .9476

STAPLE + EC 98.32 (0.66) 98.93 (0.54) 99.38 (0.36) 1.54 (1.54) .9777

For the Dice coefficient, sensitivity (Sens.), specificity (Spec.), and normalized volume difference (NVD), each table cell reports the mean and SD
(in parentheses). The two top-performing methods for each performance measure are emboldened. Note that both “Proposed” and “Proposed + EC” refer
to the accelerated version of the method described in Section 3.1.

FIGURE 4 Significance of differences between methods, both before and after error correction, in the inter-dataset segmentation scenario. FDR

corrected p values (Wilcoxon signed-rank tests) are reported [Color figure can be viewed at wileyonlinelibrary.com]
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ratio of false negatives to false positives (see in particular the non-

multi-atlas segmentation methods ANTs, BET, optiBET, and

ROBEX).

3.2.2 | Intra-dataset segmentation scenario

Distributions of Dice coefficients and NVD values for each segmenta-

tion method, both before and after error correction, are shown in

Figure 6. Table 3 summarizes the performance of each method, over

all 90 images from the 5 datasets, with respect to all 5 performance

measures outlined in Section 2.8. Wilcoxon signed-rank tests were

used to test for significant differences between all pairs of methods

both before and after applying error correction. Fisher r-to-z trans-

forms were used to similarly test for significant differences with

respect to volumetric correlation. Detailed results of the significance

tests between methods are shown in Figure 7. All p values were cor-

rected for multiple comparisons using false discovery rate (FDR).

After applying error correction to each method, all multi-atlas seg-

mentation methods produced very good overlap (mean Dice coeffi-

cient ≥ 98.96%) and volumetric agreement (mean NVD ≤ 0.67%,

r ≥ .9942) with the reference labels. BEaST + EC performed best in

terms of overlap (mean Dice coefficient = 99.04%), presenting a very

small but nonetheless statistically significant improvement

(p < 1 × 10−3) compared to Proposed + EC (mean Dice coefficient =

99.02%), which performed second best. In terms of mean NVD, Pro-

posed + EC performed best (mean NVD = 0.45%), a statistically sig-

nificant improvement (p = .03) over the second best method,

Pincram + EC (mean NVD = 0.57%). With respect to volumetric cor-

relation, Proposed + EC again perform best (r = .9976), but was not

found to be statistically significantly different (p = .07) from BEaST +

EC (r = .9956), the second best method. Among the non-multi-atlas

segmentation methods, ANTs + EC performed best in terms of mean

Dice coefficient, mean NVD, and volumetric correlation.

To visualize the spatial distribution of errors in the intra-dataset

segmentation scenario, mean error images both before and after error

correction are shown in Figure 8. The error patterns in the intra-dataset

segmentation scenario are very similar to those in the inter-dataset seg-

mentation scenario, although the magnitude of error has decreased for

the multi-atlas segmentation methods both before and after error cor-

rection, and for the non-multi-atlas segmentation methods following

error correction due to the availability of dataset-specific atlases for

training the corrective classifiers.

3.3 | Processing time

Table 4 summarizes the mean and SD of the time required to process

the same three randomly selected subjects (applied to inter-dataset

segmentation) for each method and processing step. All experiments

were performed on the same workstation equipped with two Dual

Intel Xeon E5-2680 v2 (10-core, 2.80 GHz) processors. We report

processing times for the full multi-resolution version of the proposed

method as well as the accelerated method used in our comparison

experiments. Of the overall top-performing methods, BEaST was the

most efficient, followed by the proposed method. Brain MAPS (the

choice of label fusion technique, that is, MV, SBA, or STAPLE, had a

negligible impact on processing time relative to the time required for

registration) and Pincram were much slower than both the patch-

TABLE 3 Summary of 5 performance measures for each method in the intra-dataset segmentation scenario, both before and after error

correction (EC)

