Skip to main content
. 2021 Mar 16;8(2):31–36. doi: 10.1049/htl2.12005

TABLE 1.

Comparison of the VGG‐16 and VGG‐19 with the LBTS‐Net16 and LBTS‐Net19 architectures in terms of accuracy and complexity where “DW‐Conv” represents the depth‐wise convolution operation

Layer VGG‐19 LBTS‐Net19 VGG‐16 LBTS‐Net16
Layer 1 Conv,64 Conv,32 Conv,64 Conv,32
Layer 2 Conv,64 DW Conv,32 Conv,64 DW Conv,32
Layer 3 Conv,128 DW Conv,64 Conv,128 DW Conv,64
Layer 4 Conv,128 DW Conv,64 Conv,128 DW Conv,64
Layer 5 Conv,256 Conv,256 Conv,256 Conv,256
Layer 6 Conv,256 Conv,256 Conv,256 Conv,256
Layer 7 Conv,256 Conv,256 Conv,256 Conv,256
Layer 8 Conv,256 Conv,256 Conv,512 Conv,512
Layer 9 Conv,512 Conv,512 Conv,512 Conv,512
Layer 10 Conv,512 Conv,512 Conv,512 Conv,512
Layer 11 Conv,512 Conv,512 Conv,512 Conv,512
Layer 12 Conv,512 Conv,512 Conv,512 Conv,512
Layer 13 Conv,512 Conv,512 Conv,512 Conv,512
Layer 14 Conv,512 Conv,512 Fc,4096 Fc,4096
Layer 15 Conv,512 Conv,512 Fc,4096 Fc,4096
Layer 16 Conv,512 Conv,512 output layer with softmax output layer with softmax
Layer 17 Fc,4096 Fc,4096
Layer 18 Fc,4096 Fc,4096
Layer 19 output layer with softmax output layer with softmax
# of parameters 1.43 × 108 7 × 107 1.38 × 108 6.5 × 107
Memory 549 Mb 269 Mb 528 Mb 248 Mb
Accuracy 98.66% 98.32% 98.46% 98.11%