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Abstract

Sensory signals give rise to patterns of neural activity which the brain uses to infer properties of 

the environment. For the visual system, considerable work has focused on the representation of 

frontoparallel stimulus features and binocular disparities. But inferring the properties of the 

physical environment from retinal stimulation is a distinct and more challenging computational 

problem – this is what the brain must actually accomplish to support perception and action. Here 

we develop a computational model that incorporates projective geometry, mapping the three-

dimensional (3D) environment onto the two retinae. We demonstrate that this mapping 

fundamentally shapes the tuning of cortical neurons and corresponding aspects of perception. For 

3D motion, the model explains strikingly non-canonical tuning present in existing 

electrophysiological data and distinctive patterns of perceptual errors evident in human behavior. 

Decoding the world from cortical activity is strongly affected by the geometry that links the 

environment to the sensory epithelium.

For an animal to behave effectively in its environment, its nervous system must encode 

information well enough to support interactions with the dynamic world in real time. In the 

mammalian visual system, it is clear that early levels of cortical motion processing take as 

primitives the dynamic patterns of stimulation that fall upon the left and right retinae. Then 

subsequent decoding processes must allow the animal to interact with the dynamic, three-

dimensional (3D) world. It is thus not the retinal motion that is ultimately important, but 
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rather inferring the 3D environmental motion that gave rise to the retinal stimulation and 

subsequent cortical activity.

In some cases, the stimulation upon the sensory epithelium is a fairly direct proxy for the 

stimulus in the environment. Some tactile perception works this way (i.e., if you feel a poke 

on your forearm, then something is poking your forearm). So too with a stimulus moving on 

a computer monitor: the mapping from monitor position to retinal position is 

straightforward. However, for most vision, there is a many-to-one mapping of 3D world 

positions (and velocities) to retinal positions (and velocities). Thus, for the visual system to 

work outside of the context of a laboratory’s frontoparallel computer screen, decoding of the 

3D environment requires additional computation to infer the properties of the world that 

gave rise to the stimulation upon the two retinae [1, 2].

In this work, we show how projective geometry, which maps the 3D environment to 2D 

images on each retina, results in strikingly discontinuous tuning functions for 3D motion in 

the Middle Temporal area (MT) of primate visual cortex. This encoding is starkly different 

in form from tuning functions observed for the reduced case of frontoparallel motion. 

Furthermore, predictions for the perception and estimation of 3D direction which result from 

these tuning curves show a distinctive dependence of error on 3D direction and systematic 

misperceptions of depth – patterns we then observe in human perceptual behavior. 

Theoretical analysis reveals that a key feature of the encoding-decoding computations for 

recovering 3D direction from the slightly different patterns of retinal stimulation are the 

small but ubiquitous differences in monocular sensitivities observed in cortical neurons (the 

simplest being ocular dominance) which have thus far been a well-established phenomenon 

lacking any clear functionality. Together, this framework shows that even visual perception, 

long taken as a model system for its apparently simple stages of image formation and 

transduction, involves idiosyncratic encoding which is shaped by geometric projection at the 

earliest stages of stimulation upon the sensory epithelium. It therefore requires 

corresponding non-canonical decoding mechanisms downstream, in the service of 

reconstructing the 3D environment well enough to inform perception and guide action.

Results

We developed a computational model of MT responses to motion which incorporates the 

geometric relationship between the world and the two retinae, acknowledging the fact that 

retinal stimulation is the result of light bouncing off objects and surfaces in the 3D 

environment and being projected through the pupil onto the back of the eyes. This is distinct 

from earlier work which often assumed that visual patterns presented on flat screens in front 

of a subject were a sufficiently complete proxy for the dynamic patterns of stimulation that 

fall on the retinae. Our model starts with environmental representations of object motion, 

works through the projective geometry upon both of the retinae, and then takes known 

responses to monocular velocities and binocular combination into account. This predicts 

non-canonical tuning forms for single neuron encoding of 3D direction and correspondingly 

non-homogeneous estimation performance when decoding from populations with these 

tuning functions.
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Highly atypical tuning structure for 3D environmental velocities in macaque 

MT

Recent work across electrophysiology and fMRI has implicated MT in the processing of 

motion off the frontoparallel plane [3, 4, 5]. Here we perform a closer examination of neural 

recordings in macaque MT in order to characterize the functional form of tuning for 3D 

motion direction (specifically xz-motion directions, see Figure 1a). The black points in 

Figure 1b show the measured tuning curves (i.e., the average neural response) to the 

presentation of different 3D motion directions (i.e., motion on the xz-plane) for six example 

neurons. The firing rate of these neurons is modulated by changes in 3D motion direction. 

Notice that the tuning curves are characterized by steep transitions in four locations on the 

motion direction axis (roughly between each pair of adjacent cardinal directions; right, away, 

left, toward) with relatively little change in firing everywhere else. Given that the vast 

majority of tuning to simple sensory features takes on a Gaussian form [6, 7, 8], including 

MT responses to frontoparallel directions of motion, this at first glance appears to be a 

bizarrely “terraced” tuning structure. However, we can explain this tuning structure by 

considering the relationship between 3D environmental velocities and the resulting 

velocities which fall on the retina.

Atypical tuning structure for 3D environmental velocities is predicted by a 

model which incorporates environment-to-retina geometry

To understand the non-canonical 3D tuning curves, we developed a model for encoding 3D 

motion which incorporates the projective geometry from the environment onto the two 

retinae. It then applies the canonical log-Gaussian tuning of MT neurons to the pair of 

retinal velocities that correspond to a particular 3D direction [9, 10], and takes the linear 

combination of those monocular responses. When a particular 3D motion direction is 

presented on the xz-plane at a given viewing distance, the geometric projection onto the 

retinae results in separate left and right eye retinal velocities (Figure 2a–b). The direction 

and speed of the retinal velocities are dependent on the 3D motion’s environmental velocity 

as well as its distance to the eyes. Correspondingly, any egocentric representation of 3D 

motion direction along the xz-plane must consider the locations of the eyes, as well as the 

viewing distance.

