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Abstract

Background: Vernalization is a type of low temperature stress used to promote rapid bolting and flowering in
plants. Although rapid bolting and flowering promote the reproduction of Chinese cabbages (Brassica rapa L. ssp.
pekinensis), this process causes their commercial value to decline. Clarifying the mechanisms of vernalization is
essential for its further application. We performed RNA sequencing of gradient-vernalization in order to explore the
reasons for the different bolting process of two Chinese cabbage accessions during vernalization.

Results: There was considerable variation in gene expression between different-bolting Chinese cabbage accessions during
vernalization. Comparative transcriptome analysis and weighted gene co-expression network analysis (WGCNA) were
performed for different-bolting Chinese cabbage during different vernalization periods. The biological function analysis and
hub gene annotation of highly relevant modules revealed that shoot system morphogenesis and polysaccharide and sugar
metabolism caused early-bolting XBJ' to bolt and flower faster; chitin, ABA and ethylene-activated signaling pathways were
enriched in late-bolting JWW/; and leaf senescence and carbohydrate metabolism enrichment were found in the two
Chinese cabbage-related modules, indicating that these pathways may be related to bolting and flowering. The high
connectivity of hub genes regulated vernalization, including MTHFR2, CPRD49, AAPS, endoglucanase 10, BXLs, GATLs, and
WRKYs. Additionally, five genes related to flower development, BBX32 (binds to the FT promoter), SUST (increases FT
expression), TSF (the closest homologue of £T), PAO and NAC029 (plays a role in leaf senescence), were expressed in the two
Chinese cabbage accessions.

Conclusion: The present work provides a comprehensive overview of vernalization-related gene networks in two different-
bolting Chinese cabbages during vernalization. In addition, the candidate pathways and hub genes related to vernalization
identified here will serve as a reference for breeders in the regulation of Chinese cabbage production.
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Background

Chinese cabbage (Brassica rapa L. ssp. pekinensis), also
known as heading cabbage or wrapping cabbage, is a
leafy Brassica vegetable of the cruciferous family that
originated in China with a long history of cultivation.
Chinese cabbage has the characteristics of a rich variety
of types, wide distribution, high yield, durability during
storage and transportation, and a long supply period,
and it is both highly nutritious and deeply loved by con-
sumers. Chinese cabbage is one of the most economic-
ally important Brassica vegetable crops cultivated in
Asian countries [1]. In Europe, especially Western Eur-
ope, the area of land under cultivation for Chinese cab-
bage has increased [2]. This indicates that the demand
for Chinese cabbage throughout the year is slowly in-
creasing. However, Chinese cabbage is susceptible to low
temperatures (vernalization) and long daylight hours
during the spring cultivation process, which causes it to
bolt and flower quickly, thereby losing its commercial
value. In contrast, in the breeding process, low
temperature (vernalization) can be used to rapidly breed
excellent varieties.

The transition from vegetative to reproductive growth is
an important developmental step in the plant life cycle [3],
and the timing of this switch is crucial for successful
reproduction [4]. Vernalization, the effect of low
temperature that induces and promotes flowering, is the
main factor that promotes the transition from vegetative
to reproductive growth in some biennial plants and annual
winter plants. If plants that require low-temperature treat-
ment do not undergo proper vernalization, flowering will
be delayed by a few weeks or flower primordia will not
form and will gradually decline. Different plants have dif-
ferent vernalization requirements depending on the devel-
opmental stage, vernalization temperature, and length of
vernalization [5]. Previously, Yui and Yoshikawa [6] ob-
served the phenomenon of low temperature promoting
Chinese cabbage bolting and flowering. In the
vernalization pathway, FLOWERING LOCUS C (FLC) is a
key gene that controls flowering time. Many upstream
genes ultimately determine bolting and flowering time by
regulating the expression of FLC. FLC encodes a MADS-
box transcription factor, which is a flowering inhibitor.
The difference between early and late flowering depends
largely on FLC allele variation [7]. FRIGIDA (FRI) is re-
quired for high FLC expression levels in Chinese cabbage
and is a positive regulator of FLC [8]. Vernalization in-
hibits the expression of FLC and promotes flowering, and
the dominant FRI allele strengthens the inhibition of FLC
[9, 10]. The vernalization of Chinese cabbage also involves
the expression of VIN3, VRN2, and VRNI [11]. Among
them, VRNI and VRNZ2 inhibit the expression of FLC and
maintain the state of vernalization. Moreover, VRNI and
VRN2 do not recover after vernalization and maintain a
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continuous low expression state. VIN3 participates in inhi-
biting the expression of FLC in early vernalization under
low temperature conditions. In Chinese cabbage, Li Z
et al. cloned the homologous gene BrpFLC of FLC of Ara-
bidopsis and proved that different degrees of vernalization
can reduce the transcription level of BrpFLC in different
bolting-resistant cabbage varieties [12]. So far, four FLC
homologous genes (BrFLCI, BrFLC2, BrFLC3, and
BrFLCS5) have been found and verified in Chinese cabbage
[13, 14]. Recently, BrFLCS has been proven to be a weakly
regulated gene for flowering regulation in Chinese cab-
bage [15]. After years of research, genes including FLC,
VIN3, and the VRN family are currently the most
thoroughly studied genes related to vernalization in Chin-
ese cabbage.

