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Abstract

Motivation: A biomedical relation statement is commonly expressed in multiple sentences and consists of many
concepts, including gene, disease, chemical and mutation. To automatically extract information from biomedical lit-
erature, existing biomedical text-mining approaches typically formulate the problem as a cross-sentence n-ary
relation-extraction task that detects relations among n entities across multiple sentences, and use either a graph
neural network (GNN) with long short-term memory (LSTM) or an attention mechanism. Recently, Transformer has
been shown to outperform LSTM on many natural language processing (NLP) tasks.

Results: In this work, we propose a novel architecture that combines Bidirectional Encoder Representations from
Transformers with Graph Transformer (BERT-GT), through integrating a neighbor–attention mechanism into the
BERT architecture. Unlike the original Transformer architecture, which utilizes the whole sentence(s) to calculate the
attention of the current token, the neighbor–attention mechanism in our method calculates its attention utilizing only
its neighbor tokens. Thus, each token can pay attention to its neighbor information with little noise. We show that
this is critically important when the text is very long, as in cross-sentence or abstract-level relation-extraction tasks.
Our benchmarking results show improvements of 5.44% and 3.89% in accuracy and F1-measure over the state-of-
the-art on n-ary and chemical-protein relation datasets, suggesting BERT-GT is a robust approach that is applicable
to other biomedical relation extraction tasks or datasets.

Availability and implementation: the source code of BERT-GT will be made freely available at https://github.com/
ncbi/bert_gt upon publication.

Contact: zhiyong.lu@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The volume of biomedical literature continues to grow rapidly, and
it becomes increasingly difficult to maintain and update biomedical
knowledge manually. Fortunately, the advance of text-mining tech-
niques is able to greatly help biomedical researchers to retrieve rele-
vant information efficiently in the era of information overload
(Fiorini et al., 2018; Sidhoumi et al., 2010). In addition, with the
rapid growth of the study on personalized medicine and cancer re-
search, it is necessary to extract and search novel genomic variant
information from the biomedical literature (Lee et al., 2020).
Biomedical text mining can provide useful data for biomedical cura-
tors (Clematide and Rinaldi, 2012) and other researchers in the bio-
medical communtiy.

Relation extraction (RE) is one of the critical tasks of text min-
ing; it extracts the relation between concepts from the text. It is typ-
ically understood as classifying the relation category of a given

sentence and an entity pair. Many methods have been proposed for
RE. For instance, Lee et al. (2019) and Peng et al. (2019) adapted
the Bidirectional Encoder Representation for Transformer (BERT)
architecture (Devlin et al., 2019) to biomedical literature and clinic-
al records. Their system achieved state-of-the-art performance on
several biomedical and clinical benchmarks against many other
machine-learning methods.

No matter whether BERT or other relation extraction methods
(Li and Ji, 2019; Peng et al., 2018) are used, they usually focus on
classifying a two-entity pair within a single sentence, for example,
whether the sentence expresses that the drug ‘anastrozole’ inhibits
‘breast cancer.’ Relationships between entities, however, are often
expressed across sentences or may involve more than two entities.
Two examples are illustrated inFigure 1. The first example notes
that patients with T790M mutations in the epidermal growth factor
receptor (EGFR) can be treated with EGFR tyrosine kinase inhibitor
(TKI), likes gefitinib. The two sentences collectively express that
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there is a ternary interaction between the drug (gefitinib), gene/gene
product (EGFR tyrosine kinase) and mutation (T790M). Although,
in the second example, the disease ‘polyneuropathy’ and the chem-
ical ‘IT-cytosine arabinoside (ara-C)’ do not co-occur in the same
sentence, a relation is asserted between the two entities. Extracting
such a relation without gathering information across sentences and
multiple entities makes it difficult to predict correctly the relation in
both cases.

