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Abstract

A quandle is a set that has a binary operation satisfying three conditions corresponding to the 

Reidemeister moves. Homology theories of quandles have been developed in a way similar to 

group homology, and have been applied to knots and knotted surfaces. In this paper, a homology 

theory is defined that unifies group and quandle homology theories. A quandle that is a union of 

groups with the operation restricting to conjugation on each group component is called a multiple 

conjugation quandle (MCQ, defined rigorously within). In this definition, compatibilities between 

the group and quandle operations are imposed which are motivated by considerations on colorings 

of handlebody-links. The homology theory defined here for MCQs takes into consideration both 

group and quandle operations, as well as their compatibility. The first homology group is 

characterized, and the notion of extensions by 2-cocycles is provided. Degenerate subcomplexes 

are defined in relation to simplicial decompositions of prismatic (products of simplices) complexes 

and group inverses. Cocycle invariants are also defined for handlebody-links.
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1. Introduction

In this paper, a homology theory is proposed that contains aspects of both group and quandle 

homology theories, for algebraic structures that have both operations and certain 

compatibility conditions between them.

The notion of a quandle [Joyce 1982; Matveev 1982] was introduced in knot theory as a 

generalization of the fundamental group. Briefly, a quandle is a set with a binary operation 

that is idempotent and self-distributive, and a bijective corresponding right action. The 

axioms correspond to the Reidemeister moves, and quandles have been used extensively to 

construct knot invariants. They have been considered in various other contexts, for example 

as symmetries of geometric objects [Takasaki 1943], and with different names, such as 

distributive groupoids [Matveev 1982] and automorphic sets [Brieskorn 1988]. A typical 

example is a group conjugation a * b = b−1ab which is an expression of the Wirtinger 

relation for the fundamental group of the knot complement. The same structure but without 

idempotency is called a rack, and is used in the study of framed links [Fenn and Rourke 

1992].

In [Fenn et al. 1995] a chain complex was introduced for racks. The resulting homology 

theory was modified in [Carter et al. 2003] by defining a quotient complex that reflected the 

quandle idempotence axiom. The motivation for this homology was to construct the quandle 

cocycle invariants for links and surface-links. Since then a variety of applications have been 

found. The quandle cocycle invariants were generalized to handlebody-links in [Ishii and 

Iwakiri 2012]. When a set has multiple quandle operations that are parametrized by a group, 

the structure is called a G-family of quandles; this notion, with its associated homology 

theory, was introduced in [Ishii et al. 2013] and it too was motivated from handlebody-knots. 

This homology theory is called IIJO. In particular, cocycle invariants were introduced that 

distinguished mirror images of some handlebody-knots. These G-families were further 

generalized to an algebraic system called a multiple conjugation quandle (MCQ) in [Ishii 

2015b] for colorings of handlebody-knots. An MCQ has a quandle operation and partial 

group operations, all linked by compatibility conditions.

This paper proposes to unify the group and quandle homology theories for MCQs. The 

definition of an MCQ is recalled in Section 2 as a generalization of a G-family of quandles. 

A homology theory is defined (in Section 3) that simultaneously encompasses the group and 

quandle homologies of the interrelated structures. As in the case of [Carter et al. 2003], 

some subcomplexes are defined in order to compensate for the topological motivation of the 

theory. The first homology group is characterized, and the notion of extensions by 2-

cocycles is provided in Section 4.

The homology theory for MCQs is well suited for handlebody-links such that each toroidal 

component has its core circle oriented, as defined in Section 5. When considering colorings 

for unoriented handlebody-links, we also need to take into consideration issues about the 

inverse elements in the group (Section 6). Prismatic sets (products of simplices) are 

decomposed into subsimplices that are higher-dimensional duals of graph moves; Section 7 

defines a subcomplex that compensates for these subdivisions. In Sections 8 and 9, we relate 
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this homology theory with group and quandle homology theories. Finally, in Section 10, we 

discuss approaches to finding new 2-cocycles of our homology theory.

2. Multiple conjugation quandles

First, recall a quandle [Joyce 1982; Matveev 1982] is a nonempty set X with a binary 

operation *: X × X → X satisfying the following axioms:

1. For any a ∈ X, we have a * a = a.

2. For any a ∈ X, the map Sa: X → X defined by Sa(x) = x * a is a bijection.

3. For any a, b, c ∈ X, we have (a * b) * c = (a * c) * (b * c).

Definition 1 [Ishii 2015b]—A multiple conjugation quandle (MCQ) X is the disjoint 

union of groups Gλ, where λ is an element of an index set Λ, with a binary operation *: X × 

X → X satisfying the following axioms:

1. For any a, b ∈ Gλ, we have a * b = b−1ab.

2. For any x ∈ X and a, b ∈ Gλ, we have x * eλ = x and x * (ab) = (x * a) * b, 

where eλ is the identity element of Gλ.

3. For any x, y, z ∈ X, we have (x * y) * z = (x * z) * (y * z).

4. For any x ∈ X and a, b ∈ Gλ, we have (ab) * x = (a * x)(b * x) in some group Gμ.

We call the group Gλ a component of the MCQ. An MCQ is a type of quandle that can be 

decomposed as a union of groups, and the quandle operation in each component is given by 

conjugation. Moreover, there are compatibilities, (2) and (4), between the group and quandle 

operations.

Note that the quandle axiom a * a = a follows immediately since the operation in any 

component is given by conjugation. The second quandle axiom also follows, since for the 

map Sa: X → X defined by Sa(x) = x * a, the inverse map is given by Sa<sup>−1</sup>. The 

second axiom of MCQs implies that the map ϕ: Gλ → AutQnd X defined by ϕ(a) = Sa is a 

group homomorphism, where AutQnd X is the set of quandle automorphisms of X and is the 

group with the multiplication defined by Sa Sb: = Sb ∘ Sa. The last axiom (4) may be 

replaced by the following:

(4′) For any x ∈ X and λ ∈ Λ, there is a unique element μ ∈ Λ such that Sx(Gλ) = 

Gμ and that Sx: Gλ → Gμ is a group isomorphism.

The axiom (4) immediately follows from (4′). Conversely, (4′) follows from (4): the 

condition (4) contains the condition that for any a, b ∈ Gλ and x ∈ X, there exists a unique μ 
∈ Λ such that a * x, b * x ∈ Gμ. Hence we have Sx(Gλ) ⊂ Gμ, which implies that Sx: Gλ → 
Gμ is a well-defined group homomorphism by the condition (ab) * x = (a * x)(b * x). The 

homomorphism Sx: Gλ → Gμ is a group isomorphism, since Sx<sup>−1</sup>: Gμ → Gλ 
gives its inverse.

A multiple conjugation quandle can be obtained from a G-family of quandles as follows.
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Example 2—Let G be a group with identity element e, let (M, {*g}g ∈ G) be a G-family of 

quandles [Ishii et al. 2013]; i.e., a nonempty set M with a family of binary operations *g: M 
× M → M (g ∈ G) satisfying

x ∗g x = x, x ∗gℎ y = (x ∗g y) ∗ℎ y, x ∗e y = x,

(x ∗g y) ∗ℎ z = (x ∗ℎ z) ∗ℎ−1gℎ (y ∗ℎ z)

for x, y, z ∈ M and g, h ∈ G. Then ∐x ∈ M{x} × G is a multiple conjugation quandle with

(x, g) ∗ (y, ℎ) = (x ∗ℎ y, ℎ−1gℎ), (x, g)(x, ℎ) = (x, gℎ) .

The following are specific examples of G-families of quandles.

1. Let M be a group, and G be a subgroup of Aut M. Then for x, y ∈ M and g ∈ G, 

x * y = (xy−1)g y gives a G-family of quandles. Here xg denotes g acting on x. 

The fact that this is a G-family was pointed out in [Przytycki 2011]; however, 

that any specific automorphism g yields a quandle was earlier observed in [Joyce 

1982; Matveev 1982]. When M is abelian and an element g ∈ G is fixed, the 

resulting quandle is called an Alexander quandle.

2. Let (X, *) be a quandle. We denote Sb
n(a) by a *n b. Put Z: = ℤ or ℤ/mℤ, where 

m: = min{i > 0 | x *i y = x for any x, y ∈ X}. Then (X, {*n}n ∈ Z) is a Z-family 

of quandles.

For a multiple conjugation quandle X = ∐λ ∈ Λ Gλ, an X-set is a nonempty set Y with a 

map *: Y × X → Y satisfying the following axioms, where we use the same symbol * as the 

binary operation of X.

• For any y ∈ Y and a, b ∈ Gλ, we have y * eλ = y and y * (ab) = (y * a) * b, 

where eλ is the identity of Gλ.

• For any y ∈ Y and a, b ∈ X, we have (y * a) * b = (y * b) * (a * b).

Any multiple conjugation quandle X itself is an X-set with its binary operation. Any 

singleton set {y0} is also an X-set with the map * defined by y0 * x = y0 for x ∈ X, which is 

called a trivial X-set. The index set Λ is an X-set with the map * defined by λ * x = μ when 

Sx(Gλ) = Gμ for λ, μ ∈ Λ and x ∈ X.

3. Homology theory

In this section, we define a chain complex for MCQs that contains aspects of both group and 

quandle homology theories. A subcomplex is also defined that corresponds to a 

Reidemeister move for handlebody-links.

Let X = ∐λ ∈ Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. In what 

follows, we denote a sequence of elements of X by a bold symbol such as a, and denote by |

a| the length of a sequence a. For example, (a), 〈a〉, (y; a; b) respectively denote
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(a1, …, a ∣ a ∣ ), 〈a1, …, a ∣ a ∣ 〉, (y; a1, …, a ∣ a ∣ ; b1, …, b ∣ b ∣ ) .

Let Pn(X)Y be the free abelian group generated by the elements

(y; a1, 1, …, a1, n1; …; ak, 1, …, ak, nk) ∈ ∪
n1 + ⋯ + nk = n

Y × ∏
i = 1

k
∪

λ ∈ Λ
Gλ

ni

if n ≥ 0, and let Pn(X)Y = 0 otherwise. The elements of Pn(X)Y are called prismatic chains 
and Pn(X)Y is called the prismatic chain group. Note that for each j, the elements aj,1, …, 

aj,n<sub>j</sub> belong to one of the Gλ. For example, P3(X)Y is generated by the elements 

(y; a; b; c), (y; a; e, f), (y; d, e; c) and (y; d, e, f) (where a, b, c ∈ X, d, e, f ∈ Gλ, y ∈ Y). 

Here a, b, c may or may not belong to the same Gμ (μ ∈ Λ), but d, e, f belong to the same 

Gλ. All may belong to the same Gλ.

We represent (y; a1; …; ak) using the noncommutative multiplication form

〈y〉〈a1〉⋯〈ak〉 .

We define 〈y〉〈a1〉 ··· 〈ak〉 * b: = 〈y * b〉〈a1 * b〉 ··· 〈ak * b〉, where 〈a * b〉 denotes 〈a1 * b, 

…, a|a| * b〉. We set |〈y〉〈a1〉 ··· 〈ak〉|: = |a1| + ··· + |ak|.

We define a boundary homomorphism ∂n: Pn(X)Y → Pn−1(X)Y by

∂ 〈y〉〈a1〉⋯〈ak〉 = ∑
i = 1

k
( − 1) ∣ 〈y〉〈a1〉⋯〈ai − 1〉 ∣ 〈y〉〈a1〉⋯∂〈ai〉⋯〈ak〉,

where

∂〈a1, …, am〉 = ∗ a1〈a2, …, am〉 + ∑
i = 1

m − 1
( − 1)i〈a1, …, aiai + 1, …, am〉 + ( − 1)m〈a1, …, am − 1〉 .