The transcriptome is used to study gene transcription
in plant cells and the regulation of transcription overall.
The application of RNA sequencing technology (RNA-
Seq) has been widely used in various biological fields to
explore various aspects of the life sciences. RNA-Seq has
been widely used to study the related genes of many
plants, including the characteristics of Arabidopsis [16],
rice [17] and cucumber [18]. In a study on the
vernalization of Brassica-type vegetables, Sun et al. [19]
conducted a transcriptome analysis on pak choi (Bras-
sica rapa subsp. chinensis) samples at different develop-
mental stages after vernalized and control treatments to
investigate differentially expressed genes (DEGs), and
they found that Bra014527, Bra024097, and Bra035940
exhibited obvious changes after vernalization. The hom-
ologous genes of these three genes also participated in
the vernalization response of Arabidopsis. Therefore, it
was speculated that these genes also responded to
vernalization in pak choi. Qi et al. [20] used an RNA-
Seq technology to obtain information including the
DEGs, functional annotations, and variable shear, of
Chinese cabbage samples before and after vernalization.
Four candidate genes related to flowering were screened.
As an important flowering crop, it is necessary to ex-
plore the underlying molecular mechanisms of flowering
induction in Chinese cabbage.

Currently, vernalization is widely applied in vegetable
production, especially in leafy vegetables. Spring Chinese
cabbage lose their commercial value after premature
bolting as a result of low-temperature effects. The length
of breeding time is also shortened due to rapid bolting
and flowering caused by vernalization. Therefore, the ef-
fects of vernalization on Chinese cabbage are worth dis-
secting and exploring. In this study, the gradient
vernalization of two different bolting Chinese cabbage
accessions were used to analyze the transcriptome pat-
tern of Chinese cabbage during vernalization. Using a
weighted gene co-expression network analysis (WGCN
A), specific gene co-expression networks formed in
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Chinese cabbage during vernalization were identified in
order to find the reasons for the different bolting.

Results

RNA sequencing and gene co-expression network
construction

Pearson’s correlation coefficients were used to test for bio-
logically repeated correlations between samples. The gen-
erated cluster dendrogram was used to observe the overall
correlation of the transcriptomes of the 2 Chinese cabbage
accessions at different time periods (Fig. 1a). The three
biological replicates from each time period and the tran-
scriptome data both exhibited good correlation. The simi-
larity test between the three biological replicates required
the use of a principal component analysis (PCA). Using
the first principal component (PC1) and second principal
component (PC2), a dimensionality reduction analysis was
used to analyze the similarity between each replicate (Fig.
1b). A total of 14 groups exhibited good similarity. Ap-
proximately 59.37% of the expressed genes were within
the 0—5 FPKM range and 37.36% were within the 5-100
FPKM range (Fig. 1c).

After analyzing the transcriptome data of each treat-
ment period of 2 Chinese cabbage accessions, low abun-
dance and low variability genes were filtered out. A total
of 5748 genes of TWW’ and 5527 genes of XBJ were
screened out. After being log,-transformed, they were
imported into the WGCNA software package for analysis.
WGCNA analysis performed transcriptome data analysis
in each period. Each tree branch formed a module and
each leaf in the branch represented a gene, as shown in
the hierarchical clustering tree (Fig. 2). Then, the tree
from the dendrogram was cut into modules (clusters).
Based on their correlation with vernalization and control
time, sets of genes (modules) were identified. As shown in
the tree dendrogram, WGCNA analysis resulted in 9
modules that were distinguishable by different colors for
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TWW’; the number of target genes for each module
ranged from 56 to 3685 (Table S1). WGCNA analysis re-
sulted in 12 modules that were distinguishable by different
colors for “XBJ’; the number of target genes for each mod-
ule ranged from 36 to 3745 (Table S2). Each module cor-
responded to each period and had its correlation.
Whether the correlation was positive or negative and the
size of the correlation showed the degree of correlation
with the target gene screened out by the transcriptome
data of this period (Figs. 3 and 4a).

Different modules related to ‘JWW’ and ‘XBJ’ in different
periods

Module-trait relationships (MTRs) were different for
each vernalization and control time period. These mod-
ules contained positively and negatively related genes,
and their expression levels changed at different periods.
Modules with MTR > 0.7 were selected as representa-
tives of the 2 Chinese cabbage accessions for further
analysis. Five modules were selected for both TWW’ and
‘XBJ'. The results revealed the following high correla-
tions: MEbrown (r=0.93, p=2e %) in J1 days after
treatment (0 DAT); MEgreenyellow (r =0.7, p = 4e” %) in
J2 (25 DAT); MEdarkgrey (r=0.98, p = 2e” 15 in J4 (35
DAT); MEgrey60 (r=0.84, p=2e %) in J5 (45 DAT);
MEblue (r=0.98, p =5¢”*°) in JCK (35 DAT 25 °C) (Fig.
3a); MEturquoise (r=0.98, p=2e ') in X1 (0 DAT);
MEdarkgreen (r=0.73, p=2¢*) in X3 (15 DAT);
MEpurple (r =0.87, p =4e~ %) in X4 (25 DAT); MEblack
(r=0.84, p=2¢ %) in X6 (50 DAT); and MEcyan (r =
0.99, p =8e™ '®) in XCK (25 DAT 25°C) (Fig. 4a).

