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Macrophages are multifunctional immune cells whose functions depend on polarizable phenotypes and the microenvironment.
Macrophages have two phenotypes, including the M1 proinflammatory phenotype and the M2 anti-inflammatory phenotype,
which play important roles in many inflammatory responses and diseases. α-Ketoglutarate is a key metabolite of the TCA cycle
and can regulate the phenotype of macrophage polarization to exert anti-inflammatory effects in many inflammation-related
diseases. In this review, we primarily elucidate the metabolism, regulatory mechanism, and perspectives of α-ketoglutarate on
macrophages. The regulation of macrophage polarization by α-ketoglutarate may provide a promising target for the prevention
and therapy of inflammatory diseases and is beneficial to animal health.

1. Introduction

Macrophages are an important part of the immune system
and play vital roles in host defense and inflammation. Macro-
phages originate from monocytes released by the bone mar-
row, and they can migrate to different organs under natural
or pathological conditions to form macrophages [1]. Under
different pathological conditions, macrophages are polarized
into two inflammatory phenotypes: the M1 proinflammatory
phenotype and the M2 anti-inflammatory phenotype. The
M1 phenotype is classically activated macrophages induced
by various proinflammatory factors, such as lipopolysac-
charide (LPS), interferon-γ (INF-γ), and tumor necrosis
factor-α (TNF-α) [2–4]. M1 macrophages can excrete mul-
tiple proinflammatory cytokines such as interleukin-1 (IL-
1), interleukin-12 (IL-12), and interleukin-23 (IL-23), and
they can eliminate pathogens and activate adaptive immu-
nity [5]. Conversely, M2 macrophages are alternatively acti-
vated macrophages induced by anti-inflammatory factors
such as interleukin-4 (IL-4), glucocorticoids, and granulocyte
colony factor (G-CSF) [6]. M2 macrophages exhibit anti-
inflammatory effects in response to inflammation and produce
many anti-inflammatory cytokines such as interleukin-10 (IL-

10), transforming growth factor-β (TGF-β), and interleukin-4
(IL-4) [7–9], which could promote wound repair, fibrosis, and
bone reconstruction [10]. The polarizable phenotype of M1
and M2 macrophages is a dynamic process that depends on
the microenvironment and is regulated by a variety of intracel-
lular signaling molecules and pathways. Macrophages are
characterized by heterogeneity and plasticity and exhibit dif-
ferent functions due to signals in the local microenvironment.
The functions of macrophages are affected by metabolites,
inflammatory signals, oxygen tension, and cytokines [11–
13]. Additionally, many signaling pathways can also regulate
the polarization of macrophages, such as the Janus kinase/-
signal transducers and activators of transcription (JAK/STAT)
signaling pathway, phosphatidylinositol 3′-kinase (PI3K)/Akt
signaling pathway, c-Jun N-terminal protein kinase (JNK)
signaling pathway, notch signaling pathway, and nuclear fac-
tor kappa-light-chain-enhancer of B cell (NF-κB) signaling
pathway [14–17]. Of note, cellular metabolism could bidirec-
tionally regulate the functional response of macrophages,
and the microenvironment composition of cellular metabo-
lism plays a vital role in macrophage functions; in turn,
cellular metabolites alter tissue homeostasis [18]. Further-
more, the balance between the M1 and M2 phenotypes plays
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an important role in the occurrence and development of dis-
eases such as tuberculosis, tumors, and atherosclerosis and
contributes to maintaining host homeostasis [19–21].