The resulting terms ∂(〈a〉) = *a〈 〉 − 〈 〉 for m = 1 in the above expression mean that the 

formal symbol 〈 〉 is deleted. For n = 0, we define ∂〈y〉 = 0.

Example 3—The boundary maps in two and three dimensions are computed as follows.

Carter et al. Page 5

Pac J Math. Author manuscript; available in PMC 2021 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∂2(〈y〉 〈a〉 〈b〉) = 〈y ∗ a〉 〈b〉 − 〈y〉 〈b〉 − 〈y ∗ b〉 〈a ∗ b〉 + 〈y〉 〈a〉,
∂2(〈y〉 〈a, b〉) = 〈y ∗ a〉 〈b〉 − 〈y〉 〈ab〉 + 〈y〉 〈a〉,

∂3(〈y〉 〈a〉 〈b〉 〈c〉) = 〈y ∗ a〉 〈b〉 〈c〉 − 〈y〉 〈b〉 〈c〉 − 〈y ∗ b〉 〈a ∗ b〉 〈c〉 + 〈y〉 〈a〉 〈c〉 + 〈y ∗ c〉 〈a ∗ c〉 〈b ∗ c〉 − 〈y〉 〈a〉 〈b〉,
∂3(〈y〉 〈a〉 〈b, c〉) = 〈y ∗ a〉 〈b, c〉 − 〈y〉 〈b, c〉 − 〈y ∗ b〉 〈a ∗ b〉 〈c〉 + 〈y〉 〈a〉 〈bc〉 − 〈y〉 〈a〉 〈b〉,
∂3(〈y〉 〈a, b〉 〈c〉) = 〈y ∗ a〉 〈b〉 〈c〉 − 〈y〉 〈ab〉 〈c〉 + 〈y〉 〈a〉 〈c〉 + 〈y ∗ c〉 〈a ∗ c, b ∗ c〉 − 〈y〉 〈a, b〉,

∂3(〈y〉 〈a, b, c〉) = 〈y ∗ a〉 〈b, c〉 − 〈y〉 〈ab, c〉 + 〈y〉 〈a, bc〉 − y〉 〈a, b〉 .

Proposition 4—P*(X)Y = (Pn(X)Y, ∂n) is a chain complex.

Proof: The Leibniz rule

∂(στ) = (∂σ)τ + ( − 1) ∣ σ ∣ σ(∂τ)

is a restatement of the definition when k = 2. In fact, the general definition follows from this 

by induction. Also ∂(σ * a) = (∂σ) * a, and ∂ ∘ ∂ = 0 follows from these two facts.

We will later define a degeneracy subcomplex that is analogous (albeit more complicated) to 

the subcomplex of degeneracies for quandle homology. Before its definition, we give a 

description of simplicial decompositions of products of simplices for motivation. We 

identify an n-simplex Δn with the set

{(x1, x2, …, xn) ∈ [0, 1]n:0 ≤ x1 ≤ x2 ≤ ⋯ ≤ xn ≤ 1},

called the right n-simplex. Then the n-cube [0, 1]n can be decomposed into n! sets each of 

which is congruent to this right n-simplex that has n edges of length 1, and has (n − k + 1) 

edges of length k for k = 1, …, n. More specifically, for x⃗ ∈ [0, 1]n consider the 

permutation σ ∈ Σn such that 0 ≤ xσ(1) ≤ xσ(2) ≤ ··· ≤ xσ(n) ≤ 1. If the coordinates of x⃗ are all 

distinct, then there is a unique such σ and an n-simplex Δσ
n congruent to the right n-simplex 

such that x⃗ lies in the interior of Δσ
n. Otherwise x⃗ lies in the boundary of more than one such 

simplex. Now consider the product of right simplices

Δs × Δt = (x , y ) ∈ [0, 1]s + t 0 ≤ x1 ≤ x2 ≤ ⋯ ≤ xs ≤ 1
0 ≤ y1 ≤ y2 ≤ ⋯ ≤ yt ≤ 1 ,

where the notation (x⃗, y⃗) represents (x1, …, xs, y1, …, yt). This can be decomposed as a 

union of simplices of the form given above. For

z = (x , y ) ∈ Δs × Δt ⊂ [0, 1]n,
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where n = s + t, there is an associated simplex Δσ
n that contains the point (x⃗, y⃗). Suppose all 

coordinates of z⃗ are distinct, and let σ ∈ Σn be a permutation such that 0 < zσ(1) < ··· < zσ(n). 

Then the subset {i1, i2, …, is} ⊂ {1, 2, …, s + t} with i1 < i2 < ··· < is is determined from the 

positions of coordinates of x⃗, so that zi<sub>k</sub> = xk for k = 1, …, s. Thus a given subset 

{i1, i2, …, is} ⊂ {1, 2, …, s + t} where i1 < i2 < ··· < is determines an n-simplex in the 

decomposition of Δs × Δt. We proceed to the definition of the degeneracy subcomplex.

For an expression of the form 〈a〉〈b〉 in a chain in Pn(X)Y, where 〈a〉 = 〈a1, …, as〉 and 〈b〉 = 

〈b1, …, bt〉 satisfy ai, bj ∈ Gλ for all i = 1, …, s and j = 1, …, t, let the notation 〈〈a〉〈b〉〉

i<sub>1</sub>,…,i<sub>s</sub> represent ( − 1)∑k = 1
s (ik − k)〈c1, …, cs + t〉, where 1 ≤ i1 < ··· < ik < 

··· < is ≤ s + t, and

ci =
ak ∗ (b1⋯bi − k) if i = ik,
bi − k if ik < i < ik + 1 .

If i = k in the first case, then we regard (b1 ··· bi − k) to be empty. For example, 〈〈a〉〈b〉〉1 = 

〈a, b〉, 〈〈a〉〈b〉〉2 = −〈b, a * b〉, and 〈〈a, b〉〈c〉〉1,3 = −〈a, c, b * c〉. We also define the notation 

〈〈a〉〈b〉〉 by

〈〈a〉 〈b〉〉: = ∑
1 ≤ i1 < ⋯ < is ≤ s + t

〈〈a〉 〈b〉〉i1, …, is .

Define Dn(X)Y to be the subgroup of Pn(X)Y generated by the elements of the form

〈y〉 〈a1〉⋯〈a〉 〈b〉⋯〈ak〉 − 〈y〉 〈a1〉⋯〈〈a〉 〈b〉〉⋯〈ak〉,

where we implicitly assume the linearity of the notations 〈〈a〉〈b〉〉

i<sub>1</sub>,…,i<sub>s</sub> and 〈〈a〉〈b〉〉, that is,

〈y〉 〈a1〉⋯〈〈a〉 〈b〉〉⋯〈ak〉 = ∑
1 ≤ i1 < ⋯ < i ∣ a ∣ ≤ ∣ 〈a〉 〈b〉 ∣

〈y〉 〈a1〉⋯〈〈a〉 〈b〉〉i1, …, i ∣ a ∣ ⋯〈ak〉 .

The chain group Dn(X)Y is called the group of decomposition degeneracies. We will see that 

D*(X)Y = (Dn(X)Y, ∂n) is a subcomplex of P*(X)Y in Section 7.

We remark that the elements of the form

〈y〉 〈a1〉⋯〈a〉 〈a〉⋯〈ak〉

belong to Dn(X)Y.
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For example, D2(X)Y is generated by the elements of the form

〈y〉 〈a〉 〈b〉 − 〈y〉 〈a, b〉 + 〈y〉 〈b, a ∗ b〉,

and D3(X)Y is generated by the elements of the form

〈y〉 〈a〉 〈b〉 〈x〉 − 〈y〉 〈a, b〉 〈x〉 + 〈y〉 〈b, a ∗ b〉 〈x〉,
〈y〉 〈x〉 〈b〉 〈c〉 − 〈y〉 〈x〉 〈b, c〉 + 〈y〉 〈x〉 〈c, b ∗ c〉,
〈y〉 〈a, b〉 〈c〉 − 〈y〉 〈a, b, c〉 + 〈y〉 〈a, c, b ∗ c〉 − 〈y〉 〈c, a ∗ c, b ∗ c〉,
〈y〉 〈a〉 〈b, c〉 − 〈y〉 〈a, b, c〉 + 〈y〉 〈b, a ∗ b, c〉 − 〈y〉 〈b, c, a ∗ (bc)〉

for a, b, c ∈ Gλ, x ∈ X.

Definition 5—The quotient complex of P*(X)Y modulo decomposition degeneracies 

D*(X)Y is denoted by C*(X)Y = (Cn(X)Y, ∂n), where Cn(X)Y = Pn(X)Y/Dn(X)Y. For an 

abelian group A, define the cochain complex C*(X; A)Y = Hom(C*(X)Y, A). Denote by 

Hn(X)Y the n-th homology group of C*(X)Y.

4. Algebraic aspects of the homology

In this section we study algebraic aspects of the homology theory we defined. Specifically, 

we characterize the first homology group, and show that a 2-cocycle defines an extension. 

For simplicity we consider the case Y = {y0} is a singleton, and we suppress the symbols 

〈y0〉 whenever possible.

Let X be a multiple conjugation quandle, and Y = {y0} be a singleton. Then P0(X)Y is 

infinite cyclic, generated by 〈y0〉, and ∂1(〈y0〉〈a〉) = 〈y0 * a〉 − 〈y0〉 for a ∈ X. Hence H0(X)Y 

= ℤ. If X is a multiple conjugation quandle consisting of a single group, H1(X)Y ≅ Xab, 

since P1(X)Y is the free abelian group generated by the elements 〈y0〉〈a〉 (a ∈ X), and

∂2(〈y0〉 〈a, b〉) = 〈y0〉 〈b〉 − 〈y0〉 〈ab〉 + 〈y0〉 〈a〉,

∂2(〈y0〉 〈a〉 〈b〉) = − 〈y0〉 〈a ∗ b〉 + 〈y0〉 〈a〉 = ∂2(〈y0〉 〈a, b〉) − ∂2(〈y0〉 〈b, b−1ab〉) .

Proposition 6—Let X = ∐λ ∈ Λ Gλ be a multiple conjugation quandle, let Y = {y0} be a 
singleton, and A an abelian group. A map ϕ: P2(X)Y → A is a 2-cocycle of C*(X)Y if and 
only if X × A = ∐λ ∈ Λ(Gλ × A) with

(a, s) ∗ (b, t) : = a ∗ b, s + ϕ(〈a〉 〈b〉) for (a, s), (b, t) ∈ X × A,
(a, s)(b, t) : = ab, s + t + ϕ(〈a, b〉) for (a, s), (b, t) ∈ Gλ × A

is a multiple conjugation quandle, where ϕ(〈y0〉〈a〉〈b〉) and ϕ(〈y0〉〈a, b〉) are respectively 
denoted by ϕ(〈a〉〈b〉) and ϕ(〈a, b〉) for short. Further, (eλ, −ϕ(〈eλ, eλ〉)) is the identity of the 
group Gλ × A, and (a−1, −s −ϕ(〈a, a−1〉) −ϕ(〈eλ, eλ〉)) is the inverse of (a, s) ∈ Gλ × A.
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Proof: We show correspondences between cocycle conditions and MCQ conditions for the 

extension.

(1) The correspondence between the cocycle condition ϕ(∂3(〈a, b, c〉)) = 0 and the 
associativity of a group.

For (a, s), (b, t), (c, u) ∈ Gλ × A, ϕ(〈a, b〉) + ϕ(〈ab, c〉) = ϕ(〈b, c〉) + ϕ(〈a, bc〉) if and only if 

((a, s)(b, t))(c, u) = (a, s)((b, t)(c, u)), since

(a, s)(b, t) (c, u) = abc, s + t + u + ϕ(〈a, b〉) + ϕ(〈ab, c〉) ,
(a, s) (b, t)(c, u) = abc, s + t + u + ϕ(〈b, c〉) + ϕ(〈a, bc〉) .