The correlations between different modules of the 2
Chinese cabbage accessions were further investigated.
Based on the eigengenes of each module, some module
pairs were found to be significantly positively correlated.
In TWW’, MEdarkturquoise was positively correlated with
MEgreenyellow (r=0.82, p=0.001) and MEblue and
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MEcyan were positively correlated (r=0.82, p=0.002)
(Fig. 3b). In XBJ’, MElightyellow was positively correlated
with MEdarkgreen (r=0.83, p=8e °%), MEgreenyellow
was positively correlated with MElightgreen (r=0.82, p =
0.001) and MEpurple (r=0.81, p=0.002) and MElight-
green was positively correlated with MEcyan (r=0.81, p =
0.002)), MElightgreen was positively correlated with MEc-
yan (r = 0.81, p = 0.002) (Fig. 4b). Expression gene displays
were performed for each Chinese cabbage processing
stage and corresponded with each module (Fig. 5). Results
revealed that the enrichment and differential expression
displays from the co-expression network modules exhib-
ited similar characteristics.

Biological function analysis of important co-expression
network modules

GO annotations and biological function analysis were per-
formed using 10 modules that were highly related (Figs. 6
and 7). Brassica genes were first used as queries. When
the Brassica database was insufficient, Arabidopsis ortho-
logue genes were used as queries. GO terms were derived
from these annotations (Table S3; Table S4).

The biological functional terms enriched in TWW’
MEbrown and ‘XBJ’ MEturquoise exhibited high correl-
ation at 0 DAT and were the largest modules (p < 0.01). In
the Brassica database, TWW’ MEbrown and ‘XBJ’ MEtur-
quoise were enriched together with photosynthesis,
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Fig. 6 Significant GO terms and ontological relationships (annotated from ClueGO) in JWW'. The sizes of the circles represent the degree of the
positive relationship between the significant GO terms. Redundant terms were grouped and presented in the same color. Each leading term,
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response to cytokinin, chlorophyll biosynthetic process,
and response to karrikin. The differences were ribosome
biogenesis, translation, and response to unfolded protein,
which were enriched in TWW’ MEbrown, and light har-
vesting in photosystem I, protein-chromophore linkage,
and reductive pentose-phosphate cycle, which were
enriched in XBJ’ MEturquoise. In the Arabidopsis Data-
base, photosynthesis was the most enriched functional
term in TWW’ MEbrown and ‘XBJ’ MEturquoise. Add-
itionally,  cellular  biosynthetic =~ process,  plastid
organization, and anion transport were enriched in TWW’
MEbrown, while cellular response to hormone stimulus,
cellular response to endogenous stimulus, and cellular re-
sponse to organic substance were enriched in XBJ
MEturquoise. These results indicated that the two Chinese
cabbages had a certain degree of commonality to a large
extent when they were not vernalized, and that when ver-
nalized their different biological functions and gene ex-
pression might be observable.

TWW’ MkEgreenyellow and ‘XBJ’ MEpurple were
highly correlated at 25 DAT. The most enriched bio-
logical functional term in TWW’ MEgreenyellow was cell
wall organization in both the Brassica and Arabidopsis
databases. In ‘XB]’ MEpurple, the most enriched bio-
logical functional term in the Brassica database was
xyloglucan metabolic process, while it was cell wall
organization in the Arabidopsis database. In TWW’

MEgreenyellow, several important biological functional
terms were enriched, including cell wall biogenesis,
carbohydrate metabolic process, and phenylpropanoid
metabolic process. At 25 DAT, rapid flowering in XBJ
was promoted and was highly related to MEpurple. Bio-
logical functional terms related to polysaccharide metab-
olism processes were enriched, including polysaccharide
metabolic process, cellular polysaccharide metabolic
process, cell wall polysaccharide metabolic process, glu-
can metabolic process, cellular glucan metabolic process,
and xyloglucan metabolic process. Additionally, shoot
system morphogenesis was also enriched in this module.
Thus, it was speculated that polysaccharide metabolism
processes were enriched at 25 DAT in ‘XBJ’ to ensure
that it transitioned from vegetative to reproductive
growth, which was manifested by changes in shoot sys-
tem morphogenesis.

TWW’ MEdarkgrey, which was highly correlated at 35
DAT, promoted rapid flowering and had many func-
tional terms that were enriched in both databases, in-
cluding response to water deprivation, response to
chitin, abscisic acid (ABA)-activated signaling pathway,
and response to UV-B. Additionally, response to stimu-
lus, ethylene-activated signaling pathway, and aromatic
amino acid family catabolic process, along with other
terms, were positively regulated and enriched. These
terms were enriched at 35 DAT during the critical
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Fig. 7 Significant GO terms and ontological relationships (annotated from ClueGO) in ‘XBJ". The sizes of the circles represent the degree of the
positive relationship between the significant GO terms. Redundant terms were grouped and presented in the same color. Each leading term,

vernalization period and may be the key biological func-
tions that explain the transformation of late-bolting
Chinese cabbage flowering.

