Skip to main content
. 2021 Jan 8;36(24):5678–5685. doi: 10.1093/bioinformatics/btaa1087

Table 3.

Performance on the CDR test set in comparison with state-of-the-art systens

Model P R F
CD-REST (Xu et al., 2016) 59.60 44.00 50.73
Feature-TreeK-LSTM (Zhou et al., 2016) 64.89 49.25 56.00
+ post-processing 55.56 68.39 61.31
CNN (Gu et al., 2017) 60.90 59.50 60.20
+ post-processing 55.70 68.10 61.30
RNN-CNN (Li et al., 2018) 55.20 63.60 59.10
BRAN (Verga et al., 2018) 55.60 70.8 62.10
+ ensemble 63.30 67.10 65.10
GS LSTM (Song et al., 2018) 42.31 39.21 40.70
AGGCN (Guo et al., 2019) 94.23 19.46 32.26
GT 30.04 74.67 42.84
BERT (Devlin et al., 2019) 61.41 58.82 60.09
BlueBERT (Peng et al., 2019) 62.80 64.45 63.61
BERT-GT 64.94 67.07 65.99

Bold indicates that it is the highest score among all models.