We note that ϕ(〈a, b〉) + ϕ(〈ab, c〉) = ϕ(〈b, c〉) + ϕ(〈a, bc〉), or equivalently ((a, s)(b, t))(c, u) 

= (a, s)((b, t)(c, u)) implies that ϕ(〈a, eλ〉) = ϕ(〈eλ, c〉) and that ϕ(〈b−1, b〉) = ϕ(〈b, b−1〉). 
These equalities respectively imply

(a, s) = (a, s) eλ, − ϕ(〈eλ, eλ〉) = (eλ, − ϕ(〈eλ, eλ〉))(a, s)

and

eλ, − ϕ(〈eλ, eλ〉) = (a, s) a−1, − s − ϕ(〈a, a−1〉) − ϕ(〈eλ, eλ〉)

= a−1, − s − ϕ(〈a, a−1〉) − ϕ(〈eλ, eλ〉) (a, s) .

It follows that (eλ,−ϕ(〈eλ, eλ〉)) is the identity of the group Gλ × A, and that (a−1,−s −ϕ(〈a, a
−1〉)−ϕ(〈eλ, eλ〉)) is the inverse of (a, s) ∈ Gλ × A.

(2) The correspondence between the degeneracy of ϕ on D2(X)Y and the first axiom of 
MCQs.

For (a, s), (b, t) ∈ Gλ× A, ϕ(〈a〉〈b〉)+ϕ(〈b, a *b〉) = ϕ(〈a, b〉) if and only if (b, t)((a, s) * (b, 
t)) = (a, s)(b, t), since

(b, t) (a, s) ∗ (b, t) = b(a ∗ b), s + t + ϕ(〈a〉 〈b〉) + ϕ(〈b, a ∗ b〉) ,
(a, s)(b, t) = ab, s + t + ϕ(〈a, b〉) .

(3) The correspondence between the cocycle condition ϕ(∂3(〈x〉〈a, b〉)) = 0 and the second 
axiom of MCQs.

For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ × A,

ϕ(〈x〉 〈ab〉) = ϕ(〈x〉 〈a〉) + ϕ(〈x ∗ a〉 〈b〉)
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if and only if (x, r) * ((a, s)(b, t)) = ((x, r) * (a, s))* (b, t), since

(x, r) ∗ (a, s)(b, t) = x ∗ (ab), r + ϕ(〈x〉 〈ab〉) ,
(x, r) ∗ (a, s) ∗ (b, t) = (x ∗ a) ∗ b, r + ϕ(〈x〉 〈a〉) + ϕ(〈x ∗ a〉 〈b〉) .

Note ϕ(〈x〉〈ab〉)=ϕ(〈x〉 〈a〉)+ϕ(〈x*a〉〈b〉), or equivalently (x, r)*((a, s)(b, t))= ((x, r) * (a, s)) 

* (b, t), implies that ϕ(〈x〉〈eλ〉) = 0. Then we have

(a, s) ∗ eλ, − ϕ(〈eλ, eλ〉) = (a, s) .

(4) The correspondence between the cocycle condition ϕ(∂3(〈a〉 〈b〉 〈c〉)) = 0 and the third 
axiom of MCQs.

For (a, s), (b, t), (c, u) ∈ X × A,

ϕ(〈a〉 〈b〉) + ϕ (〈a ∗ b〉 〈c〉) = ϕ(〈a〉 〈c〉) + ϕ(〈a ∗ c〉 〈b ∗ c〉)

if and only if ((a, s) * (b, t))* (c, u) = ((a, s) * (c, u))* ((b, t) * (c, u)), since

(a, s) ∗ (b, t) ∗ (c, u) = (a ∗ b) ∗ c, s + ϕ(〈a〉 〈b〉) + ϕ(〈a ∗ b〉 〈c〉) ,
(a, s) ∗ (c, u) ∗ (b, t) ∗ (c, u) = (a ∗ c) ∗ (b ∗ c), s + ϕ(〈a〉 〈c〉) + ϕ(〈a ∗ c〉 〈b ∗ c〉) .

(5) The correspondence between the cocycle condition ϕ(∂3(〈a, b〉〈x〉)) = 0 and the last 
axiom of MCQs.

For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ × A,

ϕ(〈a, b〉) + ϕ(〈ab〉 〈x〉) = ϕ(〈a〉 〈x〉) + ϕ(〈b〉 〈x〉) + ϕ(〈a ∗ x, b ∗ x〉)

if and only if ((a, s)(b, t)) * (x, r) = ((a, s) * (x, r))((b, t) * (x, r)), since

(a, s)(b, t) ∗ (x, r) = (ab) ∗ x, s + t + ϕ(〈a, b〉) + ϕ(〈ab〉〈x〉) ,
(a, s) ∗ (x, r) (b, t) ∗ (x, r) = (a ∗ x)(b ∗ x), s + t + ϕ(〈a〉 〈x〉) + ϕ(〈b〉 〈x〉) + ϕ(〈a ∗ x, b ∗ x〉) .

Therefore ϕ is a 2-cocycle if and only if X×A is a multiple conjugation quandle.

5. Quandle cocycle invariants for handlebody-links

The definition of a multiple conjugation quandle is motivated from handlebody-links and 

their colorings [Ishii 2015b]. A handlebody-link is a disjoint union of handlebodies 

embedded in the 3-sphere S3. A handlebody-knot is a one component handlebody-link. Two 

handlebody-links are equivalent if there is an orientation-preserving self-homeomorphism of 
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S3 which sends one to the other. A diagram of a handlebody-link is a diagram of a spatial 

trivalent graph whose regular neighborhood is the handlebody-link, where a spatial trivalent 

graph is a finite trivalent graph embedded in S3. In this paper, a trivalent graph may contain 

circle components. Two handlebody-links are equivalent if and only if their diagrams are 

related by a finite sequence of R1–R6 moves depicted in Figure 1 [Ishii 2008].

An S1-orientation of a handlebody-link is an orientation of all genus 1 components of the 

handlebody-link, where an orientation of a solid torus is an orientation of its core S1. Two 

S1-oriented handlebody-links are equivalent if there is an orientation-preserving self-

homeomorphism of S3 which sends one to the other preserving the S1-orientation. A Y-
orientation of a spatial trivalent graph is an orientation of the graph without sources and 

sinks with respect to the orientation (see Figure 2). We note that the term Y-orientation is a 

symbolic convention, and has no relation to an X-set Y. A diagram of an S1-oriented 

handlebody-link is a diagram of a Y-oriented spatial trivalent graph whose regular 

neighborhood is the S1-oriented handlebody-link where the S1-orientation is induced from 

the Y-orientation by forgetting the orientations except on circle components of the Y-

oriented spatial trivalent graph. Y-oriented R1–R6 moves are R1–R6 moves between two 

diagrams with Y-orientations which are identical except in the disk where the move applied. 

Two S1-oriented handlebody-links are equivalent if and only if their diagrams are related by 

a finite sequence of Y-oriented R1–R6 moves [Ishii 2015a]. Note that in Figure 1 (R6), if all 

end points are oriented downward, then either choice of the two possible orientations of the 

middle edge makes the diagram Y-oriented locally. Thus reversing an orientation of this 

edge can be regarded as applying Y-oriented R6 moves twice. This is the case whenever both 

orientations of an edge give Y-orientations.

Let X = ∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let D be a 

diagram of an S1-oriented handlebody-link H. We denote by (D) the set of arcs of D, 

where an arc is a piece of a curve each of whose endpoints is an undercrossing or a vertex. 

We denote by ℛ(D) the set of complementary regions of D. In this paper, an orientation of 

an arc is represented by the normal orientation obtained by rotating the usual orientation 

counterclockwise by π/2 on the diagram. An X-coloring C of a diagram D is an assignment 

of an element of X to each arc α ∈ (D) satisfying the conditions depicted in the left three 

diagrams in Figure 3 at each crossing and each vertex of D. An XY -coloring C of D is an 

extension of an X-coloring of D which assigns an element of Y to each region R ∈ ℛ(D) 

satisfying the condition depicted in the rightmost diagram in Figure 3 at each arc. We denote 

by ColX (D) (resp. ColX (D)Y) the set of X-colorings (resp. XY -colorings) of D. Then we 

have the following proposition.

Proposition 7 [Ishii 2015a]—Let X = ∐λ∈Λ Gλ be a multiple conjugation quandle, and 
let Y be an X-set. Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a 
diagram obtained by applying one of the Y-oriented R1–R6 moves to the diagram D once. 
For an X-coloring (resp. XY -coloring) C of D, there is a unique X-coloring (resp. XY -
coloring) C′ of D′ which coincides with C except near a point where the move applied.
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For an XY -coloring C of a diagram D of an S1-oriented handlebody-link, we define the local 
chains w(ξ;C) ∈ C2(X)Y at each crossing ξ and each vertex ξ of D as depicted in Figure 4. 

We define a chain W(D;C) ∈ C2(X)Y by

W (D; C) = ∑
ξ

w(ξ; C),

where ξ runs over all crossings and vertices of D. This is similar to the definitions found in 

[Carter et al. 2001] for links and surface-links, and in [Ishii and Iwakiri 2012] for 

handlebody-links.

Lemma 8—The chain W(D;C) is a 2-cycle of C*(X)Y. Further, for cohomologous 2-
cocycles θ, θ′ of C*(X; A)Y, we have

θ W (D; C) = θ′ W (D; C) .

Proof: It is sufficient to show that W(D;C) is a 2-cycle of C*(X)Y. We denote by (D) the 

set of semiarcs of D, where a semiarc is a piece of a curve each of whose endpoints is a 

crossing or a vertex. We denote by (D; ξ) the set of semiarcs incident to ξ, where ξ is a 

crossing or a vertex of D.

For a semiarc α, there is a unique region Rα facing α such that the normal orientation of α 
points from the region Rα to the opposite region with respect to α. For a semiarc α incident 

to a crossing or a vertex ξ, we define

ε(α; ξ): = 1 if the orientation of α points to ξ,
−1 otherwise.

Let χ1, …, χ4 and ω1, ω2, ω3 be the semiarcs incident to a crossing χ and a vertex ω as 

depicted in Figure 5. From

∂2 w(χ; C) = ∑
α ∈ SA(D; χ)

ε(α; χ) 〈C(Rα)〉 〈C(α)〉,

∂2 w(ω; C) = ∑
α ∈ SA(D; ω)

ε(α; ω) 〈C(Rα)〉 〈C(α)〉,

it follows that

∂2 W (D; C) = ∑
χ

∂2 w(χ; C) + ∑
ω

∂2 w(ω; C) = 0,

where χ and ω, respectively, run over all crossings and vertices of D.
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Lemma 9—Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a diagram 
obtained by applying one of the Y-oriented R1–R6 moves to the diagram D once. Let C be 
an XY -coloring of D, let C′ be the unique XY -coloring of D′ such that C and C′ coincide 
except near a point where the move applied. Then we have [W(D;C)] = [W(D′;C′)] in 
H2(X)Y.

Proof: We have the invariance under the Y-oriented R1 and R4 moves, since the difference 

between [W(D;C)] and [W(D′;C′)] is an element of D2(X)Y. The invariance under the Y-

oriented R2 move follows from the signs of the crossings which appear in the move. We 

have the invariance under the Y-oriented R3, R5, and R6 moves, since the difference 

between [W(D;C)] and [W(D′;C′)] is an image of ∂3. See Figure 6 for Y-oriented R6 

moves, where all arcs are directed from top to bottom.

For a 2-cocycle θ of C*(X; A)Y, we define

ℋ(D) : = {[W (D; C)] ∈ H2(X)Y ∣ C ∈ ColX(D)Y },
Φθ(D) : = {θ(W (D, C)) ∈ A ∣ C ∈ ColX(D)Y }

as multisets. By Lemmas 8 and 9, we have the following theorem.