Here, we use a coordinate system that is egocentric, in which the frontoparallel rightward-

leftward and 3D towards-away motion axes of the xz-plane are always anchored to the 

cardinal axes (0 & 180 and 270 & 90, respectively). In the first part of the paper (including 

Figures 1–3), we employ a scaling that makes the ocular axes of the left and right eye (i.e., 

motions directly toward/away from either eye) orthogonal to one another; placing each 

midway between the 3D and frontoparallel axes. In effect, this also divides the space equally 

into regions with the same- or oppositely-signed motion in the two eyes. We begin with this 

representation because it matches prior work [11, 12, 4] and because the layout makes it 

very easy to examine the relationship between the motion in the environment and the motion 

that falls on the retinae. This coordinate system can be interpreted in environmental terms as 

having an implausibly short effective viewing distance: half the average inter-pupillary 
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distance (~3.25cm in humans and ~1.63cm in macaques; see Figure 2a–b). We emphasize 

that these conventional axes are not based on environmental interpretations, but on the 

uniform sampling of monocular velocity ratios across the two eyes (as presented in Figure 2 

of [12]). In subsequent sections, we consider more realistic viewing distances in the model 

and human behavior.

In the model, the projected retinal velocity in each eye produces a neural response derived 

directly from the monocular tuning curve (Figure 2 rows c–e, left panels); both of these 

monocular-velocity responses can then be replotted as functions of 3D motion direction 

(Figure 2 rows c–e, middle panels). The predicted binocular response is a linear combination 

of the corresponding monocular responses (Figure 2c–e, right panels; Online Methods 

equation 1). Combining binocular projective geometry and canonical tuning for retinal 

stimulation within a simple linear model results in tuning curves with abrupt discontinuities, 

characterized by multiple plateaus separated by steep cliffs (e.g., Figure 2 rows c–e, right 

panels). This shape deviates drastically from the classical smooth unimodal (i.e., bell-

shaped) tuning observed across virtually all sensory features and systems [6, 7, 8]. Though 

atypical in appearance, the model tuning curves bear a striking resemblance to MT responses 

to binocular 3D motion stimulation, capturing the qualitative deviations from bell-shaped 

tuning curves ([4]; e.g., Figure 1, black curves).

Given the qualitative success of this model, we further quantified its ability to describe a full 

electrophysiological data set (n=236 neurons; 4500 responses collected per neuron) 

collected in macaque MT ([4]; see also Online Methods). We predicted the binocular 

response to 3D motion direction by summing the average monocular responses to the 

corresponding retinal velocities (see Online Methods equation 1, with cL, cR = 1). Note that 

this is a parameter-free prediction of the neural response to 3D motion direction. Relying 

solely on the geometric transformations from environment to retinae (and the assumption of 

inter-ocular additivity), the model accounts for 76% of the variance in the data (187-of-236 

units with ≥ 50% of the variance explained; median root mean-squared error 7.0 spikes/s). 

Fitting the binocular combination coefficients as free parameters (cL, cR in Online Methods 

equation 1 using least-squares and Monte Carlo cross-validation) results in a modest 

improvement to account for 82% of the variance in the data (190-of-236 units with ≥ 50% of 

the variance explained; median root mean-squared error 4.6 spikes/s).

Consider the sample tuning curves shown in Figure 1, now noting that the purple curves 

depict the predictions of our model using the fitted combination coefficients (purple dots/

line). Supplementary figure 1 shows additional example fits for neurons which are well fit 

and poorly fit by this model. The von Mises tuning curve (i.e., circular normal) is the 

canonical tuning curve used to describe 2D direction tuning curves in MT. For comparison 

to our principled 3D model, we also fit von Mises tuning curves to the MT data, despite the 

fact that they lack the plateaus and cliffs evident in many of the neural tuning curves. The 

von Mises model explained 80% of the variance in the data (190-of-236 units with ≥ 50% of 

the variance explained; median root mean-squared error 4.9 spikes/s). A direct statistical 

model comparison using AIC and BIC analyses (see Online Methods) further supports the 

conclusion that the 3D encoding model performs better than the canonical von Mises (3D 

model: ΔAIC = 274, 95% CI [197, 348], ΔBIC = 173, 95% CI [173,320]; von Mises model: 
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ΔAIC = 380, 95% CI [302, 482], ΔBIC = 427, 95% CI [345,530]; noting that, e.g. a 

difference in ΔBIC > 10 corresponds to “very strong” evidence in favor of one model over 

another). It is also interesting to note that the performance of the two models is not uniform 

over the different motion directions presented. This is related to the von Mises model’s 

failure to capture the qualitative shape (cliffs/plateaus) of many of the neurons we observed. 

In particular, Supplementary figure 2 shows that the 3D model is better at capturing the 

responses to toward and away motions.

Although the 3D model was quantitatively superior to the descriptive bell-shaped fits from a 

conventional (vos Mises) function, the most important differences between these two models 

are largely qualitative in nature. The 3D encoding model can capture the qualitative shapes 

of many of the neurons we observed, including the abrupt cliffs and the long plateaus in the 

tuning curves. Furthermore, the 3D model directly implements binocular combination and 

suggests explicit mechanisms for the construction 3D motion direction tuning. In contrast, 

the von Mises tuning model is purely descriptive. Thus the 3D encoding model is a better 

model quantitatively, qualitatively, and mechanistically. In the upcoming sections, we also 

show that the 3D encoding model makes predictions that are consistent with behavior, but 

which are not explained by a von Mises tuning model.