Over time, the above problem has received the attention of the
natural language processing (NLP) field. In 2015, an abstract-level
relation extraction dataset was created for an NLP task on
chemical-disease relation (CDR) extraction (Wei et al., 2016). In the
dataset, more than 30% of chemical-induced disease pairs are cross-
sentences (Xu et al., 2016). Many cross-sentence methods have been
proposed to identify these relations. Verga et al. (2018) proposed a
Bi-affine Relation Attention Network (BRAN), which is designed to
extract relations between entities in the biological text without
requiring explicit mention-level annotation. Their neural network
(NN) architecture, however, is limited in terms of binary entities
and cannot be adapted to n-ary entities. Peng et al. (2017) developed
a cross-sentence n-ary dataset for detecting drug-gene-mutations
across sentences. The cross-sentence n-ary relation extraction task is
understood as detecting relations among n entities across multiple
sentences. Peng et al. (2017) further proposed a graph long short-
term memory network (graph LSTM) method.

For a cross-sentence n-ary relation extraction task, previous meth-
ods typically utilize dependency information by incorporating long
short-term memory (LSTM) or an attention mechanism into a graph
neural network (GNN). In recent year, Vaswani et al. (2017) propose
an encoder-decoder architecture called Transformer, without the use
of LSTM or convolutional neural networks (CNN), and they demon-
strate that the Transformer outperforms recurrent neural networks
(RNNs) with attention to many sequence-to-sequence tasks. Further,
Devlin et al. (2019) used Transformer architecture to develop BERT
and proposed two approaches to generate the non-task-specific pre-
trained model. They demonstrate that the pre-trained model can be
used for different tasks, with transfer-learning approaches, and can
outperform state-of-the-art approaches on many NLP tasks.

Because the self-attention mechanism of the Transformer can ef-
ficiently utilize the information from the whole input text, we con-
sider that BERT can be used to classify cross-sentence relations as
well. We posit, however, that the cross-sentence also may bring
noisy information to BERT and can result in difficulties in focusing
on explicit information.

In this work, we propose a novel model that adds a Graph
Transformer (GT) architecture into BERT (BERT-GT). The Graph
Transformer uses a neighbor–attention mechanism, which is a modi-
fied version of the self-attention mechanism. In the self-attention
mechanism, the whole sentence(s) is used to calculate the attention
of the current token. In contrast, the neighbor–attention mechanism
calculates its attention based on its neighbor tokens only. Thus, the
token can pay attention to its neighbor tokens with limited noise,
which is especially important when the text is very long, as in mul-
tiple sentences. The main contributions are as follows:

1. In this work, we focus on classifying the biomedical relations of

different text lengths, in particular relations across multiple sen-

tences, an issue that is common in biomedical text but not well

studied. In addition, both binary and n-ary relation classification

tasks are considered.

2. While BERT is a robust and state-of-the-art method, its perform-

ance is weakened when processing cross-sentence with unrelated

relation keywords. In response, we propose a novel architecture

that improves BERT by integrating a neighbor–attention mech-

anism in a Graph Transformer.

3. BERT-GT is evaluated on two independent biomedical bench-

marks and our experimental results demonstrate a significant im-

provement over other state-of-the-art methods on both n-ary

and CDR datasets. This demonstrates the generalizability and

robustness of our method.

2 Related work

This section introduces recent works on the cross-sentence relation
extraction benchmark and then gives a brief introduction of a recent
graph transformer architecture. Peng et al. (2017)’s dataset is the
most commonly used dataset for the cross-sentence n-ary relation
extraction. The BioCreative CDR dataset (Wei et al., 2016) is also
widely used to evaluate abstract-level relation extraction. In what
follows, we review the recent work on these benchmarks.

2.1 Cross-sentence n-ary relation extraction
Peng et al. (2017) proposed a graph LSTM architecture. They first
use the NLTK dependency parser to parse text input into a directed
dependency graph, and then the graph is divided into two acyclic-
directed graphs (left-to-right and right-to-left). Then, they respect-
ively apply two LSTM layers to the two graphs to generate the out-
put sequences. Finally, the prediction is calculated by aggregating
the hidden states of the entities with a softmax function. Their archi-
tecture achieves an accuracy of 80.7% and outperforms the feature-
based classifier (Quirk and Poon, 2017) by an accuracy of 3%.

