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Abstract

The retrosplenial cortex (RSC) is thought to be involved in a variety of spatial and contextual memory processes. However,
we do not know how contextual information might be encoded in the RSC or whether the RSC representations may be
distinct from context representations seen in other brain regions such as the hippocampus. We recorded RSC neuronal

responses while rats explored different environments and discovered 2 kinds of context representations: one involving a
novel rate code in which neurons reliably fire at a higher rate in the preferred context regardless of spatial location, and a
second involving context-dependent spatial firing patterns similar to those seen in the hippocampus. This suggests that

the RSC employs a unique dual-factor representational mechanism to support contextual memory.
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Introduction

The retrosplenial cortex (RSC) is critically involved in spatial
and contextual memory. RSC damage impairs spatial memory
in rodents (Keene and Bucci 2009; Pothuizen et al. 2010) and
the RSC is active during spatial navigation tasks in rodents and
humans (Epstein et al. 2007; Auger et al. 2015; Milczarek et al.
2018; Miller et al. 2019). The RSC has also been implicated in
memory for experimental contexts, which are typically defined
by spatial geometry along with nonspatial background features
of the environment (e.g., color). RSC lesions impair contextual
memory (Keene and Bucci 2008; Kwapis et al. 2015; Robinson
et al. 2018; Corcoran et al. 2011) and optogenetic reactivation of
RSC neurons is sufficient to evoke a previously learned contex-
tual fear memory (Cowansage et al. 2014). Functional magnetic
resonance imaging data from human subjects also suggest that
the RSC is involved in contextual memory (Bar and Aminoff
2003; Kim and Maguire 2018).

Despite the evidence for an RSC role in context, we do not
know how contextual information might be encoded there.
The hippocampus has a well-documented role in contextual
memory (Hirsh 1974) which is thought to be supported by
context-unique patterns of activity (Smith and Bulkin 2014).
For example, when rats explore 2 distinct environments
hippocampal neurons exhibit different spatial firing patterns for

each environment (i.e., remapping, Leutgeb et al. 2005). Recent
work has shown that RSC neurons exhibit spatial firing patterns
(Alexander and Nitz 2015; Mao et al. 2018; Miller et al. 2019)
which could also serve as a substrate for contextual memory.
However, we do not know whether these firing patterns undergo
remapping in response to context change or whether some
other coding mechanism may support contextual memory. In
the present study, we recorded RSC neuronal firing patterns
while rats explored 2 different environments. We discovered
that the RSC uses a multifaceted population code to represent
contexts, including a novel rate code for the context as well as
hippocampus-like remapping.

Material and Methods
Subjects and Surgery

Subjects were 4 adult male Long Evans rats (Charles River Lab-
oratories, Wilmington, MA, USA) implanted with custom-built
electrode microdrives containing 20 moveable tetrodes made
from 17 pm platinum/iridium (90/10%) wire, platinum plated
to an impedance of 50-300 ks2, and arranged in two 10-tetrode
linear arrays (one per hemisphere) angled 30° toward the mid-
line and spanning approximately 4 mm along the rostrocaudal
axis of the brain (2-6 mm posterior to Bregma, +1.5 mm lateral).
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Tetrodes were lowered into the RSC (35-70 pm daily) until a
depth of at least 1 mm was reached. Tetrodes were lowered after
every recording session (~15-30 pm) in order to maximize the
number of unique neurons recorded. Recording locations are
shown in Supplementary Figure S1.