The metabolic characteristics of macrophages are differ-
ent in the M1 and M2 phenotypes. The metabolism of M1
macrophages is characterized by strengthening the pentose
phosphate pathway (PPP), increasing fatty acid oxidation
(FAO), and improving anaerobic glycolysis while reducing
the oxidative phosphorylation (OXPHOS) process and sup-
pressing the tricarboxylic acid (TCA) cycle [22–24]. In con-
trast, M2 macrophage metabolism is mainly dependent on
FAO and OXPHOS approaches to exert anti-inflammatory
effects and repair tissue damage while decreasing glycolysis
and the PPP process [25, 26]. All of these approaches could
provide energy for macrophage metabolism and functional
responses. Moreover, many studies have suggested that some
amino acid metabolites play important roles in the preven-
tion and treatment of certain inflammation-related diseases
by inducing the polarization of macrophages and regulating
macrophage functions. For example, glutamine metabolism
could modulate macrophage polarization to prevent obesity
and diabetes [27]. Likewise, inhibition of the accumulation
and inflammatory signaling pathway of succinate could
suppress M1 polarization to exert anti-inflammatory effects
[13]. Notably, as an important metabolite of the TCA cycle
and a precursor of glutamate and glutamine, α-ketoglutarate
serves as an energy source and plays an important role in
immunity, bone development, intestinal health, and the oxi-
dative system [28–30]. Moreover, α-ketoglutarate suppresses
M1 macrophage activation but promotes M2 macrophage
activation to exhibit anti-inflammatory effects by mediating
metabolic and epigenetic reprogramming [31]. In this review,
we emphasize the regulatory role of α-ketoglutarate in mac-
rophage polarization and provide a reference for the preven-
tion and treatment of inflammatory diseases.

2. α-Ketoglutarate Metabolism in Macrophages

α-Ketoglutarate is a key intermediate in the TCA cycle and is
generated from isocitrate by the oxidative decarboxylation of
isocitrate dehydrogenase (IDH) and glutamate by the oxida-
tive deamination of glutamate dehydrogenase (GDH). Then,
α-ketoglutarate is metabolized into succinyl-CoA, catalyzed
by α-ketoglutarate dehydrogenase (α-KGDH). Additionally,
glutamine can be converted into α-ketoglutarate under the
catalysis of GDH and glutaminase (GLS) via glutaminolysis.
Using multiple reaction monitoring (MRM) to detect the
targeted 13C-metabolic flux profiling of glucose and its inter-
mediate metabolites in macrophages, glucose was shown to
enter the cytoplasm and activate the TCA cycle and glycolysis
with increasing intracellular and extracellular metabolites
and selected enzyme levels in HIV-1 viral protein R- (Vpr-)
induced macrophages [32]. It was observed that α-ketogluta-
rate was metabolized into glutamate and increased intracellu-
lar and extracellular glutamate release, which was further
converted into glutamine in HIV-1-infected macrophages;
in turn, glutamine metabolism promoted the accumulation
of extracellular glutamate and α-ketoglutarate. Moreover,
IDH2, as a crucial enzyme in the TCA cycle, catalyzes isoci-

trate into α-ketoglutarate. In LPS-induced lung inflamma-
tion, IDH2 could regulate α-ketoglutarate production to
modulate the proinflammatory response mediated by NF-
κB [33]. Similarly, GDH-mediated α-ketoglutarate can pro-
duce energy in the TCA cycle but also inhibit activation of
the inhibitor of nuclear factor kappa-B kinase β (IKKβ), thus
suppressing NF-κB activation [34].

Collectively, α-ketoglutarate is derived from the oxidative
decarboxylation of isocitrate in the TCA cycle and is pro-
duced from glutamine and glutamate metabolism or external
sources, which play an important role in the polarization of
macrophages by providing an energy source for damaged
tissues (Figure 1). For example, glutamine metabolism
increases the accumulation of α-ketoglutarate and glucose
flux in the extracellular milieu of HIV-1-infected macro-
phages and HIV-1 Vpr-overexpressing macrophages via the
glycolytic pathway and TCA cycle, indicating that α-ketoglu-
tarate may be an energy resource for alleviating macrophage
damage [32]. In addition, the isotope tracing method was
used to investigate the pathways of glutamine metabolism
in white spot syndrome virus (WSSV), and glutamine was
found to be catabolized to glutamate by GLS and further
converted to α-ketoglutarate by GDH to replenish the TCA
cycle by the α-KGDH-mediated oxidative pathway and
IDH-mediated reductive pathway [35]. Likewise, in HIV-1-
infected or LPS-treated macrophages, α-ketoglutarate
produced from glutamine metabolism by glutaminase 1
could promote extracellular vesicle release and regulate the
inflammatory process [36].