Song et al. (2018) then proposed a graph state LSTM (GS
LSTM) architecture for the task. They consider that there are two
limitations in Peng et al. (2017)’s architecture. First, Peng et al.
(2017) can use only the information from a single direction (either
left-to-right or right-to-left) in each LSTM layer. Second, Peng et al.
(2017) do not utilize the dependency edge type. Therefore, Song
et al. (2018)’s GS LSTM uses a message-passing mechanism where
each token can pass the message to itself in the next LSTM layer,
and all hidden states of its dependency words can be passed as well.
To address the second problem, they proposed a variation of the
LSTM layer, which allows inputs to be weighted according to edge
types. GS LSTM achieved an accuracy of 83.2%, which outperforms
Peng et al. (2017)’s architecture by 2.5%.

Most recently, Guo et al. (2019) introduced an attention-guided
graph convolutional networks (AGGCN) model. They consider that
the structure of the dependency graph that limits the token can be
updated only by its edges. Therefore, they proposed an attention-
guided layer to transform the dependency graph, with the word
embedding added into the weighted fully connected matrix, where
each cell represents the strength of the edge. They, then proposed a
densely connected layer to allow each token to receive a message

Fig. 1. Cross-sentence n-ary relation extraction examples
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(hidden state) from all tokens of the previous sub-layer. Finally, Guo
et al. (2019) aggregate the sentence representation and entity repre-
sentation to predict the relation type. The AGGCN achieved an ac-
curacy of 87.0% and outperformed Song et al. (2018)’s architecture
by 3.8%. However, we also found that Song et al. (2018)’s open-
source implementation has a significant improvement over their ori-
ginal results (see our Experiment section).

2.2 Abstract-level chemical-induced disease relation

extraction
Xu et al. (2016) proposed a Support Vector Machine (SVM)-based
approach to classify CDR that involves two feature-based classifiers:
sentence-level and abstract-level. Their system achieved an F1-meas-
ure of 50.73%. Zhou et al. (2016) proposed an ensemble approach
for the CDR task. They developed three classifiers: tree-kernel-based,
feature-based and LSTM-based. Their system achieved an F1-measure
of 56%. In addition, they proposed some corpus-specific post-proc-
essing rules for boosting performance to 61.31% in F1-measure.

In 2018, Li et al. (2018) introduced recurrent piecewise convolu-
tional neural networks (RPCNN). In their formulation, a candidate
means a unique CDR-ID pair, and an instance means a CDR-NE pair.
Therefore, one candidate can have multiple instances. They also pro-
posed that the piecewise convolutional neural networks (PCNN) repre-
sent the instances of the same candidate as a means to predict the
relation type. The recurrent neural network is used to aggregate the
hidden states of the instances from the same candidate to predict the re-
lation type. Their architecture achieved an F1-measure of 59.1%.

Recently, Verga et al. (2018) proposed Bi-affine Relation
Attention Networks (BRANs). They used the Transformer architec-
ture to encode the input text, and the output sequence of the
Transformer is passed into two separate multi-layer perceptrons
(MLP): head MLP and tail MLP. The first entity representation is
selected from the output of the head MLP, and the second entity rep-
resentation is selected from the output of the tail MLP. Verga et al.
(2018) used a bi-affine function to calculate the correlation between
two entity representations and update the hidden sequence. Finally,
they aggregate the entity representations of the hidden sequence to
calculate the softmax of relation type. Their architecture achieved
an F1-measure of 62.1%.

2.3 Graph Transformer
Cai and Lam (2020) proposed a graph transformer architecture for
the tasks of the abstract meaning representation and the syntax-
based machine translation. They proposed a relation-enhanced glo-
bal attention mechanism that employed gated recurrent unit (GRU)
for learning the relation represent of two nodes, then append the
mechanism to the self-attention layer. However, their method does
not take generalized pre-trained weights learned with large datasets.
Instead, we use the original Transformer and our Graph
Transformer (GT) simultaneously. By doing so, the original
Transformer part can readily use the pre-trained weights, and only
pre-trained word embeddings are needed for the GT part. Therefore,
our BERT-GT model is easier to adapt to different languages or text
compared with Cai and Lam (2020).