Dice Sens. Spec. NVD r

ANTs 95.30 (1.12) 99.58 (0.85) 97.43 (0.70) 8.74 (2.97) .9064

ANTs + EC 98.61 (0.38) 98.90 (0.65) 99.55 (0.18) 1.04 (0.89) .9889

BEaST 98.84 (0.30) 99.25 (0.47) 99.57 (0.16) 1.04 (0.70) .9942

BEaST + EC 99.04 (0.24) 99.14 (0.43) 99.71 (0.12) 0.64 (0.50) .9956

BET 95.69 (0.91) 97.62 (2.19) 98.22 (0.70) 4.72 (3.01) .9224

BET + EC 98.00 (0.77) 97.67 (1.60) 99.55 (0.16) 1.35 (1.61) .9772

MV 98.56 (0.36) 99.00 (0.52) 99.48 (0.21) 1.12 (0.83) .9905

MV + EC 98.97 (0.23) 99.14 (0.46) 99.67 (0.15) 0.73 (0.57) .9940

optiBET 95.87 (1.24) 97.97 (1.48) 98.28 (0.89) 5.38 (3.17) .8037

optiBET + EC 98.22 (0.45) 98.27 (0.95) 99.51 (0.17) 1.06 (1.01) .9835

Pincram 98.36 (0.45) 97.24 (0.95) 99.87 (0.07) 2.30 (1.11) .9917

Pincram + EC 98.96 (0.23) 98.92 (0.50) 99.73 (0.10) 0.57 (0.54) .9953

Proposed 98.57 (0.32) 98.75 (0.39) 99.57 (0.12) 0.59 (0.49) .9972

Proposed + EC 99.02 (0.20) 99.09 (0.35) 99.72 (0.08) 0.45 (0.36) .9976

ROBEX 94.84 (1.06) 98.97 (0.89) 97.33 (0.61) 8.33 (2.58) .9467

ROBEX + EC 98.09 (0.49) 98.56 (0.89) 99.35 (0.19) 1.31 (1.03) .9856

SBA 98.50 (0.40) 98.81 (0.51) 99.51 (0.21) 0.97 (0.86) .9899

SBA + EC 98.98 (0.23) 99.04 (0.43) 99.70 (0.14) 0.62 (0.55) .9945

STAPLE 98.45 (0.44) 99.28 (0.35) 99.35 (0.24) 1.71 (1.10) .9899

STAPLE + EC 98.96 (0.23) 99.04 (0.44) 99.70 (0.14) 0.67 (0.53) .9942

For the Dice coefficient, sensitivity (Sens.), specificity (Spec.), and normalized volume difference (NVD), each table cell reports the mean and SD
(in parentheses). The two top-performing methods for each performance measure are emboldened. Note that both “Proposed” and “Proposed + EC” refer
to the accelerated version of the method described in Section 3.1.
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based methods, despite both taking advantage of multiple CPU

cores.

Error correction required approximately 4 min per subject, how-

ever it can be accelerated considerably by restricting the region of

interest in which it is applied. For example, when restricting the region

of interest to a narrow boundary (obtained by subtracting the erosion

from the dilation of the initial label estimate, using a square structur-

ing element with side length 5 mm) around the initial label estimate,

error correction can be performed in less than 30 s. However, we

opted against the accelerated variant in favor of a fairer comparison

of methods, as the worse performing methods tended to make more

drastic errors which were typically not contained in a narrow bound-

ary region of interest. For example, in the inter-dataset comparisons,

while an average of 96.6% of the errors made by the proposed

method occurred within the estimated narrow boundaries, this num-

ber is reduced to only 85.0% when using BET, which tended to

incorrectly include large segments of nonbrain tissue inferior to the

cortex (Figures 5 and 8). Combined with the accelerated boundary-

confined error correction described above, the proposed method can

run in less than 2 min, or roughly an order of magnitude faster than

the other top-performing methods in the inter-dataset comparisons

(Pincram and MV).

3.4 | Independent validation

We additionally validated the proposed method using a set of 12 pub-

licly available labeled images available from Souza et al. (2017). The

brain masks were manually generated from scratch, and the dataset

consists of two images (one male and one female) from each of three

different vendors (GE, Philips, and Siemens) acquired at two different

field strengths (1.5 and 3 T). As done in Souza et al. we performed a

2-fold cross-validation using, in each fold of 6 images, a single sample

from each vendor/field strength combination. Also for a fair compari-

son, while the preprocessing routine described in Section 2.2 is

required before applying the proposed method, we calculated the per-

formance measures in native space using segmentations obtained by

applying the inverse of the affine transformation estimated during the

preprocessing routine.

The performance of the proposed method, both before and after

applying error correction, is shown in Table 5. We also include in

Table 5 the results of several other methods on the same dataset as

reported by Souza et al. The proposed method, both before and after

applying error correction, performed best in terms of mean Dice

coefficient. In addition, the proposed method was able to segment

each image in roughly 40 s (the processing time was less than as

reported in Table 4 because fewer atlases were available), and also

produced tighter distributions marked by lower SDs. We note that

the next two top-performing methods (STAPLE and “Silver standard”)

are both consensus methods which require the output of each of the

other brain extraction methods listed in Table 5 (excluding the pro-

posed method), and therefore require long processing times. Specifi-

cally, the “Silver standard” method combines the output of the

different segmentation methods into a consensus solution using a

machine learning classifier, whereas the STAPLE method forms a

consensus solution using an expectation–maximization algorithm

detailed in Warfield et al. (2004).