Estimating 3D motion direction from this atypical tuning structure reveals a 

sufficient but idiosyncratic encoding

Our model’s success describing MT raises the question of whether a population with such 

idiosyncratic tuning curves could be used to estimate 3D direction (Figure 3a). To 

investigate this, we built a population based on model fits to the neurons recorded in [4], 

assuming Poisson output noise (Online Methods equations 1–3). We simulated population 

responses to motion (5cm/s) around the xz-plane of 3D directions sampled at 1 degree 

intervals, at a viewing distance of interpupillary distance
2 , and used a standard maximum log-

likelihood decoder to estimate the 3D velocity (direction, speed) from the resulting 

population response (e.g., [13]; Online Methods equations 11–12). Despite the 

unconventional encoding of 3D directions, this decoder successfully recovered 3D motion 

direction (Figure 3b; estimates near the unity line).

The unusual structure of the 3D direction encoding has important ramifications because the 

underlying tuning curves do not represent changes in 3D direction with equal fidelity. This is 

evident in how decoding performance varies as a function of the true motion direction (see 

Figure 3c), with regions of higher precision near the steepest portions of the tuning curves. 

These regions correspond to what we deem the “ocular axes”, which are the directions for 

which the retinal velocities flip sign when the 3D direction changes. When an object’s 3D 

direction is very close to moving directly toward one of the eyes, small changes in 3D 

direction can correspond to categorical (direction) changes upon that retina. Because MT 

neurons respond more strongly to one direction than another, these direction changes in one 

eye give rise to the steep transitions present in the binocular tuning curves. The resulting 

heterogeneous pattern of precision is notably distinct from decoding based on canonical 
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tuning (Figure 3d–f; Supplementary figure 3), which predicts consistent estimation error 

across all values of a stimulus feature.

3D direction tuning depends on environmental position

The central contribution of our model to the existing understanding of motion processing is 

the incorporation of the environment-to-retina projection geometry, which results in tunfing 

that is expressed with respect to the environment. An important consequence of this is that 

the tuning structures are location dependent, a factor which has also been ignored in 

standard “retinocentric” models of MT and direction selectivity. Because our model includes 

viewing distance as a parameter, we can simulate and decode at multiple, more realistic 

viewing distances using the same model population, Poisson output noise, and maximum 

log-likelihood decoder. Figure 4 shows the dramatic effect of viewing distance. Viewing 

distance changes the retinal projections (see figure 4), which affects the shape of individual 

tuning curves (4c compared to 3a), and drastically changes model decoding performance 

(see figure 4d compared to 3b). At a further (and more perceptually realistic) viewing 

distance, the systematic biases and errors of the model estimation results reveal two notable 

features: (1) a coarse-scale ’X’ pattern indicating errors that are orthogonal to the line of 

unity (which delineates perfectly accurate estimation), and (2) square structures in the clouds 

of points which reflect finer-scale deviations from unity (see also, [14, 15]). These patterns 

can be thought of as depth-sign errors and a bounded bias away from frontoparallel motion, 

respectively (see figure 4d). Next, we describe how both of these initially perplexing patterns 

of errors are understandable consequences of environmentally-referenced decoding that are 

already evident in the behavior of our simple model.

The reason for the rather striking depth-sign error is related to the geometric consequences 

of viewing distance. As viewing distance increases, retinal velocities decrease, and the angle 

between the visual axes of the two eyes decreases (i.e., there is a reduced phase shift in the 

environment-to-retinal velocity mappings between the two eyes; compare Figure 4a at a 

67cm viewing distance to Figure 2b, left panel at 1
2*interpupillary distance or a 3.25cm 

viewing distance for a human). For a fixed environmental velocity, any single tuning curve is 

dependent on the resulting retinal velocities, and thus on viewing distance. At larger viewing 

distances, the steep transitions of binocular tuning curves shift closer to the toward and away 

environmental motion directions (Figure 4b–c); resulting in a more symmetrical tuning 

curve (see symmetry line Figure 4b). The depth-sign errors are due to this increasing 

symmetry across the neural representation in the presence of noise. Note the approximate 

mirror symmetry in Figure 4c, with lines of symmetry at left (←) and right(→).

In addition to the depth-sign errors, a subtler but equally telling idiosyncrasy is present in the 

form of systematic bias of estimates away from purely frontoparallel. This is easiest to see in 

the roughly square cloud of points in the center of Figure 4d: when a leftward direction was 

presented (middle of the x-axis), estimates (y-axis) are repulsed from frontoparallel, but 

cannot be mistaken for motion containing a rightward component (i.e. the decoder does not 

make x-axis sign flip errors.) Thus, the estimates are bounded at the toward and away 
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directions (evident in the horizontal bands at the top and bottom edges of that central 

square). Analogous patterns for rightward motion are present in the corners.

This “frontoparallel repulsion” is also explainable by our model, and is a distinct 

consequence of the same underlying dependence on retinal velocities in the encoding 

scheme. Figure 5a–d shows model estimates at different viewing distances (3.25cm, 20cm, 

31cm, and 67cm), color coded by their corresponding environmental speed estimate. The 

systematic bias for toward/away motion at the farthest viewing distance is lawfully related to 

a systematic overestimation of environmental motion speed: for a perfectly-frontoparallel 

estimate to be generated, the monocular velocities would have to match exactly. But given 

noisy monocular estimates, the resulting 3D direction estimates will be repulsed from 

frontoparallel, either towards or away, depending on which monocular channel’s noise 

yielded a larger/smaller response. More detailed examination of the corresponding 

monocular velocities reveals that variability of the monocular velocity estimates roughly 

follows Weber’s law, regardless of the viewing distance (see Figure 5e–h). However, 

different viewing distances result in a different mapping between retinal velocities and 

environmental motion (see Figure 5i–l, and equations 4–5 which are dependent on viewing 

distance, z). Thus, at far viewing distances the same variability plays out as a larger 

systematic bias for the model: estimates of motion that are too fast and too close to the 

toward and away directions.