3 Materials and methods

In this section, we introduce BERT-GT and its detailed implementa-
tion. The BERT-GT architecture is illustrated in Figure 2, and can
be seen as having four parts: (i) input representations for two
Transformers, (ii) Transformer, (iii) Graph-Transformer and (iv)
layers for aggregating the output states of two Transformers.

The input representations are a tokenized paragraph and its
directed graph. The Transformer is the same as BERT’s
Transformer, and we take it from BERT, which allows BERT-GT to
reuse the pre-trained weights from Lee et al. (2019). GT uses an
architecture similar to that of the Transformer but has two modifi-
cations. First, the input of GT requires the neighbors’ positions for
each token. Second, the self-attention mechanism is replaced with a

neighbors–attention mechanism, whereby each token’s output value
is calculated by only its neighbor tokens. Finally, we aggregate the
hidden states of two Transformers and use the softmax function to
calculate the probability of each label. Here, we describe the prob-
lem formulation for the cross-sentence n-ary and the CDR tasks,
and then we introduce BERT-GT.

3.1 Problem formulation
In our formulation, we assume the text T and entities E are given.
Although an input text can be of any arbitrary length, cross-
sentence relations are commonly seen within paragraphs instead of
across paragraphs or in multiple sections/chapters. Similar to the
previous works, we only evaluated BERT-GT on PubMed abstracts.
Accordingly, the length of the input text T is within the maximum
of an abstract length. Further, an entity can appear more than once
in the text and can have more than one ID. Thus, we expand the en-
tity by its IDs. If an entity with many IDs, we will expand the entity
into multiple entities, and each has a unique ID. In other words, if
an entity of a training/test instance has two IDs, then we will expand
it into two training/test instances. Each entity in an instance has a
unique ID after the expansion. We follow the problem definition of
Guo et al. (2019). The classification problem is defined as whether a
relation R holds for the text T and an entity subset E0. In the cross-
sentence n-ary task, we assume that given a paragraph T that con-
tains a variant/mutation v, a gene g and a drug d. The classification
problem checks whether R holds for the ðd; g; vÞ triple. In the
abstract-level chemical-induced disease classification task, a chem-
ical c and a disease d can appear in a abstract multiple times. Each c
and d can have one or more chemical ID (cidÞ and disease ID (did).
The classification task can be defined as checking whether R holds
for the ðcid; didÞ pair.

3.2 The graph transformer for the BERT
As noted, BERT-GT is illustrated in Figure 2. The Transformer part
is adapted from the BERT model (Peng et al., 2019) and allows us
to use the pre-trained model from a large set of biomedical litera-
ture. The input of the Transformer is BERT’s preprocessed word
embeddings (Devlin et al., 2019) of the text T, where Ei denotes the
ith entity, and the same entity Ei can appear in T more than once.
For example, in Figure 2, Ei appears twice in the T.

The input of GT consists of two representations. One is BERT’s
preprocessed word embeddings, which is the same as the
Transformer part. Another is the neighbors of each token. For the n-
ary dataset, we use the edges provided by the original dataset, and
these edges are generated using the NLTK dependency parser and
some heuristic rules. These edges are utilized in many of the previous
methods. Because CDR does not provide dependency edges, we use
ScispaCy (Neumann et al., 2019) to parse the paragraph into de-
pendency trees, and the headword and the adjacent two words of
each token are treated as neighbors. Notably, many studies (Miwa
and Bansal, 2016; Peng et al., 2018; Xu et al., 2015) show that the
use of the shortest path between entities can improve the relation
classification. Therefore, for each entity, we also use the headwords
between the entity with the other entities as its neighbors.

The architectures of the Transformer (Vaswani et al., 2017) and
GT are illustrated in Figure 3. GT replaces the self-attention layer of
Transformer with the neighbor–attention layer, and Nx and Ny de-
note the number of gray block layers.