Theorem 10—Let D be a diagram of an S1-oriented handlebody-link H. Then ℋ(D) and 
Φθ (D) are invariants of H.

For an S1-oriented handlebody-link H, let H* be the mirror image of H, and −H be the S1-

oriented handlebody-link obtained from H by reversing its S1-orientation. Then we also have

ℋ( − H∗) = − ℋ(H), Φθ( − H∗) = − Φθ(H),

where −S = {−a | a ∈ S} for a multiset S. It is desirable to further study these invariants and 

applications to handlebody-links.

6. For unoriented handlebody-links

Let X =∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let D be a 

diagram of an (unoriented) handlebody-link H. An (X, ↑)-color Cα of an arc α ∈ (D) is a 

map Cα from the set of orientations of the arc α to X such that Cα(−o) = Cα(o)−1, where −o 
is the inverse of an orientation o. An (X, ↑)-color Cα is represented by a pair of an 

orientation o of α and an element Cα(o) ∈ X on the diagram D. Two pairs (o, a) and (−o, a
−1) represent the same (X, ↑)-color (see Figure 7).

An (X, ↑)-coloring C of a diagram D is an assignment of an (X, ↑)-color Cα to each arc α ∈ 
(D) satisfying the conditions depicted in the left two diagrams in Figure 8 at each crossing 

and each vertex of D. An (X, ↑)Y -coloring C of D is an extension of an (X, ↑)-coloring of D 
which assigns an element of Y to each region R ∈ ℛ(D) satisfying the condition depicted in 

the rightmost diagram in Figure 8 at each arc. We denote by Col(X,↑)(D) (resp. Col(X,↑)(D)Y 
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the set of (X, ↑)-colorings (resp. (X, ↑)Y -colorings) of D. The well-definedness of an (X, ↑)-

coloring (resp. (X, ↑)Y -coloring) follows from

(a−1)−1 = a, a−1 ∗ b = (a ∗ b)−1, (a ∗ b) ∗ b−1 = a,

b(ab)−1 = a−1, (ab)−1a = b−1 .

The first three equalities are the defining conditions of a good involution considered in 

[Kamada 2007; Kamada and Oshiro 2010]. They used the notion of a good involution 

precisely to allow for appropriate changes of orientations. Following their arguments, we can 

show the following proposition in the same way as Proposition 7.

Proposition 11—Let X =∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-
set. Let D be a diagram of a handlebody-link H. Let D′ be a diagram obtained by applying 
one of the R1–R6 moves to the diagram D once. For an (X, ↑)-coloring (resp. (X, ↑)Y -
coloring) C of D, there is a unique (X, ↑)-coloring (resp. (X, ↑)Y -coloring) C′ of D′ which 
coincides with C except near a point where the move applied.

Let Dn
↑(X)Y  be the subgroup of Pn(X)Y generated by the elements of the form

〈y〉 〈a1〉⋯〈a〉⋯〈ak〉 + 〈y〉 〈a1〉⋯〈a〉i−1⋯〈ak〉,

where 〈a1, …, am〉i
−1 denotes

∗ a1〈a1
−1, a1a2, a3, …, am〉 if i = 1,

〈a1, …, ai − 2, ai − 1ai, ai−1, aiai + 1, ai + 2, …, am〉 if i ≠ 1, m,

〈a1, …, am − 2, am − 1am, am−1〉 if i = m .

The chain group Dn
↑(X)Y  will be called the group of orientation degeneracies. For example, 

D1
↑(X)Y  is generated by the elements of the form

〈y〉 〈a〉 + 〈y ∗ a〉 〈a−1〉,

and D2
↑(X)Y  is generated by the elements of the form

〈y〉 〈a〉 〈b〉 + 〈y ∗ a〉 〈a−1〉 〈b〉, 〈y〉 〈a〉 〈b〉 + 〈y ∗ b〉 〈a ∗ b〉 〈b−1〉,

〈y〉 〈a, b〉 + 〈y ∗ a〉 〈a−1, ab〉, 〈y〉 〈a, b〉 + 〈y〉 〈ab, b−1〉 .

Carter et al. Page 14

Pac J Math. Author manuscript; available in PMC 2021 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We remark that the elements of the form

〈y〉 〈a1〉⋯〈a1, …, am〉⋯〈ak〉 − ( − 1)m(m + 1)/2〈y〉〈a1〉⋯ ∗ (a1⋯am)〈am−1, …, a1
−1〉⋯〈ak〉

belong to Dn
↑(X)Y . Furthermore, we can prove that the elements of the form

〈y〉 〈a1〉⋯〈a1, …, am〉⋯〈ak〉 − ( − 1)i(i + 1)/2〈y〉 〈a1〉⋯ ∗ (a1⋯ai) 〈ai−1, …, a1
−1, a1⋯ai + 1, ai + 2, …, am〉⋯

〈ak〉

belong to Dn
↑(X)Y  by induction.

Lemma 12— D∗
↑(X)Y = (Dn

↑(X)Y , ∂n) is a subcomplex of P*(X)Y.

Proof: We have ∂n(Dn
↑(X)Y ) ⊂ Dn − 1

↑ (X)Y , since

∂(〈a1, …, am〉 + ∗ a1〈a1
−1, a1a2, a3, …, am〉)

= 〈a1, a2a3, a4, …, am〉 + ∗ a1〈a1
−1, a1a2a3, a4, …, am〉

+ ∑
i = 3

m − 1
( − 1)i 〈a1, …, aiai + 1, ai + 2, …, am〉 + ∗ a1〈a1

−1, a1a2, a2, …, aiai + 1, ai + 2, …, am〉

+( − 1)m(〈a1, …, am − 1〉 + ∗ a1〈a1
−1, a1a2, a3, …, am − 1〉)

and

∂(〈a1, …, am〉 + 〈a1, …, ai − 1ai, ai−1, aiai + 1, ai + 2, …, am〉)

= ∗ a1〈a2, …, am〉 + ∗ a1〈a2, …, ai − 1ai, ai−1, aiai + 1, ai + 2, …, am〉

+ ∑
j = 1

i − 2
( − 1)j 〈a1, …, ajaj + 1, aj + 2, …, am〉 + 〈a1, …, ajaj + 1, aj + 2, …, ai − 1ai, ai−1, aiai + 1, ai + 2, …, am〉

+ ∑
j = i + 1

m − 1
( − 1)j 〈a1, …, ajaj + 1, aj + 2, …, am〉 + 〈a1, …, ai − 1ai, ai−1, aiai + 1, ai + 2, …, ajaj + 1, …, am〉

+( − 1)m(〈a1, …, am − 1〉 + 〈a1, …, ai − 1ai, ai−1, aiai + 1, ai + 2, …, am − 1〉) .

Thus D∗
↑(X)Y  is a subcomplex of P*(X)Y.

Definition 13—We set Cn
↑(X)Y = Pn(X)Y /(Dn(X)Y + Dn

↑(X)Y ). The quotient complex 

( Cn
↑(X)Y , ∂n) is denoted by C∗

↑(X)Y . For an abelian group A, we define the cochain complex 

C↑
∗(X; A)Y = Hom(C∗

↑(X)Y , A). We denote by Hn
↑(X)Y  the n-th homology group of C∗

↑(X)Y .
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For an (X, ↑)Y -coloring C of a diagram D for a handlebody-link, we define the local chains 

w(ξ;C) at each crossing ξ and each vertex ξ of D as depicted in Figure 4. The local chain is 

well-defined, since

−〈y ∗ a〉 〈a−1〉 〈b〉 = 〈y〉 〈a〉 〈b〉 = − 〈y ∗ b〉 〈a ∗ b〉 〈b−1〉,

−〈y ∗ a〉 〈a−1, ab〉 = 〈y〉 〈a, b〉 = − 〈y〉 〈ab, b−1〉

in C2
↑(X)Y  (see Figure 9). Then we can define the chain W (D; C) ∈ C2

↑(X)Y  in the same way 

as W(D;C) ∈ C2(X)Y, and obtain invariants ℋ(H), Φθ (H) for an (unoriented) handlebody-

link H.

7. Simplicial decomposition

The goal of this section is to prove Lemma 15 stating that D*(X)Y is a subcomplex. The 

formula of D2(X)Y, when 〈y〉 is omitted, is written as

〈a〉 〈b〉 − 〈a, b〉 + 〈b, a ∗ b〉,

and its geometric interpretation is depicted in Figure 10. In (A), a colored triangle 

representing 〈a, b〉 is depicted, as well as its dual graph with a trivalent vertex. The colorings 

of such a graph were discussed in Section 5. A colored square representing 〈a〉 〈b〉 is 

depicted in (B), with the dual graph that corresponds to a crossing. In (C), a triangulation of 

the square is depicted, and after triangulation it represents 〈a, b〉 – 〈b, a * b〉. Thus the 

triangulation corresponds to the above formula. This decomposition is found in [Carter et al. 

2003].

At the same time, this equation corresponds to Y-oriented R4 moves in Figure 1 as follows. 

In Figure 11, colored diagrams of Y-oriented R4 moves are depicted. In the left diagram, the 

left-hand side represents the chain 〈a〉 〈b〉+ 〈b, a * b〉 and the right-hand side represents 〈a, 
b〉. In the right diagram, the left-hand side represents the chain −〈a〉 〈b〉 – 〈b, a * b〉 and the 

right-hand side represents –〈a, b〉. Thus the above equality is needed for colored diagrams to 

define equivalent chains in the quotient complex. A geometric interpretation of the last 

expression of D3(X)Y omitting 〈y〉,

〈a〉 〈b, c〉 − 〈a, b, c〉 + 〈b, a ∗ b, c〉 − 〈b, c, a ∗ (bc)〉

is found in Figure 12. The symbol 〈a〉 is represented by the horizontal 1-simplex, 〈b, c〉 is 

represented by the right triangular face, and 〈a〉 〈b, c〉 is represented by a prism. The term 〈a, 
b, c〉 corresponds to the right top tetrahedron in the prism. The expressions of the form 〈〈a〉 
〈b, c〉〉i provides a triangulation of a product of simplices. Each term corresponds to

Carter et al. Page 16

Pac J Math. Author manuscript; available in PMC 2021 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



〈a, b, c〉 = 〈〈a〉 〈b, c〉〉1,
〈b, a ∗ b, c〉 = − 〈〈a〉 〈b, c〉〉2,

〈b, c, a ∗ (bc)〉 = 〈〈a〉 〈b, c〉〉3 .

Below we use the notation

∂(0)〈x1, …, xm〉 = ∗ x1〈x2, …, xm〉,

∂(i)〈x1, …, xm〉 = ( − 1)i〈x1, …, xixi + 1, …, xm〉,

∂(m)〈x1, …, xm〉 = ( − 1)m〈x1, …, xm − 1〉 .

