Skip to main content
. 2021 Mar 26;7:e454. doi: 10.7717/peerj-cs.454

Table 4. Comparison with other models on ImageNet dataset(%).

Modela Top-1 Top-5 Down sampling From scratcha Storage (Mbits) FLOPS (×108)
ResNet-18 (Rastegari et al., 2016) 69.3% 89.2% BConv Yes 374.1 18.1
XNOR-ResNet-18 (Rastegari et al., 2016) 51.2% 69.3% FPConv Yes 33.7 1.67
ABC-Net-res18 (Lin, Zhao & Pan, 2017) 42.7% 67.6% BConv No 27.5 1.59
Bi-Real-Net-18 (Liu et al., 2018) 56.4% 79.5% FPConv No 33.6 1.63
MoBiNet-k4 (Phan et al., 2020) 54.4% 77.5% BConv Yes 36.8 0.52
AresB-18 54.81 78.15 No conv Yes 27.6 1.61

Note:

a

When the model is trained from scratch, a pretrained model are not used in the weight initialization.