In the multi-head self-attention mechanism, each input token
representation is divided into n sub-representations of the input
token, and n is the number of heads. Assume that the size of the in-
put token representation is h, and the size of input token representa-
tion for each attention is h divided by n. Here, we use h0 to denote
the size of input token x for each attention in Figure 4, which also
illustrates that self-attention is neighbors-attention. Each xi is trans-
formed into qi, ki and vi by multiplying the learnable weighted
matrices of Mq, Mk and Mv. The blue vectors of xi denote the neigh-
bors of x1. Self-attention calculates z1 by dividing the summation of
q1, multiplying by ki in the text. Although the text length is longer,
z1 may suffer from the noisy message. In contrast, we propose a
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neighbors–attention mechanism, whereby we use only the neighbors

of x1 to calculate the neighbors–attention value a1. As illustrated in
Figure 4, the vectors in blue represent the neighbors of xi.

3.3 The output layer of the BERT-GT
For the classification task, we obtain the sentence representation of

the Transformer and the entity representation of GT. The same en-
tity in different positions is aggregated by using the mean average,

as illustrated in Figure 2. We then concatenate the mean averages of

different entities to form the entity representation. We also evaluate
the effect of using [CLS] for the graph transformer (see our

Supplementary Materials). Both sentence representation, for which
we choose the output state of the Transformer’s first token, and en-
tity representation are passed into the linear transformation layer

and follow the dense and softmax layers for the classification. The
dimension of the output layer is the same as the number of labels.

4 Experimental results

4.1 Experimental setup
To test the generalizability of our aproach, we evaluate our method
on two independent tasks: (i) Peng et al. (2017)’s n-ary dataset for
the cross-sentence n-ary relation extraction task; and (ii) Li et al.
(2016) and Wei et al. (2016)’s CDR dataset for the abstract-level re-
lation classification task. We also evaluate our BERT-GT on trad-
itional sentence-level biomedical relation extraction tasks (see our

Supplementary Materials).
For both tasks, we compare with four state-of-the-art models: (i)

BERT model (Devlin et al., 2019); (ii) BlueBERT model (Peng et al.,
2019); (iii) GS LSTM model (Song et al., 2018); and (iv) AGGCN

model (Guo et al., 2019), through directly using their online source
code. Besides, we evaluate the performances of only using graph
transformer (GT) architecture. Note that we do not run the state-of-

the-art CDR systems on n-ary due to two main constraints. First,
most CDR systems (Li et al., 2018; Xu et al., 2016; Zhou et al.,
2016) are not publicly available for retraining on new datasets.
Second, the CDR task contains only the relation between two enti-
ties. Therefore the features/architectures of these systems cannot be

directly used to classify the relation of n entities. In contrast, the n-
ary systems can be adapted to classify the relation of two entities in
abstract-length text.

Fig. 2. BERT-GT architecture

Fig. 3. Transformer and Graph Transformer architectures
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4.2 Datasets
The n-ary datasets involve 6987 drug-gene-mutation (ternary) rela-
tion instances and 6087 drug-mutation (binary) relation instances,
and each instance is categorized into one of the five classes: ‘resist-
ance,’ ‘response,’ ‘resistance or nonresponse,’ ‘sensitivity,’ and
‘none.’ Following Peng et al. (2017)’s experiment settings, we also
considered the two-class classification task, whereby the class ‘none’
is treated as ‘no’ and the remaining classes are treated as ‘yes.’ There
are, however, two limitations to the n-ary datasets. First, although
the n-ary dataset is cross-sentence, the number of sentences is limited
to three per instance. Second, the numbers of instances with ‘no’ and
‘yes’ labels are balanced but are not representative of actual biomed-
ical text. Therefore, we also used the BioCreative CDR (Wei et al.,
2016) dataset for the evaluation.