Then the boundaries of 〈〈a〉 〈b, c〉〉i are computed as

〈〈a〉, 〈b, c〉〉i
∂ ∂(0)〈〈a〉 〈b, c〉〉i + ∂(1)〈〈a〉 〈b, c〉〉i + ∂(2)〈〈a〉 〈b, c〉〉i + ∂(3)〈〈a〉 〈b, c〉〉i

and the right-hand sides for i = 1, 2, 3 are computed as follows:

〈〈a〉 〈b, c〉〉1
∂ ∗ a〈b, c〉 − 〈ab, c〉 + 〈a, bc〉 − 〈a, b〉

= 〈(∂(0)〈a〉) 〈b, c〉〉1 + ∂(1)〈〈a〉 〈b, c〉〉1 − 〈〈a〉∂(1)〈b, c〉〉1 − 〈〈a〉∂(2)〈b, c〉〉1,

〈〈a〉 〈b, c〉〉2
∂ − ∗ b〈a ∗ b, c〉 + 〈b(a ∗ b), c〉 − 〈b, (a ∗ b)c〉 + 〈b, a ∗ b〉

= − 〈〈a〉∂(0)〈b, c〉〉1 − ∂(1)〈〈a〉 〈b, c〉〉1 − ∂(2)〈〈a〉 〈b, c〉〉3 − 〈〈a〉∂(2)〈b, c〉〉2,

〈〈a〉 〈b, c〉〉3
∂ ∗ b〈c, a ∗ (bc)〉 − 〈bc, a ∗ (bc)〉 + 〈b, c(a ∗ (bc))〉 − 〈b, c〉

= − 〈〈a〉∂(0)〈b, c〉〉2 − 〈〈a〉∂(1)〈b, c〉〉2 + ∂(2)〈〈a〉 〈b, c〉〉3 + 〈(∂(1)〈a〉) 〈b, c〉〉1,

where 〈(∂(i)〈a〉) 〈b, c〉〉1 is regarded as (∂(i) 〈a〉)〈b, c〉. The canceling terms of the form ∂(i) 

〈〈a〉 〈b, c〉〉j in the above boundaries correspond to internal triangles in Figure 12 that are 

shared by a pair of tetrahedra. Other terms are of the form 〈∂(i) 〈a〉 〈b, c〉〉j or 〈〈a〉∂(i) 〈b, c〉〉

j, and they are outer triangles that constitute the boundary of the prism. The expression 〈∂(i) 

〈a〉 〈b, c〉〉j represents the two triangles on the right and the left in Figure 12, since this 

represents

(boundary of the interval represented by 〈a〉) × (the triangle represented by 〈b, c〉) .

Thus the outer boundary follows the pattern of Leibniz rule.

In terms of the coloring invariant of graphs, as in the case of the preceding relation for the Y-

oriented R4 move, this relation corresponds to an equivalence of colored 2-complexes called 

foams, which are higher-dimensional analogues of the move depicted in Figure 11. See 

[Carter and Ishii 2012] for more on colored foams.

Lemma 14—For 〈a〉 = 〈a1,…, as〉 and 〈b〉 = 〈b1, …, bt 〉 where ai, bj ∈ Gλ, we have
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∂〈〈a〉 〈b〉〉 = 〈(∂〈a〉) 〈b〉〉 + ( − 1) ∣ a ∣ 〈〈a〉 〈∂(b)〉〉,

where 〈〈·〉 〈 ·〉〉 is linearly extended.

Proof: By definition, we have

∂〈〈a〉 〈b〉〉 = ∑
i = 0

s + t
∂(i)〈〈a〉 〈b〉〉 = ∑

i = 0

s + t
∑

1 ≤ i1 < ⋯ < is ≤ s + t
∂(i)〈〈a〉 〈b〉〉i1, …, is .

Direct computations show that

∂(0)〈〈a〉 〈b〉〉i1, …, is

=
〈(∂(0)〈a〉) 〈b〉〉i2 − 1, …, is − 1 if (i1 = 1),

( − 1)s〈〈a〉 (∂(0)〈b〉)〉i1 − 1, …, is − 1 if (i1 > 1),

∂(i)〈〈a〉 〈b〉〉i1, …, is

=

〈(∂(k)〈a〉) 〈b〉〉i1, …, ik, ik + 2 − 1, …, is − 1 if (ik = i < i + 1 = ik + 1),

− ∂(i)〈〈a〉 〈b〉〉i1, …, ik − 1, ik + 1, ik + 1, …is if (ik = i < i + 1 < ik + 1),

− ∂(i)〈〈a〉 〈b〉〉i1, …, ik, ik + 1 − 1, ik + 2, …, is if (ik < i < i + 1 = ik + 1),

( − 1)s〈〈a〉 (∂(i − k)〈b〉)〉i1, …, ik, ik + 1 − 1, …, is − 1 if (ik < i < i + 1 < ik + 1),

∂(s + t)〈〈a〉 〈b〉〉i1, …, is

=
〈(∂(s)〈a〉) 〈b〉〉i1, …, is − 1 if (is = s + t),

( − 1)s〈〈a〉 (∂(t)〈b〉)〉i1, …, is if (is < s + t) .

The terms of the form − ∂(i) 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>k–1</sub>,i<sub>k</sub>+1,i<sub>k

+1</sub>,…,i<sub>s</sub> (ik = i < i +1 < ik+1) and −∂(i) 〈〈a〉 〈b〉〉i<sub>1</sub>,

…,i<sub>k</sub>,i<sub>k+1</sub>–1,i<sub>k+2</sub>,…,i<sub>s</sub> (ik < i < i +1 = ik+1) cancel in 

pairs. The other terms are organized as

∑
1 ≤ i1 < ⋯

< is − 1 ≤ s + t − 1

∑
i = 0

s
〈(∂(i)〈a〉)〈b〉〉i1, …, is − 1 + ∑

1 ≤ i1 < ⋯
< is ≤ s + t − 1

∑
i = 0

t
( − 1)s〈〈a〉 (∂(i)〈b〉)〉i1, …, is

= ∑
1 ≤ i1 < ⋯

< is − 1 ≤ s + t − 1

〈(∂ 〈a〉) 〈b〉〉i1, …, is − 1 + ∑
1 ≤ i1 < ⋯

< is ≤ s + t − 1

( − 1)s〈〈a〉 (∂ 〈b〉)〉i1, …, is

= 〈(∂ 〈a〉)〈b〉〉 + ( − 1)s〈〈a〉 (a〈b〉)〉,

where 〈·〉i<sub>1</sub>,…,i<sub>s</sub> is linearly extended.

Since the Leibniz rule holds (by the preceding Lemma 14), we have the following.
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Lemma 15—D*(X)Y = (Dn(X)Y, ∂n) is a subcomplex of P*(X)Y.

8. Chain map for simplicial decomposition

In this section we examine relations between group and MCQ homology theories.

8.1. Simplicial decomposition (general case)

We observe an associativity of the notation 〈〈a〉 〈b〉〉 defined in Section 3, and extend the 

notation to multi-tuples. For an expression of the form 〈a〉 〈b〉 〈c〉 in a chain in P*(X)Y, 

where a, b, c ∈ ∪m ∈ ℕ Gλ
m, it is easy to see that we have the following.

Lemma 16

〈〈〈a〉 〈b〉〉 〈c〉〉 = 〈〈a〉 〈〈b〉 〈c〉〉〉 .

By Lemma 16, we can define 〈〈a〉 〈b〉 〈c〉〉 by 〈〈〈a〉 〈b〉〉 〈c〉〉 = 〈〈a〉 〈〈b〉 〈c〉〉〉. Moreover, 

for an expression of the form 〈a1〉 ··· 〈ak〉 in a chain in P*(X)Y, where a1, …, ak ∈ ∪m ∈ ℕ Gλ
m, 

we can define 〈〈a1〉 ··· 〈ak〉〉 inductively. By Lemma 14, this notation is compatible with the 

boundary homomorphism ∂ in the following sense.

Lemma 17

∂ 〈〈a1〉⋯〈ak〉〉 = 〈∂ (〈a1〉⋯〈ak〉)〉 .

We give a direct formula (instead of induction) for the notation 〈〈a1〉 ··· 〈ak〉〉 later in Section 

8.3.

8.2. Chain map (from MCQ to group)

Let X = ∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let Pn
G(X)Y  be 

the subgroup of Pn(X)Y generated by the elements of the form 〈y〉 〈a〉. Let Dn
G(X)Y  and 

Dn
G, ↑ (X)Y  be respectively Pn

G(X)Y ∩ Dn(X)Y  and Pn
G(X)Y ∩ Dn

↑(X)Y , which are the subgroups 

of Pn
G(X)Y . Note that Dn

G(X)Y = Pn
G(X)Y ∩ Dn(X)Y  is the trivial group. We put

CnG(X)Y : = PnG(X)Y /DnG(X)Y = PnG(X)Y ,

CnG, ↑ (X)Y : = PnG(X)Y /(DnG(X)Y + DnG, ↑ (X)Y ) = PnG(X)Y /DnG, ↑ (X)Y .

Then C∗
G(X)Y = (Cn

G(X)Y , ∂n) and C∗
G, ↑ (X)Y = (Cn

G, ↑ (X)Y , ∂n) are chain complexes. If X is 

a group (regarded as X =∐λ∈Λ Gλ with Λ a singleton) and Y is a singleton, C∗
G(X)Y  is 

essentially the same as the chain complex of the usual group homology. For an abelian group 

A, we define the cochain complexes
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CG
∗ (X; A)Y = Hom(C∗G(X)Y , A) and CG, ↑

∗ (X; A)Y = Hom(C∗
G, ↑ (X)Y , A) .

When X is a multiple conjugation quandle consisting of a single group, define 

homomorphisms Δ:P∗(X)Y P∗
G(X)Y  by

Δ(〈a1〉⋯〈am〉): = 〈〈a1〉⋯〈am〉〉 .

Then by Lemma 17 and from these definitions, we have the following.

Proposition 18—The homomorphisms Δ:P∗(X)Y P∗
G(X)Y  give rise to a chain 

homomorphism. Furthermore, Δ induces the chain homomorphisms Δ:C∗(X)Y C∗
G(X)Y

and Δ:C∗
↑(X)Y C∗

G, ↑ (X)Y .

When n = 0, 1, the induced homomorphisms Δ:Cn(X)Y Cn
G(X)Y  and 

Δ:Cn
↑(X)Y Cn

G, ↑ (X)Y  are identities. Furthermore Hn(X)Y ≅ Hn
G(X)Y  and 

Hn
↑(X)Y ≅ Hn

G, ↑ (X)Y  for n = 0, 1. We note that the chain homomorphisms Δ are defined 

only for an MCQ consisting of a single group. In this case, we also have the cochain 

homomorphisms Δ:CG
∗ (X; A)Y C∗(X; A)Y  and Δ:CG, ↑

∗ (X; A)Y C↑
∗(X; A)Y  for an abelian 

group A. Hence, for a given cocycle of group homology theory, we can obtain that of our 

theory through Δ. This approach will be discussed in Section 10.

Remark 19—We point out here that for a group X = ℤ3 and a trivial X-set Y, there is a 

group 2-cocycle η that satisfies the conditions in CG, ↑
2 (X)Y  (coming from Dn

G, ↑ (X)Y ),

η〈a, b〉 + η〈a−1, ab〉 = 0 and η〈a, b〉 + η〈ab, b−1〉 = 0.

Specifically, let η : ℤ3 ×ℤ3→ℤ3 denote the function that has values η(1, 1) = 1, η(2, 2) = 2 

and η(g, h) = 0 otherwise. It is a direct calculation that the condition above is satisfied. 

Furthermore, to see that η is a cocycle, consider the generating cocycle over G = ℤp where p 
is a prime that is defined by

η0(x, y) = (1/p)(x + y − x + y) ( mod p),

where x̄ is an integer 0 ≤ x̄ < p such that x̄ = x (mod p). It is known that η0 is a generating 2-

cocycle for HG
2 (ℤp; ℤp) for prime p. For p = 3, let ζ be a 1-chain defined by ζ(0) = 0 and 

ζ(1)+ζ(2) = 2. Then one can easily compute that η = η0 +δζ. Hence there is a 2-cocycle 

η ∈ CG, ↑
2 (X)Y  of our theory that is cohomologous to the standard group 2-cocycle η0.
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8.3. Simplicial decomposition (direct formula)

We give a direct formula (instead of induction) for the notation 〈〈a1〉 ··· 〈ak〉〉. To the term 

〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>s</sub>, we associate a vector v = (v1, …, vn) ∈ {1, 2}n by 

defining vi = 1 if i = ij for some j, and otherwise vi = 2, where n = s +t. In the term

ci =
ak ∗ (b1⋯bi − k) if i = ik,
bi − k if ik < i < ik + 1,

the first entry with ak in it corresponds to vi = 1 and the second with bi–k to vi = 2. We note 

that the term ak came from the first part 〈a〉 in 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>s</sub> so that vi 

= 1 is assigned, and the term bi–k belongs to the second part 〈b〉 receiving vi = 2.