Apparatus, Behavioral Procedures, and Neuronal
Recordings

We recorded a total of 146 RSC neurons from 4 rats. Behavioral
measures, numbers of neurons, and key results are shown
separately for each subject in Supplementary Figures S2 and
S3. Consistent with our previous studies (Vedder et al. 2017,
Miller et al. 2019), recordings were primarily targeted at the
granular b (RSGb) subregion although some records were also
taken in the agranular subregion (see Supplementary Fig. S1).
We classified putative pyramidal neurons and interneurons
according to spike width (Brennan et al. 2020). There were no
apparent regional differences or differences across cell types
in the context-dependent firing properties we examined, so
neurons from both regions and cell types were included in our
analyses (see Supplementary Fig. S6C for details). Recordings
were obtained while the rats foraged for chocolate sprinkles
in 2 distinct PVC boxes measuring (1 mx1 mx 0.5 m deep)
that differed in the color of the box (black or white), the color
of the surrounding walls/curtains (white or black), background
masking noise (pink or white noise), and ambient odor left by
wiping the boxes with baby wipes of different scents (Rite Aid,
Inc.). During the approximately3 min ITI, the rat was placed
in an opaque cylinder (30 x 65 cm). Daily recording sessions
involved four 12 min trials, 2 in each context, during which
neuronal spike data and video data were collected (Digital
Cheetah Data Acquisition System, Neuralynx, Inc. Bozeman,
MT, USA). The 2 contexts (black and white) were presented in
a counterbalanced, randomized sequence for each recording
session, although the data are illustrated in ABAB sequence
for clarity.

Data Analyses

Context-Dependent Spatial Coding

Spatial firing rate maps for each neuron were constructed by
summing the total number of spikes that occurred in a spatial
bin (2.5 x 2.5 cm), dividing by the amount of time spent in that
bin and then smoothing the data (Skaggs et al. 1996). Pixels that
were not visited were excluded from the analysis. Correlations
(Pearson’s r) were computed to compare spatial firing patterns
for each pair of trials involving visits to the same context and
visits to different contexts. The resulting r-values were aver-
aged to create one correlation reflecting within-context sim-
ilarity and one reflecting between-context similarity for each
neuron.

Population coding was assessed using a minimum distance
classifier. Population firing rate vectors for every 250 msec time
window during the recording session were constructed by com-
bining neurons across subjects and sessions. Firing rates from
every neuron were z-scored across all time windows to control
for differences in baseline firing rates, which render population
variance and distance measures overly sensitive to a few neu-
rons with high firing rates. Time windows from each session
were then sorted according to which context (black or white)
and spatial bin (36 bins) the rat was in during that time window.

Larger spatial bins (17 cm x 17 cm) were used for this analysis
so that a sufficient number of visits could be accumulated to
train the classifier. Because rats differed in the number of visits
they made to each pixel, only 40 visits (250 msec time windows)
from each spatial bin in each context were included in the
analysis (20 from each trial, drawn at equal intervals across
the duration of each trial). When a rat made more than 20
visits to a spatial bin, we preferentially selected visits where the
average spatial location of the rat was closer to the center of
the bin to avoid including time windows that contained spiking
activity from multiple bins. This resulted in 1440 firing rate
vectors during each of the 4 context trials (6 pixels x 6 pixels x 20
time windows), representing the instantaneous population fir-
ing patterns observed across all the spatial locations. We then
computed the mean firing rate vector for each spatial bin in
each of the 4 trials (White 1, White 2, Black 1, and Black 2),
reflecting the average population firing pattern at each location.
We then classified each of the 1440 individual vectors into
spatial bins according to which average vector was the most
similar (i.e., the smallest Euclidean distance). For within-context
classification, we compared the individual vectors to the mean
vector for the other trial in the same context (e.g., individual
vectors from Black 1 were classified according to the average
firing patterns for Black 2). For between-context classification,
we found the distances to spatial bins occurring within the
opposite context (e.g., individual vectors from Black visits were
classified according to the average firing patterns for White
visits). This procedure yielded a measure of the degree to which
instantaneous population firing patterns matched the typical
(average) firing pattern for the same location during the other
visit to the same context and for visits to the opposite context.
They therefore reflect how stable and reliable the spatial firing
patterns are within and between contexts. Classification errors
were counted when the instantaneous pattern was most similar
to an incorrect spatial bin and spatial error was computed as the
distance (in cm) between bin centers of the classified bin and the
actual bin.