4 | DISCUSSION

The quality of MR images segmented, the segmentation protocol

itself, and the reliability of manual labelings can all affect reported seg-

mentation accuracy (Collins & Pruessner, 2010), making it difficult to

compare the results obtained in this study to the results obtained in

other studies. One strength of the present study is that a wide variety

of brain extraction methods were compared in the same experimental

settings using the same reference labels, permitting a meaningful com-

parison between methods. These experiments are among the most

extensive in the current literature, involving a comparison of

10 methods both with and without error correction, and required a

total of 5,760 brain extractions. A possible limitation of this study is

FIGURE 5 Mean false-negative (FN) and mean false-positive

(FP) images for each method in the inter-dataset segmentation
scenario, both before and after error correction (EC). All error images
are displayed with the same color scale [Color figure can be viewed at
wileyonlinelibrary.com]
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that the default parameters were used for the 9 additional methods

under comparison, possibly biasing the results. For the proposed

method, we chose parameters similar to those used by default in

BEaST, which also may not be optimized (particularly for inter-dataset

segmentation scenarios). Each of the methods under comparison (with

the exception of ROBEX) contain a number of configurable parame-

ters which likely could have been fine-tuned to obtain better results.

Therefore, our results do not necessarily reflect the best possible per-

formance of each method. However, errors due to suboptimal default

parameters were, to an extent, remedied by applying error correction

to each method. Indeed, one of the development goals for the error

correction method was to adapt algorithms, without explicit modifica-

tion of the algorithm itself, to improve performance on segmentation

tasks when applied to data different from that used to train or opti-

mize the algorithm (Wang et al., 2011).

This study is the first large-scale evaluation of error correction

when applied in a challenging inter-dataset segmentation scenario

(i.e., in which no dataset-specific atlases are used). Our results indicate

that the use of error correction is indeed beneficial and even crucial

for good performance in this challenging case: error correction

improved the performance of each brain extraction method under

consideration in terms of mean Dice coefficient, mean normalized

FIGURE 7 Significance of differences between methods, both before and after error correction, in the intra-dataset segmentation scenario. FDR

corrected p values (Wilcoxon signed-rank tests) are reported [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Distributions of Dice coefficients and normalized volume difference (NVD) values for each method, both before and after error

correction (EC), in the intra-dataset segmentation scenario. Centre lines: median, boxes: interquartile range, whiskers: truncated range, “+”:
outliers [Color figure can be viewed at wileyonlinelibrary.com]
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volume difference, and volumetric correlation. In both the inter- and

intra-dataset segmentation scenarios, ANTs, BET, optiBET, and

ROBEX benefited most from error correction, whereas the multi-atlas

segmentation methods benefited less. This is expected because error

correction performs best when the differences between the output of

a given algorithm and the reference labels are systematic and there-

fore learnable by the corrective classifier. While the multi-atlas seg-

mentation methods attempt to propagate consistently defined labels

between images, BET and ROBEX instead are driven by various heu-

ristics without explicitly referencing a specific anatomical definition,

whereas optiBET and ANTs propagate labels from a pre-defined tem-

plate to the target image. In other words, the segmentations produced

by the multi-atlas segmentation methods can be expected to match

the definition of the brain mask used in this study, while this is not

necessarily the case for latter methods.

We demonstrated in Section 3.1 that the runtime performance of

the proposed method can be substantially improved, without any deg-

radation in performance, by combining error correction with coarse

segmentations produced by lower resolution patch-based label fusion.

Consequently, our accelerated proposed method requires only about

1.5 min to segment an image, or roughly an order of magnitude less

compared to the other top-performing methods (Pincram and Brain

MAPS with MV label fusion) in challenging inter-dataset applications.

We note that it would be trivial to also improve the runtime perfor-

mance of BEaST in the same way, but this would be unnecessary since

BEaST is already very efficient, requiring only about 1 min to segment

an image on our workstation (Table 4). It may also be possible to

accelerate methods based on nonlinear registration in a similar way

(e.g., using a sparser distribution of control points for nonlinear regis-

tration), but both Brain MAPS and Pincram additionally require the

estimation of a rigid and/or affine transformation between each

selected atlas and the target image, which would remain a computa-

tional bottleneck.
FIGURE 8 Mean false-negative (FN) and mean false-positive

(FP) images for each method in the intra-dataset segmentation
scenario, both before and after error correction (EC). All error images

are displayed with the same color scale [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Mean and SD (in parentheses) processing time, in min,

required for various methods and processing steps used in the
experiments carried out in this study

Processing time (min)

Pre-processing (Section 2.2) 2.92 (0.25)

Error correction 4.07 (0.40)

Error correction (accelerated) 0.41 (0.01)

ANTs 6.13 (0.29)

BEaST 1.11 (0.02)

BET 0.10 (0.01)

Brain MAPS 16.94 (1.05)

optiBET 19.33 (2.08)

Pincram 24.12 (0.05)