MEdarkgreen, which was highly correlated with XBJ’
at 15 DAT, was enriched in the functional terms nitric
oxide biosynthetic process, glycolytic process, pyridine-
containing compound metabolic process, sulfur amino
acid metabolic process, and nitrogen cycle metabolic
process, among other functional terms. The most
enriched functional terms in TWW’ MEgrey60 at 45
DAT included response to cold, circadian rhythm, re-
sponse to temperature stimulus, and anthocyanin-
containing compound metabolic process.

At 50 DAT, which was the largest vernalization period,
‘XBJ’ MEblack was enriched in functional terms related to
hormones and amino acids, including response to ethyl-
ene, negative regulation of ethylene-activated signaling
pathway, response to hormone, hormone-mediated signal-
ing pathway, cellular response to hormone stimulus,
amino acid export, and amino acid transmembrane trans-
port. Additionally, reproductive growth and terms related
to senescence were also enriched in this module, including
positive regulation of leaf senescence, stress-induced pre-
mature senescence, and plant organ senescence.

TWW’ MEblue at 35 DAT at 25 °C, which was corre-
lated with TWW’ at 35 DAT in the control treatment,
was enriched in the regulation of protein serine/threo-
nine phosphatase activity, response to organic substance,

hormone-mediated signaling pathway, and regulation of
cellular process, among other functional terms. Notably,
leaf senescence was negatively regulated and enriched in
this module. Additionally, leaf senescence was positively
regulated in ‘XBJ’ MEblack at 50 DAT, indicating that the
leaf senescence of Chinese cabbage after vernalization
may also signal bolting and flowering promotion. At 25
DAT, faster flowering was promoted in ‘XBJ’ MEcyan
compared to 25 DAT at 25°C, and ‘XBJ’ MEcyan was
enriched in functional terms related to biosynthesis, in-
cluding inositol biosynthetic process, aromatic compound
biosynthetic process, small-molecule biosynthetic process,
and wax biosynthetic process.

Hub gene selection for the JWW’ and ‘XBJ’ co-expression
networks

Hub genes were screened among these highly related
modules across each time period. The top 20 genes that
were representative of the modules were selected as they
exhibited the largest “hubness” thereby providing the
most detailed biological information (Figs. 8 and 9;
Table S5; Table S6).

MEgreenyellow, MEdarkgrey, and MEgrey60 were highly
related modules in TWW’ across vernalization periods. For
MEgreenyellow, methylenetetrahydrofolate reductase 2
(MTHFR2), GDSL esterase/lipase CPRD49 (CPRD49), and
amino acid permease 8 (AAP8) were enriched in amino acid
transport and metabolism pathways. Carbohydrate transport



Dai et al. BMC Genomics (2021) 22:236 Page 8 of 16

MEbrown MEgreenyellow

pre ]
e e

o e

£

ééé.«i?
2
3

-
—-—
@

®
ccipnre

® ® ® ® - JI(ODAT) J2(25DAT 4°C) J3(30DAT 4°C)
® 0@ Y R o 2

MEdarkgrey MEgrey60 MEblue
L i B
D.CO @ ‘© & 9 @ -
sulrorc o

020,

®* @
® ©
-
@ ®

. . = 4 e ‘
® g & J4(35DAT 4°C) J5(45DAT 4°C) J6(S0DAT 4°C)

JCK(35DAT 25°C)

Fig. 8 Hub genes and expression profiles of JWW' a Co-expression gene networks with the greatest “hubness” in every module. Nodes are represented by
dots surrounded by module colors. b log,FPKM expression profiles of the hub genes in J1, J2, J3, J4, J5, J6, and JCK. The locations of each gene correspond

with A. The darker the green color, the higher the expression level
A

and metabolism pathways were enriched in 3 genes among
the 20 hub genes, including endoglucanase 10, beta-D-
xylosidase 4 (BXL4), and beta-D-xylosidase 5 (BXL5). More-
over, the expression levels of MTHFR2, AAPS, BXL4, and
BXL5 during vernalization were considerably higher than in
the control treatment. Among the 20 genes expressed in
MEdarkgrey: 3 glycosyl transferase family genes, GATLI0s,
and GATLI17 were the hub genes of MEdarkgrey and their
expression levels were the highest in TWW’ J4 (35 DAT),
and may be important family genes that promote faster
flowering in TWW’. Four AP2 domain genes, dehydration-
responsive element-binding protein 1C (DREBIC), ethylene-
responsive transcription factor 11 (RRF11), dehydration-
responsive element-binding protein 1D (DREBID), and
ethylene-responsive transcription RAP2-13 were also hub
genes found in this module. Notably, in MEdarkgrey, the B-
box zinc finger protein 32 (BBX32) gene was enriched in bio-
logical functional terms related to flower development regu-
lation. The top 20 hub genes in MEgrey60 included two 2-
component response regulator-like APRR9 genes that were
enriched in circadian rhythm-plant pathways.