Although this explication of the model builds intuition for these errors in the decoder’s 

performance, it may seem unreasonable to predict that human observers would exhibit these 

patterns of performance and particularly that they would make the same depth-sign and 

frontoparallel-repulsion errors as this model decoder. However, existing psychophysical 

results have established that humans do make depth-sign errors [16], and in the next section 

we not only confirm the existence of both depth-sign and frontoparallel-repulsion errors, but 

show that these perceptual distortions emerge and obey the quantitative functional 

dependence on position in the environment (i.e., viewing distance) implied by our model.

Human performance on a 3D motion direction estimation task exhibits the 

signatures of the proposed environment-to-retina model of 3D motion 

tuning

We tested whether human perception exhibits signatures of the environment-to-retina 

encoding-decoding model: performance in 3D direction estimation should be a function of 

both motion direction and location/viewing distance. We designed a perceptual experiment 

to examine human 3D motion direction estimation at several viewing distances. Observers 

estimated the 3D motion direction of random dots within a 3D spherical volume (5 degrees 

in frontoparallel diameter; at 5% contrast; rendered with looming and expansion cues; 

motion direction at 0°,5°,… or 355°on the xz-plane; with a motion speed of 5cm/s) at three 

different viewing distances (20cm, 31cm, or 67cm). These 3D motion volumes are 

analogous to the classical 2D motion apertures found in classic studies of 2D motion. 

Motion was presented for 1 second and observers reported their estimate of the dots’ 3D 

motion direction using a knob to adjust the angle of a stereoscopically-rendered indicator on 
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the screen. Supplementary Video 1 and Supplementary Video 2 provide high contrast 

examples of the motion stimuli.

Figure 6 shows estimation performance at three different viewing distances collapsed across 

three observers (top row) and model performance at the same three viewing distances for 

comparison (bottom row). Human observers did exhibit depth-sign errors and biases for 

toward/away motion that fully emerge as a function of viewing distance. (Performance of 

individual subjects is shown in Supplementary figure 4.) Panel g of Figure 6 illustrates the 

increase in depth-sign errors with increased viewing distance and compares performance to 

the the predictions of the 3D model and the von Mises model. While there are almost no 

depth-sign errors predicted by the von Mises model, the 3D model predictions increase in 

step with the psychophysical results.

Subtle tuning differences across the two eyes enable the toward-vs-away 

aspect of decoding for 3D direction

By separately manipulating parameters of the simulated population (see Online Methods eq. 

1 – 3), we were able to examine which aspects of neural tuning in MT neurons affect 

estimation of 3D motion direction. For example, a population with identical monocular 

tuning parameters (i.e., the same speed preference, tuning bandwidth, response amplitude, 

and baseline firing rate in the two eyes), correctly identifies the x-component – the 

frontoparallel component – of 3D motion. But, in the absence of any implicit eye of origin 

signatures playing out in such parameters, this “equal-monocular” encoding cannot recover 

the direction for the depth component above chance levels because there is no differentiating 

information for toward versus away motion components (see Figure 7b).

However, merely incorporating subtly differential monocular tuning (at the levels measured 

in [4]) reveals that small, seemingly trivial differences in response amplitude, tuning 

bandwidth, or speed preference between the two eyes are each in principle sufficient for 

representing 3D motion direction (see Figure 7c–e respectively and Figure 7a for 

comparison). Differences in untuned components-such as the baseline firing rate from the 

two monocular response components– do not provide differential toward/away information 

(see Figure 7f). Thus, small and seemingly innocuous mismatches between left and right eye 

tuning may play a key role in encoding the 3D environment. In particular, we note that small 

differences in response amplitude are more commonly called “ocular dominance”, a 

phenomenon that has been well-documented in visual cortex [17, 18], but has rarely been 

posited as a scheme for carrying information [19]. This theoretical finding points to a 

potentially important role for these subtle ocular imbalances in visual processing.

Discussion

We have introduced a framework for making inferences about environmental properties 

given knowledge of the neural sensitivity to features of retinal stimulation. Specifically, we 

examined tuning for 3D motion in primate MT, and observed atypical tuning structures for 

3D motion. We found that an encoding model that combines the relationship between the 

environment and the retina with the known retinal encoding of 2D motion explains this 
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strikingly atypical tuning structure. This encoding model was then shown to be sufficient for 

estimating 3D motion direction. Furthermore, a decoding analysis predicted 3D motion 

direction estimation performance that varies as a function of motion direction and location/

distance, which we showed is consistent with human perceptual judgements and is in stark 

contrast with default (Gaussian/von Mises) tuning models that have homogeneous sensitivity 

across all 3D directions. Thus, the predictions made by extending sensory encoding and 

decoding to incorporate the geometry of the spatiotemporal environment naturally account 

for what are, at first glance, rather odd aspects of both neural tuning curves and human 

perception.