Rate Coding of the Contexts

The context preference for individual neurons was measured as
the normalized difference in firing rates for visits to different
contexts and for visits to the same context, computed as the
average difference between the firing rates observed in the 2
trials of interest (e.g., Black vs. White or Black 1 vs. Black 2),
in 250 msec bins, divided by the standard error. Rate coding
was assessed at the population level by combining neurons
from all the subjects and sessions and computing population
vectors containing the normalized (z-scored) firing rates for
each 250 msec time window, resulting in 2880 firing rate vectors
for each of the four 12 min trials of the session. We also
computed the mean firing rate vector for each of the 4 trials
(White 1, White 2, Black 1, and Black 2). We then computed
the Euclidean distance between each of the 2880 vectors from
one trial (e.g., Black 1) and the mean vector from the other trial
of the same context (e.g., Black 2) and the opposite context
(White). This yielded a measure of the similarity between
each instantaneous firing pattern and the overall (mean) firing
pattern for the black and white contexts. Individual firing
rate vectors were classified according to the most similar
context (smallest distance) and classification errors were
counted when the smallest distance was to the opposite
context.
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Linear-Nonlinear Model

We modeled the effects of multiple behavioral variables on
the firing rates of single RSC cells with a linear-nonlinear (L-
N) model developed by Hardcastle et al. (2017) for use in the
medial entorhinal cortex. This approach is particularly useful for
assessing the firing properties of cortical neurons that respond
to complex combinations of behavioral and experimental vari-
ables. It allows for the independent assessment of how each
variable or combination of variables influences neuronal firing.
Briefly, the model estimates the firing rate of an individual
neuron as a function of the value of each variable of interest
(context, head direction, velocity, position, angular velocity, and
acceleration). For each neuron, one model was generated for
every possible combination of variables (64 models total) and
then these models were compared against one another by com-
puting the log-likelihood of held-out data under the model, and
penalizing models that over-fit the data. Neurons were then
classified in terms of which variables were significantly encoded
(Supplementary Fig. S4H). A model-derived tuning curve was
also obtained for each neuron and variable, which describes
how behavior variables translate into firing rates for the neu-
ron. These model-derived firing rates were used to illustrate
context-dependent firing rates independent of other variables
in Figures 2C and 3, but all formal analyses and statistical tests
were performed on actual observed firing rates.

Results

Many RSC neurons exhibited clear spatial firing patterns that
differed across the 2 contexts (Fig. 1A, neurons 1-3) and pixel-
by-pixel spatial correlations were significantly higher for visits
to the same context (e.g., Black 1 vs. Black 2) than for visits to
different contexts (Black vs. White, t(145) = 8.89, P < 0.001, Fig. 1C).
Interestingly, response patterns varied widely across neurons
in a manner suggestive of a distributed population-level rep-
resentation. Spatial firing took the form of high baseline firing
rates with relatively large regions of elevated firing, consistent
with previous reports (Miller et al. 2019), and many neurons
showed modest amounts of spatial specificity (Fig. 1, neurons
4-5) or none at all. The neurons also varied in terms of their
context-specificity, with some neurons apparently insensitive to
context change (Fig. 1, neurons 6-8). Despite this heterogeneity
of response patterns, the RSC population as a whole exhibited
clear evidence of context-specific spatial firing, with a large
majority of neurons (82.12%) showing greater similarity for visits
to the same context than for visits to different contexts (Fig. 1B,
circles above the unity line).