Modules highly related to the ‘XBJ’ vernalization pe-
riods included MEdarkgreen, MEpurple, and MEblack.
Of the top 20 hub genes in MEdarkgreen, 4 hub

genes were involved in carbohydrate transport and
metabolism, namely, BraA07g041160.3C, glucose-6-
phosphate 1-dehydrogenase 3 (At1g24280), bifunc-
tional enolase 2/transcriptional activator (ENO2), and
2,3-bisphosphoglycerate-independent phosphoglycerate
mutase 1 (PGM1). In the MEgreenyellow of TWW’,
genes related to carbohydrate transport and metabol-
ism pathways were also enriched, and the expression
levels were notably higher than that of the control
treatment, indicating that carbohydrate transport and
metabolism may play an important role in the
vernalization of Chinese cabbage. In MEpurple, 2 of
the 20 hub genes encoded proteins and were enriched
in the starch and sucrose metabolism pathway:
trehalose-phosphate phosphatase A (TPPA) and su-
crose synthase 1 (SUSI). Importantly, SUSI partici-
pates in flower development. Three WRKY family
genes existed as hub genes in MEblack, including
WRKY transcription factor 18 (WRKY18), transcrip-
tion factor 25 (WRKY2S5), and transcription factor 57
(WRKYS57), of which, WRKY25 participated in the
plant-pathogen interaction pathway. Among the top
20 hub genes in MEblack, 3 important genes were re-
lated to plant flowering, of which phophorbide a
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oxygenase (PAO) participated in flower development,
protein twin sister of FT (7SF) regulated flower de-
velopment and participated in photoperiodism and
flowering, and NAC transcription factor 29 (NAC029)
regulated flower development. The expression levels
of these 3 genes across the XBJ’ vernalization periods
were significantly higher than those in the control
treatment.

Validation of representative flower development-related
hub genes expression

Five genes, BBX32, SUS1, PAO, TSF, and NACO029,
correlated with flower development and were selected
for verification by qRT-PCR. The RNA-Seq and qRT-
PCR results were consistent (Fig. 10), indicating the
reliability of high-throughput transcriptome sequen-
cing. Compared with 0 DAT, the expression of SUSI
and NAC029 in TWW’ at 25 DAT and 50 DAT were
higher than in ‘XBJ. The expression of TSF and
BBX32 in ‘XBJ at 25 DAT and 50 DAT were higher
than in TWW’.

Discussion

Formation of specific co-expression networks using two
bolting Chinese cabbage accessions and the WGCNA
method

Phenotypic and molecular event-based RNA-Seq tran-
scriptome analysis and WGCNA are powerful research
methods [21-23]. WGCNA is a progressive analysis
method in which variable genes are divided into co-
expression modules through an unsigned network based
on the gene expression patterns identified by RNA-Seq.
Each module is then correlated with various traits and
the gene “hubness” of each module builds the relation-
ship between the positions of a single gene [24]. The
eigengenes and hub genes of each module facilitate the
establishment of the relationship between co-expressed
gene clusters and concentrated traits in order to obtain
clear expression patterns and screen candidate genes.

In this experiment, 2 Chinese cabbage accessions con-
tained 21 RNA-Seq sample data points, respectively.
Given that the expression of a large group of genes was
affected by vernalization, WGCNA was used to con-
struct a gene co-expression network to identify differ-
ences between modules (Fig. 2). The goal was to
uncover the response mechanism of Chinese cabbage
across different vernalization time periods and identify
key genes. To our knowledge, there are no reports on
the gene interaction networks of Chinese cabbage
vernalization across different time periods. Therefore,
based on the WGCNA gene co-expression network in
this study, the responses of the 2 Chinese cabbage acces-
sions to different vernalization stages were systematically
analyzed at the transcriptome level.
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Enrichment of different modules based on the
transcriptomic differences of two Chinese cabbage
accessions

Several modules that were highly related were selected for
further analysis and discussion (Figs. 3 and 4). Based on
the functions predicted by the modules of genes with
known biological functions, the characteristics of the 2
Chinese cabbage accessions under vernalization and con-
trol treatments were analyzed and determined in order to
find the reasons for their different bolting processes.

Photosynthesis, chlorophyll biosynthetic, cytokinin, and
karrikin-responsive biological functional terms were
enriched in the two most highly correlated modules of the
2 Chinese cabbage accessions at 0 DAT: MEbrown and
MEturquoise. The contribution of photosynthesis to vege-
tative growth depended, to a large extent, on leaf area,
chlorophyll content per leaf area, and chloroplast lifespan
[25, 26]. Cytokinins are a class of hormones that regulate
both the division cycle and meristem homeostasis [27, 28].
Karrikin is a plant growth regulator that promotes ger-
mination and seedling photomorphogenesis [29]. At 0
DAT, the 2 Chinese cabbage accessions were in the vege-
tative growth stage, thus, they exhibited obvious and
consistent performance in terms of photosynthesis,
chlorophyll biosynthetic, cytokinin, and karrikin. Using
the vernalization of two Chinese cabbage accessions at 0
DAT as a starting period, the different performances of
the two could be better analyzed and the reasons for their
different bolting performances explored.