Previous work in the perceptual literature has reported the frontoparallel bias and depth-sign 

errors that we observe to be prevalent at longer viewing distances [20, 16]. Bayesian 

observer models that rely on slow speed priors have provided plausible explanations for the 

set of biases and errors observed in human perceptual experiments [21, 14, 15]. The use of 

binocular velocities for 3D motion direction discrimination/estimation was also proposed by 

Beverley and Regan [22], with supporting psychophysical experiments which tested 3D 

motion direction discrimination and demonstrated increased direction sensitivity in line with 

the location of the two eyes. Our model provides a more complete explanation in three 

important ways: the model is built upon the tuning structure of a known neural population, 

the model does not need to invoke a prior, and the model makes explicit the location-

dependent nature of primate 3D motion direction estimation (i.e. how performance changes 

with viewing distance).

Previous work in the electrophysiological literature established that MT neurons with some 

‘3D tuning’ (as defined by a preferred direction calculated using a vector average of 

responses) were more likely to exhibit nonlinear binocular summation [4]. They concluded 

that these nonlinearities were likely critical for 3D motion sensitivity. Despite the fact that 

the binocular combination included in our model is purely linear and does not take into 

account these nonlinearities, our model accounts for over half the variance in most neurons. 

We do find that there are some neurons are not well-fit by our model. This is at least 

partially due to nonlinearities in binocular combination, which likely sharpen 3D motion 

sensitivity. However, the theoretical exercise described in this manuscript reveals 

fundamental contributions of binocular projection geometry and ocular imbalance that give 

rise to the non-canonical tuning structures observed in MT.

The model of 3D motion tuning proposed here examines how 3D motion information can be 

read out from the different retinal velocities which fall on the two eyes. The field has named 

this binocular information about 3D motion: interocular velocity differences (IOVDs) [23, 

24]. Given that the model presented here relies on binocular summation and ocular tuning 

imbalances across the two eyes, the term interocular velocity differences is a bit of a 

misnomer and potentially confusing (which is why we have avoided mentioning it). The 

mechanism representing this type of information does not engage in any differencing per se, 

though it does rely on the fact that the velocities are different.

The work presented here provides a phenomenologically compelling model of the 

representation of 3D direction, supported by both electrophysiological and psychophysical 
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evidence. However, future work will need to examine more directly the relationship between 

physiology and perception in awake behaving primates using tools such as micro-stimulation 

(e.g. [25]). Such experiments will also provide an important opportunity to further 

characterize monocular and binocular tuning characteristics of neurons, as well as potential 

dependencies on viewing distance, in order to test and refine the model proposed here.

In conclusion, our findings emphasize the importance of recognizing the nervous system’s 

ultimate need to infer the properties of the environment to guide behavior. Such inference is 

based on sensory information that is fundamentally constrained by the geometric 

relationship between the environment and the sensory organ. We considered the case of 3D 

motion direction as an example, demonstrating that a geometrically-constrained encoding 

model for 3D motion direction is consistent with electrophysiological recordings of neurons 

in MT and human performance on direction estimation tasks. Furthermore, we found 

evidence that small differences in tuning across the two eyes can support 3D motion 

direction estimation. The geometric framework presented here can be applied to other visual 

features. For example, slanted and tilted patterns project differential patterns of orientation 

upon the two retina, which shape the environmental meaning of canonical orientation tuning 

functions. Thus, a large number of important cortical encoding modules may not be 

implemented by banks of units with bell-shaped tuning when the decoding of environmental 

properties (rather than retinal image properties) is required, as is the case for visually-guided 

behaviors in the natural world.

Data/Code Availability

The modeling code/simulations and the human psychophysical data/analysis is available 

here: https://github.com/kbonnen/BinocularViewing3dMotion.

Online Methods

Electrophysiological Data

Several analyses performed in this paper rely on an electrophysiological data set (n=236) 

collected in the middle temporal area of 2 adult male macaque (macaca fascicularis, age 3 

and 4 years) under anesthesia by [4]. These recordings include the neural responses to 3D 

motion in 28 directions on the xz-plane (with varying environmental speeds; fully crossed 

manipulation of retinal velocities in the two eyes: −10°/s, −2°/s, −1°/s, 1°/s, 2°/s, 10°/s), as 

well as the responses to the corresponding monocular velocities. The stimulus was 

constructed using drifting gratings at 6 different orientations (0°, 30°, 60°, 90°, 120°, 150°), 

all drifting orthogonal to grating orientation. Each stimulus was repeated 25 times. For the 

purposes of our analyses we included all data except those collected using the horizontally-

oriented grating, which doesn’t have a proper binocular velocity signal. Additional details 

about these experiments can be found in the original paper
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Computational Model

Encoding.

Here we describe the single neuron encoding model used to generate the model predictions 

for responses to 3D motion direction (e.g., Figures 3–7). 3D motion refers to motion on the 

xz-plane (see Figure 1a). A velocity on this plane is specified by (θ,m) where θ is the xz-

direction (deg.) and m is the magnitude of the motion (cm/s). The binocular response 

function for 3D motion, fB(θ,m) (e.g., Figure 2c–e, right panel), can be written as a weighted 

combination of the monocular responses due to the retinal velocities that fall onto each of 

the eyes:

fB(θ, m) = cL * fL(θ, m) + cR * fR(θ, m) (1)

where fL(θ,m) and fR(θ,m) are the monocular responses (spike rate; e.g., Figure 2c–e,i-ii) to 

the corresponding left and right eye retinal velocities (see Figure 2b); cL and cR are the 

coefficients for linear combination. These combination coefficients allow for suppression or 

amplification of one or both eyes during the binocular response.

