Skip to main content
. 2021 Jan 11;11(2):jkaa056. doi: 10.1093/g3journal/jkaa056

Table 7.

Empirical and simulation results for BFDP procedure

Trait Threshold (Bayesian FDR) Empirical
Simulation
π1^ a Positives
eFDRc π1^ d Positives
eFDR
False Trueb False True
HDL
(ntest = 19,840
ntruth = 188,577)
5% 1.3 × 10−4 1 17 5.6% 8.7 × 10−5 0.41
10 4.0%
10% 4 17 19% 0.76
12 6.1%
15% 6 18 25% 1.2
13 8.4%
LDL
(ntest = 19,840
ntruth = 188,577)
5% 1.3 × 10−4 2 17 11% 9.6 × 10−5 0.37
14 2.5%
10% 5 17 23% 0.83
16 4.9%
15% 6 18 25% 1.3
18 7.0%
TG
(ntest = 19,840
ntruth = 188,577)
5% 2.1 × 10−4 1 10 9.1% 1.6 × 10−4 0.36
9.8 3.6%
10% 4 10 29% 1.0
11 8.4%
15% 4 12 25% 1.6
12 12%
Height
(ntest = 133,653
ntruth = 693,529)
5% 2.0 × 10−3 2 338 0.59% 2.9 × 10−3 28
317 8.1%
10% 7 406 1.7% 51
356 13%
15% 9 468 1.9% 76
385 17%
BMI
(ntest = 123,865
ntruth = 681,275)
5% 3.6 × 10−4 0 35 0% 5.2 × 10−4 3.9
67 5.4%
10% 0 43 0% 7.2
82 8.0%
15% 0 50 0% 11
93 10%
a

π1^ is the estimated prior probability of association at a variant site equal to the proportion of tested variants with P < 5 × 10−8.

b

Number of loci in truth set for HDL: 89, LDL: 72, TG: 60, height: 1100, BMI: 724.

c

eFDR is calculated as number of false positives divided by sum of true and false positives.

d

Average π1^ in 1,000 replicate datasets.