Proposed (full-resolution) 21.77 (1.44)

Proposed (accelerated) 1.48 (0.06)

ROBEX 2.66 (0.10)

TABLE 5 Validation of the proposed method on a secondary dataset

(Souza et al., 2017)

Dice Sensitivity Specificity

ANTs 95.93 (0.87) 94.51 (1.58) 99.71 (0.11)

BEaST 95.77 (1.23) 93.84 (2.57) 99.76 (0.13)

BET 95.22 (0.94) 98.26 (1.61) 99.13 (0.23)

BSE 90.49 (7.03) 91.44 (5.32) 98.65 (2.27)

HWA 91.66 (1.11) 99.93 (0.12) 97.83 (0.82)

MBWSS 95.57 (1.46) 92.78 (2.67) 99.85 (0.04)

optiBET 95.43 (0.71) 96.13 (0.95) 99.36 (0.31)

Proposed 97.35 (0.44) 97.72 (0.81) 99.64 (0.16)

Proposed + EC 97.58 (0.38) 98.11 (0.80) 99.65 (0.14)

ROBEX 95.61 (0.72) 98.42 (0.70) 99.13 (0.28)

STAPLE 96.80 (0.74) 98.98 (0.60) 99.38 (0.22)

Silver standard 97.14 (0.51) 96.83 (0.68) 99.71 (0.11)

The performances of other methods as reported in the original study are
shown. The two top-performing methods for each performance measure
are emboldened. Note that both “Proposed” and “Proposed + EC” refer to
the accelerated version of the method described in Section 3.1.
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Like the method presented in this study, Pincram was developed

with robustness to the choice of atlases as a primary development goal.

Indeed, following error correction, both Pincram and the proposed

method were the top performers in the inter-dataset segmentation sce-

nario. In part, the robustness of Pincram is due to the choice of normal-

ized mutual information (NMI) as the similarity measure which drives

image registration. NMI has been shown to robust to differences in

contrast and overall brightness between images (Pluim, Maintz, &

Viergever, 2003), and is therefore a similarity measure especially suit-

able for challenging inter-dataset segmentation scenarios. On the other

hand, the proposed method showed increased robustness in more chal-

lenging scenarios due to a more appropriate patch-based label fusion

which benefits from sparse representation, instance-wise feature nor-

malization, and multi-point label estimation. However, we note that the

images used in this study were acquired using either MP-RAGE or

spoiled gradient sequences, which produce images with somewhat sim-

ilar contrasts. It would therefore be useful, in future work, to assess the

performance of the proposed method using images from a wider vari-

ety of acquisition sequences, such as conventional or fast spin echo

sequences. We suspect that in cases where the atlases and target

images differ more drastically, the proposed method may still benefit

further from improvements directed at the patch preselection method

(since the ss index used in this study is partially sensitive to both bright-

ness and contrast). However, these changes were not necessary for

achieving top performance in our comparative experiments, and may

add to the processing time of our method.

In terms of overlap with the reference labels, the differences

between top-performing methods were small (<1% in terms of mean Dice

coefficient) following error correction. This is expected because residual

errors were found predominantly along the boundary of the cortex

(Figures 5 and 8), which accounts for only a small fraction of the total

brain volume. We emphasize that therefore even small differences in

mean Dice coefficient can be significant. For example, in the inter-dataset

comparisons, and following the application of error correction to each

method, the difference between the proposed method (mean Dice coeffi-

cient = 98.57%) and BEaST (mean Dice coefficient = 98.26%) corre-

sponded to a 20.6% reduction in the mean number of misclassified voxels

(or roughly 12,000 fewer misclassified voxels per brain), further translat-

ing into more than a twofold reduction in normalized volume difference.

Given the combination of a very low processing time (roughly

1.5 min per subject using 20 preselected atlases) and the best overall per-

formance in both the inter- and intra-dataset segmentation comparisons,

the proposed method is a good choice for a generic brain extraction algo-

rithm. Among non-multi-atlas segmentation methods, BET and ROBEX

demonstrated good runtime performance, whereas optiBET and ANTs

were slower but performed slightly better in terms of mean overlap. We

note, however, that each of these latter methods performed worse com-

pared to the multi-atlas segmentation methods. Nonetheless, these

methods, particularly when combined with error correction, may still be

sufficient for subsequent processing tasks that do not require highly accu-

rate segmentations (e.g., bias correction or image registration).

By providing a new method and thorough comparisons of com-

monly used brain extraction methods, our contributions should help pro-

vide the means to guide users toward robust and accurate processing in

the absence of dataset-specific atlases, translating into substantial

practical advantages. The proposed method will be made freely available

online (http://nist.mni.mcgill.ca/) including the atlases (pending permis-

sion to re-distribute the data) and a pre-trained corrective classifier.
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