3. α-Ketoglutarate Modulates
Macrophage Polarization

α-Ketoglutarate can provide ATP for cell biological processes
by activating the mammalian target of rapamycin complex
(mTOR) signaling pathway and suppressing glutamine
degradation in macrophage polarization [37, 38]. α-Ketoglu-
tarate, as a product of glutamine metabolism, such as the
glutamine-glutamate-αKG (Gln-Glu-α-KG) pathway, oxida-
tive glutamine metabolism, and reductive carboxylation
mediated by α-KGDH, IDH1, and IDH2, could refuel the
TCA cycle and connect with the aerobic glycolysis and lipo-
genesis pathways in common with the PI3K-Akt-mTOR
pathway. In M1-polarized MH-S cells, α-ketoglutarate
notably decreased the protein expression of p70 ribosomal
protein S6 kinase (P-p70S6K) in LPS-treated groups, but
there was no evident change when α-ketoglutarate was
added to LPS-rapamycin-treated groups. This result is
consistent with the inhibition of LDH and the improvement
of ATP production by α-ketoglutarate. Therefore, α-ketoglu-
tarate may serve as an energy source to suppress the inflam-
matory response and then inhibit M1 macrophage
activation induced by LPS [39]. Moreover, α-ketoglutarate
could modulate the marker gene expression of M1 and M2
macrophages to alleviate inflammation (Figure 2). α-Keto-
glutarate significantly decreased the serum levels of inflam-
matory cytokines (IL-6 and IL-12) and the expression of
IL-1β, IL-6, and TNF-α, which are M1-specific markers, in
lung tissues after 3 h LPS treatment, while it increased the
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anti-inflammatory expression of Arg1 and Mrc1, which are
M2 marker genes. Similarly, α-ketoglutarate significantly
facilitated peroxisome proliferator-activated receptor γ
(PPARγ) activation and the expression of Arg1 to promote
M2 polarization compared to the IL-4-treated group of
M2-polarized MH-S cells. In addition, α-ketoglutarate low-
ered the expression of M1 marker genes, increased the
expression of M2 marker genes and IL-10, and suppressed
NF-κB signaling in LPS-induced rats [40]. Furthermore, α-
ketoglutarate generated by glutaminolysis can act as a check-
point to regulate M2 metabolic reprogramming and the par-
ticipation of FAO in M2 macrophages. Supplementation
with dimethyl-α-ketoglutarate (DM-αKG) could promote
M2 activation through the αKG-Jmjd3 pathway by suppress-
ing the demethylation of trimethylated histone H3 K27
(H3K27me3) and IL-4-induced genes. Notably, succinate,
downstream of α-ketoglutarate, has been reported to
increase the expression of the proinflammatory cytokine
IL-1β mediated by HIF-1α in M1 macrophages, while the
α-ketoglutarate/succinate ratio is subject to M1 and M2
macrophage polarization.

α-Ketoglutarate modulates the balance between M1
and M2 macrophage polarization by many means to
relieve inflammation. In LPS-induced acute lung injury/a-
cute respiratory distress syndrome (ALI/ARDS), α-ketoglu-
tarate could inhibit M1 polarization by suppressing the
mTORC1/p70S6K pathway and promote the M2 phenotype

by enhancing PPARγ nuclear translocation, which is condu-
cive to preventing inflammatory diseases [39]. The addition
of DM-αKG, a cell-permeable analog of α-ketoglutarate,
restores the expression of the M2-specific gene Arg 1 and
the ratio of α-ketoglutarate/succinate to promote M2 polari-
zation in P. gingivalis-treated mouse bone marrow-derived
macrophages (BMDMs) [41]. Cheng et al. suggested that
DM-αKG produced by glutaminolysis could switch the
polarization of M1 macrophages to M2 macrophages in
Kupffer cells, which exerts anti-inflammatory effects by inhi-
biting NF-κB activity and increasing the phosphorylation of
glycogen synthase kinase 3β (p-GSK3β) and the expression
of suppressor of cytokine signaling 1 (SOCS1) during the
prevention and alleviation of hepatic ischemia-reperfusion
injury (IRI) [40].