In order to explicitly examine population-level firing pat-
terns, we combined the neurons from all rats into a single
population and tested spatial firing patterns using a minimum
distance classifier. If the neural population reliably exhibits
unique firing patterns at each spatial location, then it should
be possible to match a sample of firing data from a subsequent
visit to the correct location. In contrast, if the firing at a given
location was not reliable and instead varied from one visit to
the next, then classification would fall to chance. We applied
this logic to assess context-dependent spatial firing patterns
by dividing the environment into a 6x6 grid and generating a
map of the average population firing pattern at each location
for each trial. We then took brief samples (250 msec) of firing
data from the other trials and attempted to decode the rat’s
location by comparing the samples to the original map. By

applying the classifier to trials from the same context (e.g., Black
1 and Black 2), we could determine how reliably the spatial firing
patterns were expressed within a context. Classification using
trials from different contexts (e.g., Black 1 and White 1) revealed
how similar or distinct spatial firing patterns were for the 2
different contexts.

We found that classification using trails from the same con-
text correctly decoded the rat’s current position far more often
than expected by chance (24.62%, compared to chance success
rate of 2.80% obtained by shuffling spatial bin labels, binomial
test P <0.001; Fig. 1D, E). The correct spatial bin was the most
frequently decoded location, followed by the adjacent spatial
bins (Supplementary Fig. S4). Decoding accuracy declined signif-
icantly when we attempted to use spatial firing patterns from
one context to decode the rat’s location in the other context
(tos79) = 14.07,P < 0.001, t-test on distributions of spatial distance
errors), indicating that spatial firing patterns were distinct in
the 2 contexts. However, decoding accuracy remained above
chance even for different contexts (11.58% correct compared to
a chance rate of 2.80%, binomial test P < 0.001), suggesting that
some spatial information is preserved across these 2 contexts.
This pattern of results is consistent with the correlation analysis
reported above. Both single neuron and population-level anal-
yses indicate consistent spatial firing within each context and
distinct firing patterns for different contexts.

Many RSC neurons exhibited reliably higher firing rates in
1 of the 2 contexts (Fig. 2A), suggesting a possible rate coding
mechanism for differentiating the contexts. We examined this
by binning the firing rates for each neuron and trial into twelve
60 s time bins, regardless of spatial position, and we compared
the firing rates across trials. Binning the data according to time
rather than space revealed consistent contextual difference in
firing rates that were not attributable to ongoing behavior or
spatial location since these factors are largely independent of
time. Analogous to the spatial correlations above, the firing rates
of RSC neurons showed greater divergence for visits to different
contexts than across visits to the same context (Fig. 2B, points
above the unity line) and between-context firing rate differ-
ences were significantly greater than within-context differences
(tasy =477, P<0.001). As with the spatial coding, variability
in the rate coding responses across neurons suggested a dis-
tributed population representation. The rate differences varied
from a strong preference for the black context to a strong pref-
erence for the white context, with similar numbers of neurons
preferring each (Supplementary Fig. S5A).

We examined rate coding at the population level by combin-
ing data from all rats and neurons into a single population and
computing firing rate vectors for every 250 msec time window.
We then computed the Euclidean distance between the popu-
lation vector for each time window and the mean population
vector for the black and white contexts. This allowed us to ask
whether the pattern of firing rates across the neural population
at each moment in time was more similar to the average white
box firing pattern or black box pattern. We found that the
population firing patterns were nearly always more similar to
the mean of the same context than of the opposite context,
which allowed us to correctly classify any population vector as
having come from the black box or the white box over 90% of
the time (Fig. 2D, P <0.001, compared to a control distribution
obtained by shuffling context labels). Therefore, despite consid-
erable moment to moment variability in firing patterns resulting
from differences in behavior and spatial location, there was an
overriding consistency within each context that could easily
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Figure 1. Retrosplenial cortical neurons exhibit context-specific spatial coding. (A) Spatial firing rate maps from illustrative examples of spatial firing patterns in
the black and white contexts. Some neurons (e.g., neurons 1-3) exhibited spatially localized firing that was context dependent, whereas others (4-5) exhibited less
spatial specificity (note that the color scale starts above 0). Some neurons (e.g., 6-8) exhibited spatial firing patterns that were not context dependent. Plots are shown
in Black-White-Black-White order for illustration. The actual order of black and white trials was randomized. (B) Pixel-by-pixel correlations (open circles) of firing
rate maps for trials occurring in the same context (y-axis) and different contexts (x-axis). Most neurons exhibited more similar spatial firing for visits to the same
context than for different contexts (circles above the unity line and inset). (C) Average within-context correlations were significantly higher than between-context
correlations. (D) Decoding of the rat’s current position from population activity patterns was more accurate when the classifier was trained on data from the same
context (within) than when trained on data from the different context (between) and compared to shuffled data. (E) Heat maps illustrating an example of successful
decoding of the current position (pixel with a circle) using same-context data (top) as compared to different-context data. One example location is shown here. See
Supplementary Figure S4 for all other locations.
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be decoded. Principal components analysis produced the same
pattern of results, with distinct firing patterns for the black and
white contexts (Supplementary Fig. S5C).