Monocular velocity tuning curves in MT are well-fit by log-Gaussian functions [10] and thus 

we parameterize the monocular response functions (fL(θ,m), fR(θ,m)) using log-Gaussian 

curves (e.g., Figure 2c–e,i). The motion confined to the xz-plane gives rise to monocular 

velocities to the right or left at different speeds. Because MT neurons exhibit diversity in 

their direction selectivity, the log-Gaussian function must be simultaneously fit to both 

directions with coefficients to modulate the relative amplitude of the neural response:

fL(θ, m) =

aL +
dθL(θ, m)σl

e
−(logdθL(θ, m) − μl)2

2σl
2 + bL dθL(θ, m) ≥ 0

aL −
dθL(θ, m) σl

e
−(log dθL(θ, m) − μl)

2

2σl
2 + bL dθL(θ, m) < 0

(2)

fR(θ, m) =

aR +
dθR(θ, m)σr

e
−(logdθR(θ, m) − μr)2

2σr2 + bR dθR(θ, m) ≥ 0

aR −
dθR(θ, m) σr

e
−(log dθR(θ, m) − μr)2

2σr2 + bR dθR(θ, m) < 0

(3)

where μL, σL, μL, and σR are the parameters of the log-Gaussian function; aL+, aL−, aR+, and 

aR− are the coefficients modulating the relative amplitude of the neural response; bL and bR 

are the baseline firing rates; dθL(θ,m) and dθR(θ,m) are functions that give the retinal 

velocities for the left and right eyes respectively (see below, see also Figure 2a), given the xz 
velocity (θ,m).
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dθL(θ, m) =
cos(θ) * m * z − sin(θ) * m * (x + ipd

2 )

(x + ipd
2 )2 + z2

(4)

dθR(θ, m) =
cos(θ) * m * z − sin(θ) * m * (x − ipd

2 )

(x − ipd
2 )2 + z2

(5)

where (x, z) is the motion location (cm) and ipd is the inter-pupillary distance (6.5cm in 

humans, 3.25 in macaque).

The equation for the retinal velocities (dθL, dθR) given an environmental velocity (θ,m) 

comes from taking the derivative on the angular relationship between the eye in question and 

the motion location (for schematic, see Supplementary figure 5):

tan θr = − z
x − ipd

2
(6)

θr = tan−1 − z
x − ipd

2
(7)

To find the velocity for the right eye, take the derivative (i.e. dθr; note that 
d

dx tan−1(f(x)) = 1
1 + f(x)2

* f′(x) ):

dθr = 1

1 + z
x − ipd

2

2 ∗ z ∗ dx ∗ x − ipd
2

−2
− dz ∗ x − ipd

2
−1

(8)

dθr =
x − ipd

2
2

x − ipd
2

2 + z2
∗ z ∗ dx

x − ipd
2

2 − dz
x − ipd

2
(9)

dθr =
z ∗ dx − dz ∗ x − ipd

2

x − ipd
2

2 + z2
(10)

Substituting dx and dz for cos(θ) * m and sin(θ) * m respectively gives equation 5 above. 

The derivation for dθL follows the same logic except the location of the eye has changed 

(i.e. x − ipd
2 x + ipd

2 ).
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Decoding.

3D motion direction estimation was performed by finding the xz-velocity (θ,m) associated 

with the maximum log-likelihood value, given the assumption of independent Poisson noise 

on the 3D binocular tuning curve:

logL θ, m = log ∏
i = 1

N
p ri θ, m = ∑

i = 1

N
log

fBi θ, m ri

ri!
e−fBi θ

(11)

= ∑
i = 1

N
log fBi θ, m ri − ∑

i = 1

N
fBi θ, m − ∑

i = 1

N
log ri! (12)

where r is the population response, a vector composed of the spike count for N neurons; and 

fB are the binocular tuning curves for 3D motion (see [13]). Motion direction and magnitude 

were jointly estimated by maximizing the log-likelihood: argmaxθ,m logL(θ,m).

von Mises model.

Here we describe a double von Mises encoding model for single neurons. This model 

produces classical bell-shaped tuning for 3D direction and allows for two peaks of different 

amplitudes separated by 180°. It is the model used in the comparison in Figure 3, 

Supplementary figures 1, 2, and 3. The response function (fvon) is given by the following 

equation:

fvon θ = a1
eK ∗ cos θ − μ

2π ∗ I0 K + a2
eK ∗ cos θ − μ − π

2π ∗ I0 K + b (13)

where μ is the preferred direction of the neuron, K is a measure of concentration (analogous 

to 1
σ2), b is the baseline firing rate and a1, a2 control the relative amplitudes of the preferred 

and anti-preferred directions (allowing for the type of mixed direction selectivity typically 

reported in MT tuning for 2D – xy – motion direction).

Model Comparison

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were 

calculated for fits of both the von Mises and 3D encoding model to the binocular response 

data from [4]. AIC and BIC are designed for comparisons of models with differing numbers 

of parameters. The 3D model is a 2 parameter model given by equation 1 where cL, cR are 

the parameters and fL(θ,m), fR(θ,m) are given by the monocular data. The von Mises model 

is the 5 parameter model as shown in equation 13, but is actually a 25 parameter model 

because a different 5 parameters must be learned for each of the five grating orientations 

used in the analysis. We performed Monte Carlo cross-validation (n=50) to estimate AIC 

and BIC for each neuron and then took the mean across all neurons to calculate the 

population AIC and BIC for both models.
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Psychophysical Methods

Observers.

Data were collected from three psychophysical observers (including two of the authors and 

one naive subject; ages 20–28 yrs; 1 female and two male). Each of the observers had good 

stereopsis and normal or corrected-to-normal vision. All observers participated with written 

informed consent and were treated according to the principles set forth in the Declaration of 

Helsinki of the World Medical Association. All procedures were approved by the University 

of Texas at Austin Institutional Review Board.

Apparatus.