Example 20—For the term 〈a〉 〈b, c〉 discussed for Figure 12, the terms 〈a, b, c〉, –〈b, a * 

b, c〉, and 〈b, c, a * (bc)〉 correspond to the vectors (1, 2, 2), (2, 1, 2), and (2, 2, 1), 

respectively. Note that (2, 1, 2) is obtained from (1, 2, 2) by a transposition of the first two 

entries, and this is reflected in Figure 12 by the fact that the tetrahedra represented by these 

vectors share a triangular internal face. We indicate by an edge between two vectors when 

one is obtained from the other by a transposition of consecutive entries. In this case we draw 

the graph:

(1, 2, 2) — (2, 1, 2) — (2, 2, 1) .

For 〈a, b〉 〈c, d〉, the terms 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>s</sub> are listed as 〈a, b, c, d〉, –〈a, 
c, b*c, d〉, 〈c, a*c, b*c, d〉, 〈a, c, d, b*(cd)〉, –〈c, a*c, d, b*(cd)〉, 〈c, d, a*(cd), b*(cd)〉, and 

these correspond to vectors

(1, 1, 2, 2), (1, 2, 1, 2), (2, 1, 1, 2), (1, 2, 2, 1), (2, 1, 2, 1), (2, 2, 1, 1),

respectively. They are connected by edges as

indicating which simplices share internal faces. Note that from a vector v = (v1, …, vn) ∈ {1, 
2}n the subscripts i1, …, is in 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>s</sub> are recovered by the 

condition vi <sub>j</sub> = 1.

For an expression of the form 〈a1〉 ··· 〈ak〉 in a chain in P*(X)Y, where

a1, …, ak ∈ ∪
m ∈ ℕ

Gλ
m,
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we put n = |a1| + ··· + |ak| and consider vectors v = (v1, …, vn) ∈ {1, …, k}n, and denote by 

#j
i v the number of j’s in v1, …, vi. Then for a given v define i( j, 1) < ··· < i( j, nj) by the 

condition that vi(j,1) =···=vi(j,n<sub>j</sub>) = j.

With these notations in hand, we temporarily define 〈〈a1〉 ··· 〈ak〉〉′ by

∑
v ∈ {1, …, k}n

#jn v = nj (j = 1, …, k)

( − 1)∑j = 1
k − 1 ∑t = 1

nj (i(j, t) − t − ∑s = 1
j − 1 ns)〈c1, …, cn〉

for 〈a1〉 ··· 〈ak〉 = 〈a1,1, …, a1,n<sub>1</sub>〉 ··· 〈ak,1, …, ak,n<sub>k</sub>〉, where

ci = avi, #vi
i v ∗ ∏

s = vi + 1

k
∏

t = 1

#si v
as, t .

Then we have 〈〈a1〉 ··· 〈ak〉〉′ = 〈〈a1〉 ··· 〈ak〉〉, from the fact that simplices of both sides are 

in one-to-one correspondence with vectors v = (v1, …, vn) ∈ {1, …, k}n, and the signs 

correspond to the number of transpositions, modulo 2, of a given vector v from the vector (1, 
…, 1, 2, …, 2, …, k, …, k).

Example 21—The terms of 〈〈a〉 〈b, c〉 〈d〉〉 consist of

〈a, b, c, d〉, 〈b, a ∗ b, c, d〉, 〈a, b, d, c ∗ d〉,
〈b, c, a ∗ (bc), d〉, 〈b, a ∗ b, d, c ∗ d〉, 〈a, d, b ∗ d, c ∗ d〉,
〈b, c, d, a ∗ (bcd)〉, 〈b, d, a ∗ (bd), c ∗ d〉, 〈d, a ∗ d, b ∗ d, c ∗ d〉,
〈b, d, c ∗ d, a ∗ (bcd)〉, 〈d, b ∗ d, a ∗ (bd), c ∗ d〉, 〈d, b ∗ d, c ∗ d, a ∗ (bcd)〉,

which, respectively, correspond to the vectors

(1, 2, 2, 3), (2, 1, 2, 3), (1, 2, 3, 2),
(2, 2, 1, 3), (2, 1, 3, 2), (1, 3, 2, 2),
(2, 2, 3, 1), (2, 3, 1, 2), (3, 1, 2, 2),
(2, 3, 2, 1), (3, 2, 1, 2), (3, 2, 2, 1) .

The graph representing shared faces is depicted in Figure 13.

9. Relationship between MCQ and IIJO

Let X = ∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let Pn
IIJO(X)Y

be the subgroups of Pn(X)Y generated by the elements of the form 〈y〉 〈a1〉 ··· 〈an〉. Then 
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P∗
IIJO(X)Y = (Pn

IIJO(X)Y , ∂n) is a subcomplex of P*(X)Y. Let Dn
IIJO(X)Y  be the subgroup of 

Pn
IIJO(X)Y  generated by the elements of the forms

〈y〉 〈a1〉⋯〈b1〉 〈b2〉⋯〈an〉, 〈y〉 〈a1〉⋯∂ 〈b1, b2〉⋯〈an〉

for a1, …, an ∈ X and b1, b2 ∈ Gλ. We note that the former elements relate to the invariance 

under the R1 and R4 move, and that the latter elements relate to the invariance under the R5 

move and reversing orientation.

Lemma 22— D∗
IIJO(X)Y = (Dn

IIJO(X)Y , ∂n) is a subcomplex of P∗
IIJO(X)Y .

Proof: This follows from

∂(〈b1〉 〈b2〉) = ∂ 〈b1, b2〉 − ∂〈b2, b1 ∗ b2〉, ∂(∂〈b1, b2〉) = 0

for b1, b2 ∈ Gλ.

We put

CnIIJO(X)Y = PnIIJO(X)Y /DnIIJO(X)Y .

Then C∗
IIJO(X)Y = (Cn

IIJO(X)Y , ∂n) is a chain complex. If X is obtained from a G-family of 

quandles as in Example 2, C∗
IIJO(X)Y  is the chain complex defined in [Ishii et al. 2013]. For 

an abelian group A, we define the cochain complexes

CIIJO
∗ (X; A)Y = Hom(C∗IIJO(X)Y , A) .

We note that a natural projection pr∗:P∗(X)Y P∗
IIJO(X)Y  does not induce a chain 

homomorphism pr∗:C∗(X)Y C∗
IIJO(X)Y , since IIJO homology theory is invariant under the 

invariance for reversing orientations. (See Table 1.) It is seen, however, that this map induces 

the chain homomorphism pr∗:C∗
↑(X)Y C∗

IIJO(X)Y  and the cochain homomorphism 

pr∗:CIIJO
∗ (X; A)Y C↑

∗(X; A)Y  for an abelian group A. Hence, for a given cocycle of IIJO 

homology theory (with some modification for a multiple conjugation quandle as above), we 

can obtain that of our theory through pr*. This implies that our invariant is a generalization 

of the IIJO quandle cocycle invariant.
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10. Towards finding 2-cocycles

We discuss approaches to finding 2-cocycles that are not induced from the IIJO 

(co)homology theory. Let G be a group, M a right G-module, and A an abelian group. The 

module M and the set X = M×G (= ∐x∈M{x}×G) can be considered as a G-family of 

quandles and a multiple conjugation quandle as in Example 2, respectively.

We take an X-set Y as a singleton {y0} and suppress the notation 〈y0〉. For a 2-cocycle ψ ∈ 
P2(X; A)Y, we denote ψ(〈(x, g)〉 〈(y, h)〉) by ϕ((x, g), (y, h)), and ψ(〈(x, g), (x, h)〉) by ηx(g, 

h). Then the 2-cocycle conditions are written as

1. ηx (g, h)+ηx (gh, k) = ηx (h, k)+ηx (g, hk),

2. ϕ((x, g), (y, k))+ϕ((x, h), (y, k))−ϕ((x, gh), (y, k)) = ηx (g, h)−ηx*<sup>k</sup>y(g 
* k, h * k),

3. ϕ((x, g), (y, h))+ϕ((x *h y, g * h), (y, k)) = ϕ((x, g), (y, hk)),

4. ϕ((x, g), (y, h))+ϕ((x *h y, g * h), (z, k)) = ϕ((x, g), (z, k))+ϕ((x *k z, g * k), (y *k 

z, h * k)),

where x, y, z ∈ M and g, h, k ∈ G. Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y, 

the condition that ψ is a 2-cochain in C2(X; A)Y is written as

5. ϕ((x, g), (x, h)) = ηx (g, h) − ηx (h, g * h),

where x ∈ M and g, h ∈ G.

Towards constructing MCQ 2-cocycles that are not from the IIJO homology, first we note 

that if ϕ above is an IIJO 2-cocycle, then ϕ satisfies the conditions (3),(4), and the condition 

that the LHS of (2) vanishes. By considering ψ′ = ψ − ϕ, we obtain an MCQ 2-cocycle ψ′ 
that consists only of terms of ηx for x ∈ M. Thus we first consider such a case in Example 

23 below. In this case, we can take an approach described in Section 8 for finding MCQ 

cocycles from group cocycles.

Example 23—For a 2-cochain ψ ∈ P2(X; A)Y with the assumption

(0) ψ(〈(x, g)〉 〈(y, h)〉) (= ϕ((x, g), (y, h))) = 0,

we discuss what conditions are needed for the 2-cochain ψ being a 2-cocycle in 

P2(X; A)Y. When we use the notation ηx (g, h) for ψ(〈 (x, g), (x, h) 〉), the 2-

cocycle conditions are written as

(1) ηx (g, h)+ηx (gh, k) = ηx (h, k)+ηx (g, hk),

(2′) ηx (g, h)−ηx*<sup>k</sup>y(g * k, h * k) = 0,

where x, y ∈ M and g, h, k ∈ G. We note that the condition (0) implies (3) and 

(4). Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y with the assumption (0), the 

condition that ψ is a 2-cochain in C2(X; A)Y are written as

(5′) ηx (g, h)−ηx (h, g * h) = 0,
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where x ∈ M and g, h ∈ G. Hence if ψ satisfies (0),(1), (2′) and (5′), then ψ is a 

2-cocycle in C2(X; A)Y and defines an invariant for handlebody-knots.

If y = x, then (2′) implies ηx (g *k, h *k) = ηx (g, h), called the right invariance of ηx. If x = 

0, then (2′) with right invariance implies ηy·(1−k) ≡ η0, which is another necessary condition 

for the condition (2′). Hence if any element in M can be represented by the form y · (1 − k) 

for some y ∈ M and k ∈ G, then we have ηx ≡ η0 for any x ∈ M. In this case, we can check 

that the 2-cocycle ψ in C2(X; A)Y comes from the dual of the composition of the chain 

homomorphisms

C∗(X)Y
pr2 C∗(G)Y

Δ C∗G(G)Y ,

where a chain homomorphism pr2 is induced from a natural projection into the second factor 

and the chain homomorphism Δ was defined in Section 8.2. In this case, ψ assigned at a 

crossing is decomposed into a pair of weights η corresponding to trivalent vertices as 

depicted in Figure 10 (B) and (C). Hence the resulting invariant is equivalent to the invariant 

of the trivalent graph obtained by replacing all crossings with vertices, that is, embedded in 

the 2-sphere without crossing. Such an embedded graph is equivalent to a circle with small 

bubbles, and has trivial invariant value (W(D;C) = 0 for any coloring C). Thus, in this case, 

ψ defines a trivial invariant for handlebody-knots by the group 2-cocycle η0, whose 

cohomology class may not be zero in HG
2 (G; A)Y .