The BioCreative CDR dataset consists of 1500 PubMed abstracts
and is annotated with 4409 chemicals, 5818 diseases and 3116
chemical-disease relations. The annotations include the spans of
entities and their corresponding MeSH IDs. The relations between

chemicals and diseases were annotated at the abstract-level, which
gives only the chemical-disease MeSH ID pair. In the CDR task,

1000 annotated abstracts are released for participants, and 500
annotated abstracts are used as the test set. Previous work (Xu et al.,
2016) shows that approximately 30% of positive CDR instances are

cross-sentence relations. The sizes and comparison of the two data-
sets are summarized in Table 1.

4.3 Evaluation metrics
Previous works used different evaluation metrics for the n-ary nnd
CDR tasks. To compare our method with earlier methods, we fol-

low their evaluation metrics for the two tasks. For the n-ary dataset,
we use five-fold cross-validation and report the average test accur-
acy. The partitions of the five-fold cross-validation are the same as

those of prior work (Peng et al., 2017). Similar to Song et al. (2018)
and Guo et al. (2019), we randomly selected 200 instances from the

non-test fold as a held-out set for validation and tuning of

Fig. 4. Two different attention mechanisms. For simplification, we use single cells below to represent the vectors above

Table 1. Sizes of the n-ary and the CDR datasets. ‘dgm’ means ‘drug-gene-mutation’; ‘dm’ means ‘drug-mutation’

n-ary CDR

NE types Drug, gene, mutation Chemical, disease

Normalization None MeSH ID

Relation type ‘resistance or non-response’, ‘sensitivity’, ‘re-

sponse’, ‘resistance,’ and ‘none’

Positive and negative (no relation)

Number of instances Resistance or non-response: 1479 dgm and

1259 dm instances;

Sensitivity: 1149 dgm and 1044 dm instances;

Response: 488 dgm and 501 dm instances;

Resistance: 292 dgm and 327 instances;

None: 3582 dgm and 2956 dm instances;

3116 positive pairs; 13477 negative pairs

Size of dataset set A total of 6987 dgm and 6087 dm instances for

the five-fold cross-validation

Training set: 500 abstracts; development set:

500 abstracts; test set: 500 abstracts
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hyperparameters. For the CDR dataset, we report the precision, re-
call and F1-measure on the test set, as the corpus is already divided
into the training, development and test sets. We merged training and
development sets and randomly selected 200 abstracts for validation
and tuning of hyperparameters. Besides, we evaluate the computa-
tional costs and effects of different hyper parameters (see our
Supplementary Materials).

4.4 Results of the cross-sentence n-ary dataset
The performance of the previous state of the art and all comparing
methods is shown in Table 2. ‘Single’ means that we report the ac-
curacy of instances within single sentences, while ‘All’ means the ac-
curacy of all instances. It is of note that the released version of the
GS LSTM shows better performance than what was reported in
Song et al. (2018). Its performance is also higher than that of
AGGCN, especially on the multi-class drug-gene-mutation evalu-
ation metric. Besides, we compare with the pure GT method that
removes the Transformer from our BERT-GT. GT scores signifi-
cantly higher than AGGCN on multi-class, but lower than GS
GLSTM. The lower performance might be because GT weights the
neighbors by using the neighbor–attention mechanism, and does not
utilize the edge type information which is used in GS GLSTM.

Table 2 shows that our BERT-GT method outperforms all of the
previous methods. Compared with AGGCN, our method outper-
forms it by accuracies of 5.07% and 11.73% on two-class and
multi-class drug-gene-mutation evaluations, respectively. According

to our observation of the error cases that are wrong in the AGGCN
but are correct in BERT-GT, the relation information of these cases
is less explicit. For example, ‘On the other hand, erlotinibDRUG

could not inhibit EGFRGENE phosphorylation in H1975 cells be-
cause the T790MMUTATION mutation in EGFR causes a conform-
ation change at the ATP binding pocket, thus decreasing the affinity
between erlotinib and EGFR.’ The above case was predicted as
‘None’ because both ‘not’ and ‘inhibit’ indicate a negative relation-
ship. If we take both terms into consideration, however, this indi-
cates a positive relationship: �26% of the cases contain negation
words, ‘not’ and ‘no.’