In flowering plants, includingg the model plant Arabi-
dopsis thaliana, the shoot apical meristem (SAM) is the
key determinant of overall morphogenesis [30]. We
found that among highly correlated modules at 25 DAT,
the MEpurple of XBJ’ was more enriched in shoot sys-
tem morphogenesis functional term than MEgreenyellow
of TWW’. Futhermore, at 25 DAT vernalization caused
‘XBJ to rapidly bolt and flower. This indicated that 25
DAT was a well-chosen treatment period for XBJ'. An-
other finding was that MEpurple was enriched in many
polysaccharide and sugar metabolism terms. The forma-
tion of SAM is controlled by the growth of plant cells,
and the growth of plant cells is mainly controlled by the
cell wall. The cell wall is a rigid structure composed pri-
marily of polysaccharides that surround the cells and
connect them together in a biological continuum [31].
This result may be explained by the formation of SAM
in ‘XBJ’, which requires polysaccharides to regulate the
elasticity of the cell wall to ensure cell elongation and
growth. XBJ’ generated energy under vernalization to
ensure its successful transition from vegetative to repro-
ductive growth. Judging from the 25 DAT enriched
terms, compared with late-bolting TWW’, early-bolting
‘XBJ’ was more susceptible to changes in shoot system
morphogenesis and many polysaccharide and sugar
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metabolism functional terms under vernalization, which
then promoted faster bolting and flowering.

MEdarkgrey, which was highly related to rapid flower-
ing at 35 DAT in TWW’, was enriched in the biological
functional terms response to chitin, ABA-activated sig-
naling pathway, and ethylene-activated signaling path-
way. A previous study demonstrated that treatment with
chitosan, a chitin derivative, in potted freesia plants
caused early flowering and more flowers [32]. Another
study demonstrated that endogenous ABA promoted
bolting and flowering in plants after the promotion of
FT and other related genes [33]. The ABA-activated sig-
naling pathway could have been enriched during the
vernalization of TWW, indicating that endogenous ABA
played a certain role in the promotion of flowering in
TWW’. The effect of ethylene on floral transition is a
complex biological process, as ethylene regulates this
process by cooperating with other hormones or signal
transduction pathways [34]. This finding corresponds
with the ethylene-activated signaling pathway, which was
enriched at 35 DAT in TWW’. These biological func-
tional terms were enriched in MEdarkgrey in TWW” and
may be the key determinants of late-bolting Chinese
cabbage floral transition.

In previous studies, age-dependent leaf senescence
was found to be affected by developmental processes
such as flowering, and the age-dependent leaf senes-
cence phenotypes of circadian clock mutants showed
significant correlation with flowering time [35, 36]. We
found an interesting phenomenon in that the MEblack
module, which was highly correlated with ‘XBJ’ at 50
DAT, was enriched with terms related to senescence,
especially the positive regulation of leaf senescence,
while in TWW’ MEblue at 35 DAT at 25 °C, the nega-
tive regulation of leaf senescence term was enriched.
Fifty DAT was the longest time for vernalization. At
this time, early-bolting ‘XBJ’ had transitioned from
vegetative growth to reproductive growth. While 35
DAT at 25°C TWW’ exhibited vegetative growth under
normal growth conditions, leaves grew normally and
the senescence phenomenon was in a state of resist-
ance. With this finding, we speculated that leaf senes-
cence was also a signal that promoted bolting and
flowering of Chinese cabbage. This also laid the
groundwork for our future research on the effect of
vernalization on leaf senescence and flowering.

In summary, we tried to find the biological function of
two different bolting Chinese cabbage accessions during
the vernalization process: the early-bolting ‘XBJ’ could
bolt and flower faster at 25 DAT, which was promoted
by the shoot system morphogenesis and polysaccharide
and sugar metabolism, while late-bolting TWW’
enriched chitin, ABA, and ethylene-activated signaling
pathways at 35 DAT, indicating that these regulatory
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pathways may promote bolting resistance in Chinese
cabbage. An interesting finding was that the regulation
of leaf senescence was found in the 2 Chinese cabbage-
related modules, indicating that leaf senescence may be
related to bolting and flowering.

Analysis of hub genes enriched in two Chinese cabbage
accessions during vernalization

WGCNA was used to construct the gene co-expression
networks of 2 Chinese cabbage accessions and analyze
the modules that were highly related to their
vernalization periods. The top 20 hub genes with the
highest correlation relationships among these modules
were identified to further analyze key candidate
vernalization genes for Chinese cabbage with different
bolting performances.