If the condition that any element in M can be represented by the form y · (1−k) for some y ∈ 
M and k ∈ G is not satisfied, then ψ satisfying (0), (1), (2′) and (5′) may give rise to a 

nontrivial invariant for handlebody-links.

Example 24—In contrast to Example 23, next we consider the case when ϕ is not an IIJO 

2-cocycle, so that the LHS of (2) does not vanish for ϕ.

For any G-invariant A-bilinear map f: M2→ A, Theorem 5.2 of [Nosaka 2013] claimed that 

the map ϕf: X2→ A defined by

ϕf((x, g), (y, ℎ)): = f(x − y, y · (1 − ℎ−1))

satisfies the conditions (3) and (4) above. For the G-invariant A-bilinear map f, if we can 

find maps ηx such that the conditions (1) and (2) are also satisfied, then we obtain a 2-

cocycle, which may be new. We remark here that ϕf itself can be modified as in [Nosaka 

2013, Corollary 4.7] (by using an additive homomorphism form G to some commutative 

ring) so that the conditions (1) and (2) are also satisfied under the assumption ηx ≡ 0 for any 

x ∈ M.

The condition (1) merely says that ηx is a usual group 2-cocycle for any x ∈ M. The 

condition (2) is equivalent to
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(2″) f (x − y, y · (1−k−1)) = ηx (g, h) − ηx*<sup>k</sup> y(g * k, h * k)

from the definition of f. If y = x, then (2″) implies that ηx is right invariant in 

the sense that ηx (g * k, h * k) = ηx (g, h) as above. If y = 0, then (2″) with the 

right invariance implies ηx·k ≡ ηx, called the orbit dependence of ηx. Thus we 

obtain these two necessary conditions for the condition (2″).

We examine the following specific examples. For a prime number p, let G denote SL(2, ℤp) 

that acts on M =(ℤp)2 from the right. For A=ℤp, the map f: M2→A defined by 

f(x, y): = det x
y  is a G-invariant A-bilinear map, where x, y ∈ M are row vectors on which 

G acts on the right, and det denotes the determinant. This setting is motivated from [Nosaka 

2013, Proposition 4.5].

First, we consider the case where p = 2. Define m: M → A by

m(x): = 0 if x = 0,
1 if x ≠ 0.

Then we can check that

ϕf (x, g), (y, ℎ) = − m(x) + m(x ∗ℎ y)

for any x, y ∈ M and g, h ∈G. Take ηx (g, h) to be m(x) for any x ∈ M and g, h ∈G. Then we 

can show that the 2-cochain ψ, defined by ϕf and ηx, is a 2-coboundary as follows. Define a 

1-cochain m̃ ∈ P1(X; A) by m̃ (〈(x, g)〉):= m(x). Then the 2-coboundary δm̃ ∈ P2(X; A) is 

written as

(δm∼)(〈(x, g)〉 〈(y, ℎ)〉) = − m(x) + m(x ∗ℎ y),
(δm∼)(〈(x, g), (x, ℎ)〉) = m(x),

where x, y ∈ M and g, h ∈ G. This implies that ψ = δm̃.

Second, we consider the case where p > 2. If x = (0, 0) and k = −1 0
0 −1 , the condition (2″) 

implies η2y(g, h)=η0(g, h) for any y ∈ M and g, h ∈ G. Since p is odd, we have that ηx ≡η0 

for any x ∈ M. If we substitute y =(1, 0) and k = 1 −1
0 1  for (2″), then LHS is 1 and RHS is 

0, which turns out to be a contradiction. Hence there is no choice of ηx such that the 

conditions (1) and (2″) are satisfied.

Although our attempts have not resulted in new nontrivial 2-cocycles, it appears useful to 

record our approaches and facts we have found, for future endeavors towards constructing 

new cocycles using these approaches. Further studies are desirable on this homology theory, 
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as it unifies group and quandle homology theories for a structure of multiple conjugation 

quandles, which have ample interesting examples and applications to handlebody-links.

Acknowledgments

Carter was partially supported by the Simons Foundation. Ishii was partially supported by JSPS KAKENHI Grant 
Number 24740037. Saito was partially supported by (U.S.) NIH R01GM109459. Tanaka was partially supported by 
JSPS KAKENHI Grant Number 26400082. The authors are grateful to Daniel Moskovich for valuable comments 
on exposition, and Yusuke Iijima for pointing out an error in an earlier version.

References

[Brieskorn 1988]. Brieskorn, E. Braids. Santa Cruz, CA: 1986. Automorphic sets and braids and 
singularities; 45–115. Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988. MR Zbl

[Carter and Ishii 2012]. Carter JS, Ishii A. A knotted 2-dimensional foam with non-trivial cocycle 
invariant. 2012

[Carter et al 2001]. Carter JS, Kamada S, Saito M. Geometric interpretations of quandle homology. J 
Knot Theory Ramifications. 10(3)2001; :345–386.

[Carter et al 2003]. Carter JS, Jelsovsky D, Kamada S, Langford L, Saito M. Quandle cohomology and 
state-sum invariants of knotted curves and surfaces. Trans Amer Math Soc. 355(10)2003; :3947–
3989.

[Fenn and Rourke 1992]. Fenn R, Rourke C. Racks and links in codimension two. J Knot Theory 
Ramifications. 1(4)1992; :343–406.

[Fenn et al 1995]. Fenn R, Rourke C, Sanderson B. Trunks and classifying spaces. Appl Categ 
Structures. 3(4)1995; :321–356.

[Ishii 2008]. Ishii A. Moves and invariants for knotted handlebodies. Algebr Geom Topol. 
8(3)2008; :1403–1418.

[Ishii 2015a]. Ishii A. The Markov theorems for spatial graphs and handlebody-knots with Y-
orientations. Internat J Math. 26(14)2015; :1550116, 23.

[Ishii 2015b]. Ishii A. A multiple conjugation quandle and handlebody-knots. Topology Appl. 196(part 
B)2015; :492–500.

[Ishii and Iwakiri 2012]. Ishii A, Iwakiri M. Quandle cocycle invariants for spatial graphs and knotted 
handlebodies. Canad J Math. 64(1)2012; :102–122.

[Ishii et al 2013]. Ishii A, Iwakiri M, Jang Y, Oshiro K. A G-family of quandles and handlebody-knots. 
Illinois J Math. 57(3)2013; :817–838.

[Joyce 1982]. Joyce D. A classifying invariant of knots, the knot quandle. J Pure Appl Algebra. 
23(1)1982; :37–65.

[Kamada 2007]. Kamada, S. Intelligence of low dimensional topology 2006. World Scientific; 
Hackensack, NJ: 2007. Quandles with good involutions, their homologies and knot invariants; 
101–108. Ser. Knots Everything 40MR Zbl

[Kamada and Oshiro 2010]. Kamada S, Oshiro K. Homology groups of symmetric quandles and 
cocycle invariants of links and surface-links. Trans Amer Math Soc. 362(10)2010; :5501–5527.

[Matveev 1982]. Matveev SV. Distributive groupoids in knot theory. Mat Sb (NS). 119(1)1982; :78–88.

[Nosaka 2013]. Nosaka T. Quandle cocycles from invariant theory. Adv Math. 2452013; :423–438.

[Przytycki 2011]. Przytycki JH. Distributivity versus associativity in the homology theory of algebraic 
structures. Demonstratio Math. 44(4)2011; :823–869.

[Takasaki 1943]. Takasaki M. Abstraction of symmetric transformations. Tôhoku Math J. 
491943; :145–207.

Carter et al. Page 27

Pac J Math. Author manuscript; available in PMC 2021 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Reidemeister moves for handlebody-links.
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Figure 2. 
Y-orientation.

Carter et al. Page 29

Pac J Math. Author manuscript; available in PMC 2021 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Rules of a coloring.
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Figure 4. 
Local chains represented by crossings and vertices.
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Figure 5. 
Semiarcs near crossings and vertices.
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Figure 6. 
Chains for Y-oriented R6 moves.
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Figure 7. 
(X, ↑)-color.
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Figure 8. 
Rules of an unoriented coloring.
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Figure 9. 
Well-definedness of local chains for unoriented handle-body-links.
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Figure 10. 
Dividing a square into triangles.
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Figure 11. 
Colors for Y-oriented R4 moves.
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Figure 12. 
Decomposition of a prism into tetrahedra.
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Figure 13. 
Boundaries of 〈a〉 〈b, c〉 〈d〉.
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Table 1

Comparison between IIJO theory and MCQ theory

IIJO 2-boundary degenerate D2
IIJO(X)Y cancelled by sign zero by definition

moves R3 R4(⇝ R1), R5(⇝ ori.) R2 R6

MCQ 2-boundary degenerate D2(X)Y degenerate D2
↑(X)Y cancelled by sign

moves R3, R5, R6 R4(⇝ R1) orientation R2
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 andIt follows that (eλ,−ϕ(〈eλ, eλ〉)) is the identity of the group Gλ × A, and that (a−1,−s −ϕ(〈a, a−1〉)−ϕ(〈eλ, eλ〉)) is the inverse of (a, s) ∈ Gλ × A.(2) The correspondence between the degeneracy of ϕ on D2(X)Y and the first axiom of MCQs.For (a, s), (b, t) ∈ Gλ× A, ϕ(〈a〉〈b〉)+ϕ(〈b, a *b〉) = ϕ(〈a, b〉) if and only if (b, t)((a, s) * (b, t)) = (a, s)(b, t), since(3) The correspondence between the cocycle condition ϕ(∂3(〈x〉〈a, b〉)) = 0 and the second axiom of MCQs.For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ × A,
 if and only if (x, r) * ((a, s)(b, t)) = ((x, r) * (a, s))* (b, t), sinceNote ϕ(〈x〉〈ab〉)=ϕ(〈x〉 〈a〉)+ϕ(〈x*a〉〈b〉), or equivalently (x, r)*((a, s)(b, t))= ((x, r) * (a, s)) * (b, t), implies that ϕ(〈x〉〈eλ〉) = 0. Then we have(4) The correspondence between the cocycle condition ϕ(∂3(〈a〉 〈b〉 〈c〉)) = 0 and the third axiom of MCQs.For (a, s), (b, t), (c, u) ∈ X × A,
 if and only if ((a, s) * (b, t))* (c, u) = ((a, s) * (c, u))* ((b, t) * (c, u)), since(5) The correspondence between the cocycle condition ϕ(∂3(〈a, b〉〈x〉)) = 0 and the last axiom of MCQs.For (x, r) ∈ X × A and (a, s), (b, t) ∈ Gλ × A,
 if and only if ((a, s)(b, t)) * (x, r) = ((a, s) * (x, r))((b, t) * (x, r)), sinceTherefore ϕ is a 2-cocycle if and only if X×A is a multiple conjugation quandle.
	Proposition 6
	Proof