In addition, most methods show lower performances on multi-
class evaluation. GS GLSTM, BlueBERT and our BERT-GT
method, however, show that their multi-class evaluation can retain
the same level of performance as do their two-class evaluations. In
addition, our method outperforms BlueBERT on the drug-mutation
relation classification by 1.17% and 1.29% on two-class and multi-
class, respectively.

4.5 Results on the CDR dataset
The performance of our method and recent methods are shown in
Table 3. Here, we report only the performance of systems without
using domain knowledge in order to compare methods that can be
more generalizable. For the same reason, we report their perform-
ance that involves no post-processing or ensemble. Table 3 shows
that BERT-GT outperforms all of the other methods. In fact, BERT-
GT compares favorably to others even when they use additional
post-processing methods or ensemble (Gu et al., 2017; Verga et al.,
2018; Zhou et al., 2016). These results show that our system has the
potential to be adapted to other domains. In addition, our method
outperforms BlueBERT by an F1-measure of 2.38%. Considering
the size of the CDR test set is small, we implement a statistically sig-
nificant test to compare BERT-GT and BlueBERT (see our
Supplementary Materials).

GS LSTM and AGGCN, however, show lower recall on the
CDR dataset. We observed 25 false-negative cases that are wrong in
AGGCN but correct in our proposed method. In �65% of these
cases, the chemical and disease pairs co-occurred in a sentence at
least once. AGGCN, however, cannot identify them correctly. Note
that the maximum length of the input text is only three sentences in
the n-ary dataset, and each instance in the n-ary dataset consists of
only one annotated drug-gene-mutation. In contrast, the CDR data-
set is in abstract-length, a chemical can be mentioned in different
locations of the article. A chemical-disease can have a positive rela-
tion at one location in the abstract but have no relation at the rest of
the locations. Hence, it is sometimes challenging to use a graph to
distinguish the positive location from the negative ones. As a result,
unlike our approach BERT-GT, AGGCN and GS LSTM are not ro-
bust and generalizable to another domain or a new dataset without
additional effort.

Table 2. Accuracy of different methods on the n-ary test set

Model Drug-Mutation Drug-Gene-Mutation

Two-class Multi-class Two-class Multi-class

Single All All Single All All

Logistic regression (Peng et al., 2017) 73.90 75.20 – 74.70 77.70 –

Graph LSTM EMBED (Peng et al., 2017) 74.30 76.50 – 76.50 80.60 –

Graph LSTM FULL (Peng et al., 2017) 75.60 76.70 – 77.90 80.70 –

GS GLSTM (Song et al., 2018) 88.15 88.56 86.92 82.86 87.60 85.91

AGGCN (Guo et al., 2019) 85.78 85.36 76.88 86.06 86.44 79.62

GT 86.04 83.69 84.62 82.85 83.67 83.65

BERT (Devlin et al., 2019) 88.59 91.01 90.03 83.75 90.80 90.73

BlueBERT (Peng et al., 2019) 89.81 92.10 92.16 85.39 91.27 91.10

BERT-GT 91.67 93.27 93.45 85.49 91.51 91.35

Bold indicates that it is the highest score among all models.

Table 3. Performance on the CDR test set in comparison with state-

of-the-art systens

Model P R F

CD-REST (Xu et al., 2016) 59.60 44.00 50.73

Feature-TreeK-LSTM (Zhou et al., 2016) 64.89 49.25 56.00

þ post-processing 55.56 68.39 61.31

CNN (Gu et al., 2017) 60.90 59.50 60.20

þ post-processing 55.70 68.10 61.30

RNN-CNN (Li et al., 2018) 55.20 63.60 59.10

BRAN (Verga et al., 2018) 55.60 70.8 62.10

þ ensemble 63.30 67.10 65.10

GS LSTM (Song et al., 2018) 42.31 39.21 40.70

AGGCN (Guo et al., 2019) 94.23 19.46 32.26

GT 30.04 74.67 42.84

BERT (Devlin et al., 2019) 61.41 58.82 60.09

BlueBERT (Peng et al., 2019) 62.80 64.45 63.61

BERT-GT 64.94 67.07 65.99

Bold indicates that it is the highest score among all models.
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5 Discussion