Metabolic and epigenetic remodeling play crucial roles in
regulating macrophage reprogramming and phenotypic
polarization. In IL-4- or LPS-treated BMDMs, α-ketoglutarate
metabolized by glutamine and the Jmjd3-dependent pathway
modulates M2 metabolic reprogramming, which serves as a
regulator to participate in FAO and manipulates the ratio
of α-ketoglutarate/succinate [31]. α-Ketoglutarate inhibits
M1 polarization by intervening in the NF-κB pathway to
enhance prolyl hydroxylase (PHD) activity to suppress IKKβ
activation. Glutaminolysis-derived α-ketoglutarate is condu-
cive to improving endotoxin tolerance in macrophages by
modulating NF-κB signaling and the Jmjd3-dependent
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Figure 1: α-Ketoglutarate metabolism in macrophages. α-Ketoglutarate is generated from isocitrate by the oxidative decarboxylation of IDH
in the TCA cycle or glucose via glycolysis. Additionally, glutamine could be converted into α-ketoglutarate under the catalysis of GDH and
GLS via glutaminolysis. Then, α-ketoglutarate is metabolized into succinyl-CoA catalyzed by α-KGDH in the TCA cycle. In addition, GDH-
mediated α-ketoglutarate can inhibit IKKβ activation and block NF-κB activation.
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pathway [31]. Mechanistically, melatonin increases α-keto-
glutarate levels to promote M2 macrophage polarization
and enhance TET-mediated DNA demethylation by increas-
ing exosome secretion through the STAT3/NF-κB signaling
pathway in mouse adipocytes, which is beneficial to prevent
and treat inflammatory diseases [31]. Additionally, the gen-
eration of α-ketoglutarate enhanced by Rspondin3-induced
metabolism assists in catalyzing DNA hydroxymethylation
via ten-eleven translocations (TETs) in lung injury, which
acts as a cofactor for epigenetic reprogramming in macro-
phages to prevent inflammatory lung injury [42].

4. Regulatory Effects of α-Ketoglutarate on
Inflammation-Related
Diseases in Macrophages

As described above, macrophages have two polarized pheno-
types, including the proinflammatory phenotype of M1
macrophages and the anti-inflammatory phenotype of M2
macrophages under different environmental stimuli, and
they exhibit different physiological functions. M1 macro-
phages have a bactericidal function, secrete proinflammatory

factors and regulatory factors, and engage in complement-
mediated phagocytosis, which is part of the first line of innate
immune system defense: phagocytosis, elimination of foreign
pathogens, and activation of the T cell adaptive immune
response [43]. However, excessive proinflammatory M1
induces an inflammatory response and has a role in many
inflammatory diseases, such as atherosclerosis and severe
acute pancreatitis. Studies have shown that a large number
of proinflammatory mediators produced by M1 macro-
phages could aggravate lung injury and accelerate airway
remodeling, resulting in the aggravation of asthma [44]. M2
macrophages could promote wound healing and fibrosis,
repair tissue, and facilitate tumor growth [20, 45, 46]. Recent
studies have suggested that certain metabolites can regulate
the activity of epigenetic enzymes to modulate the polariza-
tion of macrophages through epigenetic mechanisms to
affect the occurrence and development of inflammation-
related diseases.