Stimuli were presented stereoscopically using a ProPixx 3D projector (120Hz per eye, 

74.5cm x 132.5cm; St. Bruno, Canada) and a Screen Tech ST-PRO-DCF black acrylic glass 

screen (Hamburg, Germany). We designed a rail system for mounting both the screen and 

projector that can be easily adjusted to viewing distances from 20cm to 120cm without 

moving the subject. Supplementary figure 6 shows a schematic of this system.

Stimulus.

The stimuli were fixed spherical dot motion volumes analogous to the dot motion apertures 

in the classical (frontoparallel) motion literature. Supplementary Videos 1–2 show high 

contrast examples of this stimulus. Supplementary Video 1 can be free-fused and is a high-

contrast version of the stimulus shown to subjects during our experiments. Supplementary 

Video 2 is a 2D video rendered with shading on the dots to give a stronger sense of the depth 

percept. Both videos show 8 motion epochs (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°). 

Spherical motion volumes were 5° (frontoparallel; 1.78cm, 2.75cm, and 5.95cm at the 3 

viewing distances) in diameter at 5°eccentricity left or right from fixation. In order to avoid 

performing experiments in a stereomotion scotoma [26], stereomotion tests were performed 

at both locations and the stimulus was placed in the location with highest performance. Dots 

within the spherical volume were at 5% contrast (half with luminance above the background 

luminance and half with luminance below), moving at one of three speeds (5cm/s 7.75cm/s 

or 16.75cm/s), in one of 72 directions (0°, 5°, 10°, … 350°, 355°), at one of three viewing 

distances (20cm, 31cm or 67cm), rendered with looming and expansion cues.

Procedure.

Each trial consisted of a motion epoch lasting one second. Subjects reported the motion 

direction of the dots using a knob to adjust the angle of an indicator on the screen. The 

indicator was rendered stereoscopically and consisted of a vector arrow that could be 

oriented radially around a ring on the xz-plane. This indicator was presented slightly below 

the location of fixation from the motion epochs. An example of the motion indicator used 

during the experiment can be seen in Supplementary Video 2. It is the figure below the 

motion cloud which is indicating the direction of motion of the dot cloud. The experiment 

was completed in blocks. Each block consisted of 72 trials at single viewing distance, with 

pseudo-randomly interleaved trials of different speeds and directions (the fastest speed, 

16.75cm/s was presented only at the farthest viewing distance). Each condition (direction/
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speed/viewing distance combination) was repeated 5 times. The experiment was conducted 

in 35 blocks for a total of 2520 trials.

Statistics.

No statistical methods were used to predetermine sample sizes but our sample similar to 

those reported in previous publications [20, 16]. The psychophysical experiment was 

completed in blocks. Within blocks, trials with different speeds and directions were 

interleaved. Blocks were performed in a random order. Between blocks the screen was set at 

the appropriate distance for the upcoming trials. Because participants were aware that the 

screen was at different viewing distances, data collection and analysis was not performed 

blind to the conditions of the experiments. In this paper we present the data from the 5cm/s 

trials, since that speed was presented at all 3 viewing distances. Otherwise, no data was 

excluded. We did not explicitly test for normality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: MT neurons exhibit atypical “terraced” tuning structure for environmental velocities 
in 3D.
a. For the purposes of this study, 3D motion refers to velocities which fall on the xz plane. 

This allows us to unwrap the motion direction onto a linear axis (as is typically done with 

frontoparallel motion): right, away, left, toward, right. b. Average neural response to 3D (xz) 

motion direction for 6 example neurons in macaque MT [4]. Each panel depicts the average 

response of a single example neuron to the presentation of different 3D motion directions 

(black dots). Predictions of the model proposed here are plotted for comparison (purple). 

Stimuli consisted of binocular presentations of motions consistent with a wide array of 

directions in the x-z axes (fully crossed manipulation of retinal velocities in the two eyes: 

−10°/s, −2°/s, −1°/s, 1°/s, 2°/s, 10°/s). This results in motions presented in 28 unique 

directions (of varying environmental speeds), with each of the three cardinal directions 

(right, away, left, toward) repeated at 3 different speeds. These motion stimuli were 

presented at 6 different grating orientations (0°, 30°, 60°, 90°, 120°, 150°), all drifting 

orthogonal to grating orientation. Each stimulus was repeated 25 times. In the examples 

here, we have plotted the data from the vertically-oriented grating orientation. For the 

purposes of our analyses we included all data except those collected using the horizontally-

oriented grating, which doesn’t have a proper binocular velocity signal. Additional details 

about these experiments can be found in the original paper. [4].
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Figure 2: An encoding model that incorporates the environment-to-retina geometry of 3D motion 
predicts atypical structures for binocular 3D motion tuning curves.
a. Diagram of the projection of 3D motion (confined to the xz-plane; middle panel) onto the 

left eye (blue; left panel) and the right eye (red; right panel). The color wheels in the middle 

panel identify 16 xz-directions and those directions are also marked on the retinal velocity 

panels for the left and right eye. For simplicity, velocities are plotted in a world-motion 

reference frame, i.e., leftward motion in the world is also plotted as ‘leftward’ in retinal 

velocity panels. The assumption that the ocular axes are 90°apart results in an effective 
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viewing distance of 1
2  * interpupillary distance. b. Left and right eye retinal velocities as a 

function of 3D motion direction. These are replotted from the left and right eye panels in a. 

c-e. Each row represents an example model neuron generated from fits to 3 neurons found in 

[4]. c. A 3D model neuron that exhibits slight ocular dominance, leftward preference, and is 

direction selective. (Left panel) Monocular retinal velocity tuning curves for the left and 

right eye. (Middle panel) Monocular neural responses as a function of 3D motion direction, 

built from the composition of the functions depicted in b and panel i. (Right panel) 