RSC neurons exhibited 2 types of context-specificity, context-
dependent spatial firing patterns and context-dependent rate
coding. Measures of these types of context coding were not
correlated (r=0.01, P=0.89, also see Supplementary Fig. S6A, B)
and individual neurons could have a strong rate code, a strong
spatial code, neither or both (Fig. 3). Many neurons exhibited
only small or moderate amounts spatial or rate coding of the

context, and a substantial minority of neurons did not carry
contextual information of either type (circles near or below zero).
However, a majority of neurons differentiated the contexts on
one or both dimensions (Fig. 3, upper right quadrant), suggesting
that contextual information is carried by a distributed popula-
tion code which does not depend solely on a small number of
neurons with strong spatial or rate coding.

Previous studies indicate that individual RSC neurons exhibit
complex response patterns that are influenced by a variety of
task variables (Alexander and Nitz 2017; Vedder et al. 2017;
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Figure 2. RSC neurons exhibit a rate code for the context. (A) Example neurons illustrating rate coding of the context. For each neuron, the spatial firing rate map is
shown above and the average firing rate for the 12 consecutive minutes of each trial is shown in the line plots below. Many rate coding neurons (e.g., 1-3) exhibited little
spatial selectivity within the environment, but some neurons exhibited spatial firing with different overall rates in the 2 contexts (e.g., neuron 4 which fired near the
walls). (B) Firing rate differences for visits to the black and white contexts (between-context rate differences) are plotted against firing rate differences for visits to the
same context (within-context rate differences) for each neuron (circles). Greater differentiation of the 2 contexts, as compared to within-context baseline variability,
is indicated by circles above the unity line. Average within- and between-context firing rate differences are shown in the inset. (C) Firing rates across the 4 trials are
shown for all neurons in 1 min time windows sorted by firing rate in the first black context trial. The influence of noncontextual variables (e.g., running speed) was
statistically removed for illustration (see L-N model methods and Fig. 4). (D) Population firing patterns (250 msec vectors) are plotted in terms of their distance from
the mean representation of the black and white contexts. Individual population vectors from the black context (left) were nearly always closer to the average black
context representation (dots above the unity line). The inset shows the proportion of population vectors accurately classified as having come from the black context
(B) and erroneous classifications to the white context (W). The reverse is seen for population vectors taken from the white context (right).
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Figure 3. Individual neurons (circles) exhibited varying degrees of spatial coding
and rate coding of the contexts. Spatial coding of the context (x-axis) is computed
as the between-context spatial correlation minus the within-context correlation
(fwithin—Tbetween)- POSitive numbers indicate greater within-context similarity
of firing patterns, as compared to between contexts. Rate coding (y-axis) is
computed as the between-context rate difference minus the within-context
rate difference. Positive numbers indicate greater firing rate differentiation of
the contexts, as compared to baseline firing rate variability across visits to the
same context. All firing rates were normalized (z-scored) and the influence
of noncontextual variables (e.g., running speed) was statistically removed for
illustration using the L-N model, as in Figure 2C.