The intermediate metabolites of the TCA cycle could
serve as energy sources to mediate the polarization of macro-
phages through epigenetic mechanisms and prevent certain
metabolic diseases. α-Ketoglutarate is an important short-
chain carboxylic acid molecule and a key intermediate in
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Figure 2: The regulatory mechanism of α-ketoglutarate on M1 and M2 polarization. In M1 macrophages, α-ketoglutarate inhibits M1
polarization by enhancing PHD activity to suppress IKKβ activation and the NF-κB pathway and inhibiting HIF-1α and IL-1β expression
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the TCA cycle that connects the key nodes of carbon-
nitrogen metabolism in cells and provides carbon source
materials and energy for cell growth and proliferation. Previ-
ous studies indicated that α-ketoglutarate could regulate the
occurrence and development of certain inflammatory dis-
eases by manipulating the polarization of macrophages. It
has been reported that the administration of α-ketoglutarate
could enhance beige/brown adipogenesis to reverse obesity
by strengthening DNA demethylation [47, 48]. Similarly, a
study found that melatonin could regulate the levels of cellu-
lar and exosomal α-ketoglutarate to enhance the polarization
of M2 macrophages and TET-mediated DNA demethylation
as a result of alleviating adipose inflammation in mice [49].
In addition, the number of M1 macrophages is increased,
the levels of α-ketoglutarate and glutamine are decreased,
and an accumulation of succinate has been observed in obe-
sity and diabetes [27]. Therefore, α-ketoglutarate may be a
promising target to prevent and treat obesity or diabetes. In
LPS-induced lung injury, α-ketoglutarate could effectively
promote the polarization of M2 macrophages and decrease
inflammation to ameliorate lung damage via PPARγ nuclear
translocation and the mTORC1/p70S6K pathway [39]. Like-
wise, DM-αKG could inhibit NF-κB activity and the secretion
of proinflammatory cytokines by maintaining a higher ratio of
M2/M1 polarization to relieve liver injury [40]. Thus, α-keto-
glutarate may be a potential target on macrophages for the
prevention and treatment of inflammation-related diseases.

5. Conclusion and Perspectives

Collectively, α-ketoglutarate is a key metabolite of the TCA
cycle, which is metabolized in many ways, such as through
the TCA cycle, glutaminolysis, and external sources. α-Keto-
glutarate could serve as a cofactor to modulate the polariza-
tion of M1 and M2 macrophages and alleviate the
inflammatory response and inflammation-related diseases.
However, the current research results are not sufficient to
fully explain the regulatory mechanism of α-ketoglutarate
on macrophage polarization, and there is a need to further
investigate its potential effects on macrophages. Of note, we
summarized many studies on α-ketoglutarate and observed
that most of them are related to intestinal function. Interest-
ingly, many studies have demonstrated that intestinal macro-
phages are the first line of intestinal mucosal immunity and
that they play a crucial role in intestinal homeostasis and
numerous gastrointestinal diseases [50, 51]. Thus, we pro-
pose that the effects of α-ketoglutarate and their mechanisms
on intestinal macrophages are worth investigating. Further-
more, we also discovered that macrophage polarization is
associated with aging [52, 53]. α-Ketoglutarate can extend
lifespan and postpone aging by regulating cell energy metab-
olism [54–56]. For instance, it was reported that α-ketogluta-
rate could ameliorate age-related osteoporosis by regulating
histone methylation, reducing the expression of H3K9
m9e3 and H3K27me3, and increasing BMP signaling and
Nanog [57]. Mechanistically, α-ketoglutarate mainly serves
as an energy regulator by modulating ATP synthesis, limiting
the energy utilization efficiency of nutrients, and maintaining
a restricted diet state of organisms to ameliorate aging and

age-related diseases through the mTOR pathway and AMPK
signaling, and it is regarded as a potential antiaging agent [55,
58, 59]. Notably, a recent study indicated that the mechanism
of extending longevity by α-ketoglutarate is related to a
reduction of systemic inflammation and the elevation of IL-
10 in aged female mice [54]. Therefore, in view of the above
studies, we speculate whether α-ketoglutarate could extend
lifespan and ameliorate aging or age-associated diseases by
regulating the polarization of macrophages. However, it is
not clear if the effect of α-ketoglutarate on longevity is appli-
cable to humans, and the necessary levels of α-ketoglutarate
to extend lifespan have not been quantified in animals, but
these are areas worthy of further exploration.
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