Amino acids are important constituents of proteins
that play important roles in many pathways of the plant
body, acting as biological stimulants under abiotic and
biotic stress [37, 38]. Carbohydrates play a vital role in
plant growth, reproduction, and flowering [39]. In this
study, three hub genes, MTHFR2, CPRD49, and AAPS,
were enriched in amino acid transport and metabolism
pathways. Three other hub genes, endoglucanase 10,
BXL4, and BXLS5, were enriched in carbohydrate trans-
port and metabolism pathways in TWW’ MEgreenyel-
low. MTHER is the least well-known enzyme in the
folate-mediated 1-carbon metabolism of plants. MTHFR
reactions in plants metabolize the methyl group 5,10-
methylenetetrahydrofolate into serine, sugar, and starch
[40]. AAPS8 has been studied in seeds and siliques as an
amino acid transporter and was specifically expressed in
mature siliques [41]. Previous studies demonstrated that
beta-D-xylosidase was widely expressed in plant flowers,
siliques, and the SAM [42, 43]. The high expression
levels of MTHFR2, AAP8, BXL4, and BXL5 during the
vernalization of TWW’ indicated that they were affected
by vernalization and may have had an auxiliary promo-
tion effect on the floral transformation of TWW’. Three
glycosyl transferase family genes, including two GATLI0
genes and one GATL17 gene, were the main hub genes
of TWW’ MEdarkgrey. This finding was consistent with
the results obtained from the GO biological function
analysis of MEdarkgrey, indicating that sugar metabol-
ism at 35 DAT in TWW’ played an important role and
promoted flower transformation. WRKY proteins, an
important transcription factor superfamily involved in
plant development and stress responses, have been stud-
ied in monocotyledonous and dicotyledonous plants
[44]. In this study, three WRKY genes, WRKYIS,
WRKY?25, and WRKYS57, were identified in the hub genes
of XBJ’ MEblack. WRKY genes promote defense-related
gene expression and disease resistance [45-47].
Vernalization is a form of low-temperature stress for
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Chinese cabbage. In this study, under the vernalization
treatment, WRKY-related genes were enriched in XBJ’
at 50 DAT.

Additionally, five genes related to flower development,
BBX32, SUSI, PAO, TSF, and NAC029, were expressed
in TWW’ MEdarkgrey and ‘XBJ” MEpurple and MEblack.
B-box (BBX) zinc finger proteins play critical roles in
both vegetative and reproductive plant development
[48]. A previous study proved that BBX32 in Arabidopsis
is a clock gene that interacts with COL3 and enables
COL3 to bind to the FT promoter, thereby promoting
the transcriptional regulation of flowering time [49]. A
separate study demonstrated that BrBBX32 binds to
BrAGL24 in Chinese cabbage through the B-box do-
main, which regulates flowering time [50]. In this study,
BBX32 was enriched in TWW’ at 35 DAT, indicating
that vernalization induced BBX32 expression and pro-
moted the flowering transition of Chinese cabbage. A
previous study showed that sucrose levels increased in
the leaves and SAM of Arabidopsis exposed to strong ra-
diation, thereby promoting bolting and flowering by in-
creasing FT expression and inducing SUSI expression
[51]. Sugar levels regulate plant flowering [52, 53]. In
this study, vernalization induced SUSI levels, indicating
that SUSI can be used as a candidate gene for Chinese
cabbage vernalization. TSF is the closest homologue of
FT and transgenic plants that overexpress TSF exhibit
premature flowering [54]. The high expression levels of
TSF in MEblack, which was highly correlated with XBJ’
at 50 DAT, indicated that ‘XBJ' began reproductive
growth at this time; 7SF was also continuously
expressed. PAO is a chloroplast envelope-bound Rieske-
type iron-sulfur oxygenase. The degradation of chloro-
phyll in Arabidopsis is related to PAO activities [55, 56].
In this study, the expression of PAO reached its max-
imum level at 50 DAT in both Chinese cabbage acces-
sions, indicating that Chinese cabbage was gradually
aged during vernalization. NAC family transcription fac-
tors play a role in leaf senescence [57]. One previous
study found that multiple NACs played regulatory roles
in flowering [58]. In this study, under the vernalization
treatment, the expression of NAC029 in both Chinese
cabbage accessions increased and was significantly up-
regulated in ‘XBJ’. This finding demonstrated that the
early-bolting ‘XBJ’ accession could more quickly adapt
to vernalization and after the formation of the SAM, its
leaves gradually aged. When we performed biological
functions on the highly correlated modules of two Chin-
ese cabbage treatment periods, we found that the posi-
tive and negative regulation of leaf senescence was
enriched in the vernalization and non-vernalization pe-
riods, which was consistent with the high expression of
PAO and NACO029 found here. This collectively proved
that the vernalization process and the aging mechanism
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have a connection, although whether it promotes the
flowering transition remains to be determined.

Conclusion

Vernalization as an important trait that is directly linked
to production potential. It is necessary to elucidate the
regulatory mechanisms involved in differently-bolting
Chinese cabbage varieties. In this study, a WGCNA was
conducted using RNA data from two Chinese cabbage
accessions that bolt differently in order to reveal the key
pathways and hub genes that cause bolting and flower-
ing during vernalization. The results revealed that shoot
system morphogenesis and polysaccharide and sugar
metabolism induce early-bolting “XBJ’ to bolt and flower
faster; chitin, ABA and ethylene-activated signaling path-
ways were enriched in late-bolting TWW’; and leaf sen-
escence and carbohydrate metabolism pathways were
found to be enriched in the two Chinese cabbage-related
modules, indicating that these may be related to bolting
and flowering. Additionally, five genes related to flower
development, BBX32 (binds to the FT promoter), SUS1
(increases FT expression), TSF (the closest homologue of
FT), PAO, and NAC029 (plays a role in leaf senescence),
revealed different vernalization mechanisms. The find-
ings of this study provide a comprehensive overview of
vernalization-related gene networks in Chinese cabbage
and uncovered candidate hub genes in the vernalization
process that can be utilized in future breeding research.