Miller et al. 2019). This can include behavioral variables such
as running speed, acceleration, angular velocity, and heading
direction. It was therefore important to rule out the possi-
bility that the apparent contextual differences instead reflect
systematic behavioral differences between the 2 contexts. We
examined the behavior of each subject and found that behavior
was broadly similar across contexts although some subjects did
exhibit behavioral differences (Supplementary Fig. S2). In order
to formally assess the influence of these behavioral variables, we
applied a statistical approach designed to independently assess
the influence of multiple behavioral variables on neuronal firing
(Hardcastle et al. 2017, see L-N model in Methods). The firing rate
of each neuron was decomposed into separate tuning curves
for each variable. Then individual variables were sequentially
added to our model only if they significantly improved the ability
of the model to predict firing. Thus, any number of variables
can be found to influence firing but those that have no signif-
icant influence are excluded. We found that more than half of
the neurons carried a significant amount of information about
spatial location, context, velocity, and head direction, whereas
a smaller proportion carried information about angular veloc-
ity and acceleration (Fig. 4A), and most neurons (84%) carried
information about 2 or more of these variables simultaneously.
Importantly, 58% of the neurons significantly encoded the con-
text, even after accounting for the influence of running speed
and other behavioral variables. This suggests RSC neuronal fir-
ing carries a clear contextual signal that is readily apparent
despite the influence of noncontextual behavioral variables. For
example, neuronal firing is strongly correlated with running
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Figure 4. (A) The bar plot indicates the number of neurons that significantly
encoded each of the 6 behavioral and task variables, as indicated by the L-
N analysis. Most neurons encoded more than one of these variables, with the
majority encoding 2 or 3. The pie chart shows the proportion of neurons that
encoded different numbers of the 6 variables. Only 2% of the neurons encoded
none of the variables and none encoded all 6. (B) Average firing rates for all
context coding neurons (identified by the L-N model) are plotted across the
range of running speeds. Separate lines are shown for the 2 visits to the preferred
context (i.e., the context with the highest firing rate) and the 2 visits to the
nonpreferred context with SEM indicated by shading. Note that the firing rates
clearly differentiated the 2 contexts at any given running speed.

speed, even in the neurons that significantly encoded context,
but the effect of context is nevertheless apparent across all
speeds (Fig. 4B, also see Supplementary Fig S2B).

Discussion

RSC neurons exhibited a clear population-level representation
of the environmental context, the loss of which could readily
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explain contextual memory deficits in subjects with lesions
(Keene and Bucci 2008; Nelson et al. 2014; Kwapis et al. 2015;
Robinson et al. 2018). This involved 2 distinct types of context-
specificity, spatial coding, and rate coding. The robust rate code
for the context was a surprising finding. We know of no other
instances where rate coding is used to differentiate complex
multidimensional variables like the environmental context, and
the RSC rate code was so reliable that we could accurately
distinguish the contexts from just a brief glimpse of the firing
pattern. Although hippocampal neurons exhibit rate coding,
it involves firing rate changes within the neuron’s place field
and seems to reflect a kind of partial remapping of spatial
firing patterns in response to relatively small changes in the
environment (Leutgeb et al. 2005). In contrast, the RSC rate code
provides an unambiguous context-discriminating signal that is
independent of spatial location within the environment. This
clear and simple context signal could readily be used by other
brain regions to modulate processing according to the current
context.

Interestingly, rate coding neurons may explain why optoge-
netic reactivation of the RSC can effectively evoke contextual
memories (Cowansage et al. 2014). The endogenous firing pat-
terns of many neural populations involve precise temporal or
spatial patterning, which is quite different from artificial reacti-
vation patterns. In contrast, some RSC rate coding neurons show
little spatial or temporal patterning, so artificial reactivation of
these neurons could provide a contextual signal that is similar
to the endogenous signal. Hippocampal reactivation may also
reactivate RSC rate coding neurons through extensive direct and
indirect connections between the 2 structures (Wyss and Groen
1992). Consistent with this idea, reactivation of RSC neurons
is sufficient to evoke contextual memories even without the
hippocampus (Cowansage et al. 2014).