Binocular 3D motion direction tuning curve computed from a weighted linear combination 

of monocular responses in the middle panel. Data points (circles) trace the transformation of 

a single 3D direction from b through all three panels in c. d. A 3D model neuron that 

exhibits strong ocular dominance, rightward preference, and is direction selective. e. A 3D 

model neuron that exhibits rightward preference, and is less direction selective.
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Figure 3: A 3D model decoder successfully estimates 3D motion direction.
However, the resulting pattern of estimates is distinct from an idealized Gaussian (von 

Mises) model. a. Binocular tuning curves from the computational model for decoding 3D 

motion direction, assuming a viewing distance of 1
2  * interpupillary distance. These 16 

example 3D direction tuning curves were chosen because their preferred direction (as 

calculated by the vector average) were closest to tiling 3D direction with 16 evenly spaced 

values in the xz-plane (0°, 22.5°, 45°, … , 337.5°). b. The decoder successfully estimates 3D 

motion direction; estimates (dots) fall on the unity line (dashed white line). c. The mean 

estimation error (purple line) and standard deviation (purple cloud) are plotted as a function 

of 3D direction (n=36000; 100 independent estimates per 360 directions tested). The 

standard deviation of the estimates (purple cloud) varies cyclically as a function of the 

motion direction presented. This is a consequence of the binocular projective geometry. d. 
For comparison to a-c: Idealized population of neurons with Gaussian tuning for 3D motion 

direction. Here we show 16 evenly spaced Gaussian tuning curves (with preferred directions: 

0°, 22.5°, 45°, … , 337.5°); 236 evenly spaced neurons were used in the simulated 

population. This matches the number of neurons in the recorded population, and simulated 

in the computational model. e. Gaussian decoder successfully estimates 3D motion 

direction; estimates (purple dots) fall on the unity line (dashed white line). f. The mean 

estimation error (purple line) and standard deviation of estimates (purple cloud) are plotted 

as function of 3D direction (n=36000; 100 independent estimates per 360 directions tested). 

Note that the standard deviation of the estimation error does not vary as a function of the 

motion direction presented (compare to 3c.)
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Figure 4: Model estimates of 3D motion direction change with viewing distance, resulting in 
surprising model errors at far viewing distances.
a. At a larger (67cm) viewing distance, the retinal velocities are smaller in magnitude and 

the difference between the left and right eye retinal velocities is drastically reduced. b. The 

effect of increased viewing distance on individual tuning curves is a convergence of steep 

transitions on the toward/away motion directions. This results in a relatively symmetrical 

function except close to the toward and away directions. This symmetry is present across the 

whole population (because it is a lawful consequence of binocular projective geometry; e.g., 

c) and it leads to the unusual model errors evident in d. c. Binocular tuning curves for 3D 

motion direction at a viewing distance of 67cm. These 16 3D direction tuning curves are the 

same example units as those shown in figure 3a. d. Model estimates of 3D motion direction 

for a viewing distance of 67cm (n=15 per 72 directions tested). A pattern of biases and 

depth-sign errors emerges, forming a ‘X ‘ pattern of results.
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Figure 5: Systematic biases for toward/away motion emerges with increased viewing distances.
a-d. Model performance for motion direction estimation for a single environmental speed 

(5cm/s) at four different viewing distances (3.25cm, 20cm, 31cm, 67cm). Colors indicate 

model estimates of environmental speed. The unity line (black) marks the presented motion 

directions. e-h. The same model and estimates as a-h, but plotted as a function of the 

corresponding left and right eye retinal velocities. Again the thick black line represents the 

presented motion. The dashed lines indicated the axes of toward/away motion and left/right 

motion. From this representation, it is evident that the variability around the retinal velocities 

is similarly shaped across viewing distances but that the transformation to the environmental 

velocity results in systematic differences in model estimation performance for environmental 

velocities at different viewing distances. i-l. The mapping from retinal velocities to 

environmental velocities at different viewing distances. Again the thick black line represents 

the presented motion.
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Figure 6: Human performance on a 3D motion direction estimation task matches model observer 
performance
a-c. Results from a human psychophysics experiment. Three observers were shown dot 

motion clouds moving in one direction and asked to estimate the 3D motion direction. a. 3D 

motion direction estimation performance collapsed across 3 human observers at a 20 cm 

viewing distance. Each dot represents an estimate from a single trial (n=15 per 72 directions 

tested). Data points are rendered semi-transparently in order to make visible the density of 

estimates. b. 3D motion direction estimation performance collapsed across 3 human 
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observers at a 31 cm viewing distance. c. 3D motion direction estimation performance 

collapsed across 3 human observers at a 67 cm viewing distance. d-f. 3D model performance 

estimating motion direction in the same conditions as the human observers in a-c. Notice 

that with the increased viewing distance there is an increase in the number of depth sign 

errors and a bias away from frontoparallel motion for both the model and the human 

observers. g. The percentage of depth sign errors as a function of viewing distance for the 

two models and 3 human observers, demonstrating that there is a categorical difference 

between the predictions made by the 3D model and the von Mises model. Human observers 

are clearly better matched by the 3D model.
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Figure 7: Subtle tuning differences across the two eyes enable the toward-vs-away aspect of 
decoding for 3D motion direction.
Each lettered panel shows the performance of a decoder (upper), based upon a particular 

simulated neural population (lower) at a simulated viewing distance of ipd
2  (as in Figure 3), 

given a particular set of tuning characteristics: a. the original tuning measured in this paper 

(slightly different across the two eyes for all parameters) b. equal monocular inputs from the 

two eyes c. differs across the two eyes only in response amplitude d. differs only in tuning 

bandwidth e. differs only in speed preference or f. differs only in baseline firing rate
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