	5. Quandle cocycle invariants for handlebody-links
	Proposition 7 [Ishii 2015a]—Let X = ∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a diagram obtained by applying one of the Y-oriented R1–R6 moves to the diagram D once. For an X-coloring (resp. XY -coloring) C of D, there is a unique X-coloring (resp. XY -coloring) C′ of D′ which coincides with C except near a point where the move applied.For an XY -coloring C of a diagram D of an S1-oriented handlebody-link, we define the local chains w(ξ;C) ∈ C2(X)Y at each crossing ξ and each vertex ξ of D as depicted in Figure 4. We define a chain W(D;C) ∈ C2(X)Y bywhere ξ runs over all crossings and vertices of D. This is similar to the definitions found in [Carter et al. 2001] for links and surface-links, and in [Ishii and Iwakiri 2012] for handlebody-links.Lemma 8—The chain W(D;C) is a 2-cycle of C*(X)Y. Further, for cohomologous 2-cocycles θ, θ′ of C*(X; A)Y, we haveProof: It is sufficient to show that W(D;C) is a 2-cycle of C*(X)Y. We denote by 
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(D) the set of semiarcs of D, where a semiarc is a piece of a curve each of whose endpoints is a crossing or a vertex. We denote by 
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(D; ξ) the set of semiarcs incident to ξ, where ξ is a crossing or a vertex of D.For a semiarc α, there is a unique region Rα facing α such that the normal orientation of α points from the region Rα to the opposite region with respect to α. For a semiarc α incident to a crossing or a vertex ξ, we defineLet χ1, …, χ4 and ω1, ω2, ω3 be the semiarcs incident to a crossing χ and a vertex ω as depicted in Figure 5. From
 it follows that
 where χ and ω, respectively, run over all crossings and vertices of D.Lemma 9—Let D be a diagram of an S1-oriented handlebody-link H. Let D′ be a diagram obtained by applying one of the Y-oriented R1–R6 moves to the diagram D once. Let C be an XY -coloring of D, let C′ be the unique XY -coloring of D′ such that C and C′ coincide except near a point where the move applied. Then we have [W(D;C)] = [W(D′;C′)] in H2(X)Y.Proof: We have the invariance under the Y-oriented R1 and R4 moves, since the difference between [W(D;C)] and [W(D′;C′)] is an element of D2(X)Y. The invariance under the Y-oriented R2 move follows from the signs of the crossings which appear in the move. We have the invariance under the Y-oriented R3, R5, and R6 moves, since the difference between [W(D;C)] and [W(D′;C′)] is an image of ∂3. See Figure 6 for Y-oriented R6 moves, where all arcs are directed from top to bottom.For a 2-cocycle θ of C*(X; A)Y, we define
 as multisets. By Lemmas 8 and 9, we have the following theorem.Theorem 10—Let D be a diagram of an S1-oriented handlebody-link H. Then ℋ(D) and Φθ (D) are invariants of H.For an S1-oriented handlebody-link H, let H* be the mirror image of H, and −H be the S1-oriented handlebody-link obtained from H by reversing its S1-orientation. Then we also have
 where −S = {−a | a ∈ S} for a multiset S. It is desirable to further study these invariants and applications to handlebody-links.
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	6. For unoriented handlebody-links
	Proposition 11—Let X =∐λ∈Λ Gλ be a multiple conjugation quandle, and let Y be an X-set. Let D be a diagram of a handlebody-link H. Let D′ be a diagram obtained by applying one of the R1–R6 moves to the diagram D once. For an (X, ↑)-coloring (resp. (X, ↑)Y -coloring) C of D, there is a unique (X, ↑)-coloring (resp. (X, ↑)Y -coloring) C′ of D′ which coincides with C except near a point where the move applied.Let  be the subgroup of Pn(X)Y generated by the elements of the formwhere  denotesThe chain group  will be called the group of orientation degeneracies. For example,  is generated by the elements of the formand  is generated by the elements of the formWe remark that the elements of the form belong to 
. Furthermore, we can prove that the elements of the form
 belong to 
 by induction.Lemma 12—

is a subcomplex of P*(X)Y.Proof: We have 
, since
 andThus 
 is a subcomplex of P*(X)Y.Definition 13—We set 
. The quotient complex (
, ∂n) is denoted by 
. For an abelian group A, we define the cochain complex 
. We denote by 
 the n-th homology group of 
.For an (X, ↑)Y -coloring C of a diagram D for a handlebody-link, we define the local chains w(ξ;C) at each crossing ξ and each vertex ξ of D as depicted in Figure 4. The local chain is well-defined, since
 in 
 (see Figure 9). Then we can define the chain 
 in the same way as W(D;C) ∈ C2(X)Y, and obtain invariants ℋ(H), Φθ (H) for an (unoriented) handlebody-link H.
	Proposition 11
	Lemma 12
	Proof
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	7. Simplicial decomposition
	Lemma 14—For 〈a〉 = 〈a1,…, as〉 and 〈b〉 = 〈b1, …, bt 〉 where ai, bj ∈ Gλ, we havewhere 〈〈·〉 〈 ·〉〉 is linearly extended.Proof: By definition, we haveDirect computations show thatThe terms of the form − ∂(i) 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>k–1</sub>,i<sub>k</sub>+1,i<sub>k+1</sub>,…,i<sub>s</sub> (ik = i < i +1 < ik+1) and −∂(i) 〈〈a〉 〈b〉〉i<sub>1</sub>,…,i<sub>k</sub>,i<sub>k+1</sub>–1,i<sub>k+2</sub>,…,i<sub>s</sub> (ik < i < i +1 = ik+1) cancel in pairs. The other terms are organized as
 where 〈·〉i<sub>1</sub>,…,i<sub>s</sub> is linearly extended.Since the Leibniz rule holds (by the preceding Lemma 14), we have the following.Lemma 15—D*(X)Y = (Dn(X)Y, ∂n) is a subcomplex of P*(X)Y.
	Lemma 14
	Proof

	Lemma 15


	8. Chain map for simplicial decomposition
	8.1. Simplicial decomposition (general case)
	Lemma 16
	Lemma 17

	8.2. Chain map (from MCQ to group)
	Proposition 18
	Remark 19

	8.3. Simplicial decomposition (direct formula)
	Example 20
	Example 21


	9. Relationship between MCQ and IIJO
	Lemma 22—  is a subcomplex of .Proof: This follows fromfor b1, b2 ∈ Gλ.We putThen  is a chain complex. If X is obtained from a G-family of quandles as in Example 2,  is the chain complex defined in [Ishii et al. 2013]. For an abelian group A, we define the cochain complexesWe note that a natural projection  does not induce a chain homomorphism , since IIJO homology theory is invariant under the invariance for reversing orientations. (See Table 1.) It is seen, however, that this map induces the chain homomorphism  and the cochain homomorphism  for an abelian group A. Hence, for a given cocycle of IIJO homology theory (with some modification for a multiple conjugation quandle as above), we can obtain that of our theory through pr*. This implies that our invariant is a generalization of the IIJO quandle cocycle invariant.
	Lemma 22
	Proof



	10. Towards finding 2-cocycles
	Example 23—For a 2-cochain ψ ∈ P2(X; A)Y with the assumption(0)ψ(〈(x, g)〉 〈(y, h)〉) (= ϕ((x, g), (y, h))) = 0,we discuss what conditions are needed for the 2-cochain ψ being a 2-cocycle in P2(X; A)Y. When we use the notation ηx (g, h) for ψ(〈 (x, g), (x, h) 〉), the 2-cocycle conditions are written as(1)ηx (g, h)+ηx (gh, k) = ηx (h, k)+ηx (g, hk),(2′)ηx (g, h)−ηx*<sup>k</sup>y(g * k, h * k) = 0,where x, y ∈ M and g, h, k ∈ G. We note that the condition (0) implies (3) and (4). Furthermore, for a 2-cochain ψ ∈ P2(X; A)Y with the assumption (0), the condition that ψ is a 2-cochain in C2(X; A)Y are written as(5′)ηx (g, h)−ηx (h, g * h) = 0,where x ∈ M and g, h ∈ G. Hence if ψ satisfies (0),(1), (2′) and (5′), then ψ is a 2-cocycle in C2(X; A)Y and defines an invariant for handlebody-knots.If y = x, then (2′) implies ηx (g *k, h *k) = ηx (g, h), called the right invariance of ηx. If x = 0, then (2′) with right invariance implies ηy·(1−k) ≡ η0, which is another necessary condition for the condition (2′). Hence if any element in M can be represented by the form y · (1 − k) for some y ∈ M and k ∈ G, then we have ηx ≡ η0 for any x ∈ M. In this case, we can check that the 2-cocycle ψ in C2(X; A)Y comes from the dual of the composition of the chain homomorphismswhere a chain homomorphism pr2 is induced from a natural projection into the second factor and the chain homomorphism Δ was defined in Section 8.2. In this case, ψ assigned at a crossing is decomposed into a pair of weights η corresponding to trivalent vertices as depicted in Figure 10 (B) and (C). Hence the resulting invariant is equivalent to the invariant of the trivalent graph obtained by replacing all crossings with vertices, that is, embedded in the 2-sphere without crossing. Such an embedded graph is equivalent to a circle with small bubbles, and has trivial invariant value (W(D;C) = 0 for any coloring C). Thus, in this case, ψ defines a trivial invariant for handlebody-knots by the group 2-cocycle η0, whose cohomology class may not be zero in .If the condition that any element in M can be represented by the form y · (1−k) for some y ∈ M and k ∈ G is not satisfied, then ψ satisfying (0), (1), (2′) and (5′) may give rise to a nontrivial invariant for handlebody-links.Example 24—In contrast to Example 23, next we consider the case when ϕ is not an IIJO 2-cocycle, so that the LHS of (2) does not vanish for ϕ.For any G-invariant A-bilinear map f: M2→ A, Theorem 5.2 of [Nosaka 2013] claimed that the map ϕf: X2→ A defined by
 satisfies the conditions (3) and (4) above. For the G-invariant A-bilinear map f, if we can find maps ηx such that the conditions (1) and (2) are also satisfied, then we obtain a 2-cocycle, which may be new. We remark here that ϕf itself can be modified as in [Nosaka 2013, Corollary 4.7] (by using an additive homomorphism form G to some commutative ring) so that the conditions (1) and (2) are also satisfied under the assumption ηx ≡ 0 for any x ∈ M.The condition (1) merely says that ηx is a usual group 2-cocycle for any x ∈ M. The condition (2) is equivalent to(2″)f (x − y, y · (1−k−1)) = ηx (g, h) − ηx*<sup>k</sup>
y(g * k, h * k)from the definition of f. If y = x, then (2″) implies that ηx is right invariant in the sense that ηx (g * k, h * k) = ηx (g, h) as above. If y = 0, then (2″) with the right invariance implies ηx·k ≡ ηx, called the orbit dependence of ηx. Thus we obtain these two necessary conditions for the condition (2″).We examine the following specific examples. For a prime number p, let G denote SL(2, ℤp) that acts on M =(ℤp)2 from the right. For A=ℤp, the map f: M2→A defined by 
 is a G-invariant A-bilinear map, where x, y ∈ M are row vectors on which G acts on the right, and det denotes the determinant. This setting is motivated from [Nosaka 2013, Proposition 4.5].First, we consider the case where p = 2. Define m: M → A byThen we can check that
 for any x, y ∈ M and g, h ∈G. Take ηx (g, h) to be m(x) for any x ∈ M and g, h ∈G. Then we can show that the 2-cochain ψ, defined by ϕf and ηx, is a 2-coboundary as follows. Define a 1-cochain m̃ ∈ P1(X; A) by m̃ (〈(x, g)〉):= m(x). Then the 2-coboundary δm̃ ∈ P2(X; A) is written as
 where x, y ∈ M and g, h ∈ G. This implies that ψ = δm̃.Second, we consider the case where p > 2. If x = (0, 0) and 
, the condition (2″) implies η2y(g, h)=η0(g, h) for any y ∈ M and g, h ∈ G. Since p is odd, we have that ηx ≡η0 for any x ∈ M. If we substitute y =(1, 0) and 
 for (2″), then LHS is 1 and RHS is 0, which turns out to be a contradiction. Hence there is no choice of ηx such that the conditions (1) and (2″) are satisfied.Although our attempts have not resulted in new nontrivial 2-cocycles, it appears useful to record our approaches and facts we have found, for future endeavors towards constructing new cocycles using these approaches. Further studies are desirable on this homology theory, as it unifies group and quandle homology theories for a structure of multiple conjugation quandles, which have ample interesting examples and applications to handlebody-links.
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