Previous studies have shown that RSC neurons generate a
population-level representation of the current location within
the environment (Alexander and Nitz 2015; Mao et al. 2018;
Miller et al. 2019). However, these studies employed mazes in
which sensory and motor variables such as running speed,
head direction, and optic flow are invariably confounded with
location, so it is notable that we found similar spatial repre-
sentations in the RSC during unconstrained exploration in an
open field where these variables are less likely to account for
spatial firing patterns. As with previous studies, RSC neurons did
not exhibit discrete, highly specific place fields like those seen
in the hippocampus. Instead, they fired across broad regions
of the environment with reliably higher rates in some regions
and lower rates in others. Consistent with recent reports of
RSC boundary coding (Alexander et al. 2020), many neurons had
regions of elevated firing near the walls and these firing patterns
also appeared to be sensitive to the context manipulation (see
Figs. 1A and 2A).

The RSC spatial representations differentiated the 2 contexts
in a manner similar to the hippocampus (Leutgeb et al. 2005),
with many RSC neurons exhibiting clear remapping across the 2
contexts (Fig. 1A). However, the amount of remapping varied and
some neurons had spatial firing patterns that were insensitive
to the context manipulation. This resulted in firing patterns
that were considerably more similar for the black and white
contexts than would be expected in the hippocampus. Average
within-context correlation coefficients were similar to those
seen in previous studies of the hippocampus using the same
context manipulations but between-context correlations were
substantially higher (RSC mean =0.32, compared to 0.05 in the

hippocampus, Law et al. 2016). Consequently, we were able to use
the firing patterns in one context to predict the rat’s location in
the other context at above-chance levels, suggesting that some
spatial information is preserved across different contexts. This
suggests that RSC spatial representations may not reflect the
kind of pattern separation seen in the hippocampus. Instead,
RSC neurons may encode both the stable features, such as the
shape of the box, as well as the differences between the contexts.

RSC lesions have been shown to disrupt contextual memory
across a range of experimental methods and varying environ-
mental cue manipulations (Keene and Bucci 2008; Nelson et al.
2014; Kwapis et al. 2015; Robinson et al. 2018). Like previous stud-
ies, our context manipulation involved changes in several envi-
ronmental cues of different modalities (box color, background
color of distal walls, odor, and background masking noise) so we
do not know how much each of the individual cues might have
contributed to RSC representations. The RSC receives extensive
input from the visual system and RSC neurons respond to visual
stimuli (Zhuang et al. 2017; Powell et al. 2020), suggesting that
visual input may play a dominant role in the RSC represen-
tations. However, visual information is not the sole determi-
nant: RSC spatial representations persist after removal of visual
information (i.e., in darkness, Mao et al. 2018) and conversely,
RSC representations readily differentiate distinct goals even
when visual input is the same (Miller et al. 2019). The RSC also
receives auditory input and there is an extensive literature on
RSC responses to auditory cues (e.g., Duvel et al. 2001; Todd et al.
2016). Less is known about the RSC role in processing olfactory
cues. However, studies of mating and pair bonding, where olfac-
tion is known to be critical, have implicated the RSC (Parker
et al. 2011; Ophir 2017). More recently, studies have shown that
the RSC is necessary for forming associations between auditory
and visual stimuli that occur together (Robinson et al. 2014; also
see Hindley et al. 2014; Nelson et al. 2015) and the capacity
to bind diverse stimuli together could be the foundation for
generating coherent context representations (Todd et al. 2017).
Further study is needed to quantify the degree to which RSC
neurons encode various cues and cue conjunctions, but our
finding that RSC representations are responsive to changes in
an array of contextual variables is consistent with this idea.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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