5.1 The performance improvement as a result of adding

the graph transformer
We randomly sampled 50 error cases that were wrong in BERT’s
predictions but correct in BERT-GT from the n-ary test set. The
most common error cases of BERT are the instances in which
‘None’ labels were assigned to instances with other labels. These
cases constitute approximately 56% of the sampled error cases. For
example, ‘Interestingly, cells with these mutations also showed
greater sensitivity to gefitinib and erlotinibDRUG than cells with the
EGFRGENE mutation (exon 19 deletion), which are associated witsh
sensitivity to EGFR inhibitors in NSCLC. Mutations in PI3K
(H1047RMUTATION) have been shown to enhance HER2 mediated
transformation by amplifying the ligand induced signaling output of
the HER family of RTKs.’ The BERT model predicts this as ‘resist-
ance or non-response.’ Almost all of these cases are multiple-
sentence instances, and it seems that the long instances with some
keywords, such as ‘sensitivity,’ ‘associated,’ and ‘enhance,’ which
commonly appear in the positive instances, are not used to express
the relationship of these entities and can result in the wrong predic-
tion. In addition, we found that 20% of the sampled cases are intra-
sentence instances. For example, ‘Consistent with this, we found
that the introduction of R1275QVARIANT into EML4-ALKGENE had
no negative impact on sensitivity to crizotinibDRUG (IC50
47 6 8 nm) .’ This is misclassified as ‘resistance’ by the BERT model
instead of its ground truth ‘sensitivity.’ It seems that, although
BERT can use the key information from cross-sentence, it also is
relatively easier to make an incorrect prediction by using that infor-
mation and that training on cross-sentence also makes it easier to
misclassify short text. In contrast, BERT-GT suffered from fewer of
these problems, though a GT-only model does not perform well in
our observation. Taken together, this suggests the strengths of GT in
either focusing on the neighbor information or predicting short-text
instances, when built with the default BERT model.

5.2 Error analysis, limitations and future directions
Here, we discuss the error cases of BERT-GT and future research
directions. According to our observation of the BERT-GT error
cases on the CDR dataset, in 61% of the error cases, either chemical
or disease mentions occurred only once. For example, in the PMID :
25986755, the chemical ‘caffeine’ appears only in the first two sen-
tences of the abstract, and the disease ‘dysplasia’ appears only once
in the last sentence of the abstract. There is, however, a positive rela-
tionship between ‘caffeine’ and ‘dysplasia’ but no explicit informa-
tion that mentions this relationship; thus, it was misclassified as no
relation. Among these error cases, 75% do not have any single sen-
tence that mentions both the target chemical and disease. Therefore,
if the entity appears only once in the entire abstract and does not
provide explicit information, BERT-GT is likely to generate the
wrong predictions.

We also observed that there are some limitations to the n-ary
dataset. For example, the n-ary dataset is a balanced dataset in
which the numbers of positive and negative instances are balanced,
which is not common in biomedical domains, such as CDR. Further,
the sentence length of their instances is no more than three, but, in
the biomedical domain, the sentence length of the text is usually lon-
ger. Therefore, we consider it a research direction to develop a more
representative benchmark for evaluating n-ary RE tasks in the
future.

6 Conclusion

In the biomedical literature, a biomedical relation usually consists of
multiple entities and is represented in multiple sentences. The limita-
tions on the architectures/features of previous methods are that they
can perform well only on either cross-sentence n-ary relation extrac-
tion or CDR extraction. In this work, we propose a BERT-GT
method. We show that BERT can be used to classify a cross-
sentence relation, such as a PubMed abstract, because the attention

mechanism makes it able to utilize the key information from the
whole text and thus make the prediction. Our GT allows the BERT
to use the graph information, which provides the neighbors of each
token. The neighbors can be specified to focus on specific informa-
tion for each token. The results demonstrate that BERT-GT achieves
the highest performance on both problems and demonstrates its po-
tential to be applied to a more generalizable relation classification
problem.
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