Methods

Chinese cabbage accessions

Two Chinese cabbage accessions, the late-bolting Jin
Wawa (JWW) and early-bolting Xiao Baojian (XB]J), were
provided by the Chinese Academy of Agricultural Sciences
located in Beijing, China. The two materials were highly
inbred lines. After plants were grown in a nursery green-
house under normal conditions for 32 d, the vernalization
experiment began and lasted for 50 d (Fig. 11a). The treat-
ment conditions were 4 °C for the vernalization treatment
and 25 °C for the control treatment.

Sample selection and RNA sequencing

Based on the timing of flowering caused by vernalization
(Fig. 11b; c), the following samples were collected for
RNA-Seq: from TWW’, selected samples included J1 (0
days after treatment (DAT)), J2 (25 DAT), J3 (30 DAT),
J4 (35 DAT), J5 (45 DAT), J6 (50 DAT), and JCK (35
DAT 25°C), and from ‘XBJ, selected samples included
X1 (0 DAT), X2 (10 DAT), X3 (15 DAT), X4 (25 DAT),
X5 (40 DAT), X6 (50 DAT), and XCK (25 DAT 25°C).
Three biological replicates were collected for each sam-
ple. The vernalization treatment, sample collection
method, RNA-seq period selection, and the detailed
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methods used for data processing are described in our
previous study [59].

Gene co-expression network construction and
visualization
The RNA-Seq data were analyzed to construct gene co-
expression networks using the R package, WGCNA [60].
Based on the following criteria, Fragments Per Kilobase
of transcript per Million mapped reads (FPKM) > 1, and
a variation of FPKM: cv=0.5 and cv<sd (genes num-
ber)/mean (genes number) (‘sd’ represents the standard
deviation of the sample, and ‘mean’ represents the calcu-
lated average of the sample),genes of the 2 Chinese cab-
bage accessions were screened for co-expression
network construction. From TWW’, 5748 co-constructed
genes were screened out. The following parameters were
used to identify each gene module: weighted network,
unsigned; hierarchical clustering tree, dynamic hybrid
tree cut algorithm; power, 5; and minimum module size,
30; minimum height for merging modules, 0.29995.
From ‘XBJ, 5527 co-constructed genes were screened
out. The following parameters were used to identify each
gene module: weighted network, unsigned; hierarchical
clustering tree, dynamic hybrid tree cut algorithm;
power, 5; minimum module size, 30; and minimum
height for merging modules, 0.3131.

To describe the most common gene expression
models in each module, module eigengenes were used.

Module eigengenes are the first major components of
the expression matrix and are used to summarize the
module overview and feature data. Pearson’s correlation
coefficients were used to calculate the correlation be-
tween the module characteristic genes and the degree of
vernalization of the two Chinese cabbage accessions. A
heat map was drawn according to the correlation coeffi-
cients. The depth of color represents the correlation be-
tween the module and the degree of vernalization.

Analysis of hub genes in the gene co-expression network
Hub genes are good representatives of each co-
expression module and have important biological signifi-
cance in the system analysis. Hub genes are genes with
the most connection points in each module, and their
height is represented by the kME value. The kME value
is based on the Pearson correlation coefficient between
the expression level and module eigengenes. The kME
and eigengene connectivity of each gene are calculated
by signedKME, which includes the edge and node char-
acteristics. The genetic network map, which was drawn
according to the kME values, was created using Cytos-
cape software [61].

A gene ontology (GO) enrichment analysis was con-
ducted on the genes using GOseq R software [62] and
ClueGO [63]. The Brassica Database v3.0 IDs [64] were
used as search queries for the GOseq R software annota-
tions; GO terms with FDR values <0.01 were selected
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for output. The TAIR10 IDs were used as search queries
for the ClueGO annotations. ClueGO is a cytoscape plu-
gin for visualizing large gene clusters in a functionally
grouped network that can analyze both single clusters
and compare them based on their specificity and the
same aspects of multiple cluster functions. The ClueGO
network was set to ‘medium’ and its connectivity was
based on a kappa score of 0.4. GO terms with p <0.01
were considered to be significant. Other parameters
were based on the original ClueGO values. Gene func-
tions were annotated based on the Swiss-Prot, KOG/
COG, KO, Pfam, and Nr NCBI databases.

Quantitative Real-Time PCR (qRT-PCR) and the evaluation

of candidate hub gene expression

Five hub genes were selected to evaluate their expression
levels by qRT-PCR analysis. Gene-specific primers were
designed using Primer v5.0. Actin was used as an in-
ternal control for gene expression (Table S7). The Bio-
Rad CFX96 RT-PCR Detection system (Bio-Rad,
Hercules, CA, USA) and SYBR Green II PCR Master
mix (Takara, Nojihigashi, Kusatsu, Japan) were used for
the qRT-PCR reactions. The gene expression data were
analyzed using the 2**“* method [65]. SPSS v19.0
(SPSS, Chicago, IL, USA) was used to conduct a one-
way analysis of variance (ANOVA) with Duncan’s mul-
tiple range post-hoc test and a significance threshold of
p<0.05. Results were visualized using Sigmaplot v10.0
(Systat Software Inc., San Jose, CA, USA).
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