Table 2.
Recent research on SEED dataset.
| Classifier algorithm/year | Data input | Accuracy (%) |
|---|---|---|
| Dynamic graph CNN [19]/2018 | Differential entropy (DE) | 79.95 |
| Logistic regression classifier [20]/2018 | DE | 72.47 |
| GRSLR (graph regularized sparse linear regression) [21]/2018 | DE, Hjorth features | 88.41 |
| Bidirectional LSTM [22]/2019 | DE/Power spectral density (PSD) | 94.96/86.27 |
| Graph convolutional broad network (GCBN) [23]/2019 | DE | 94.24 |
| CNN + LSTM [24]/2019 | DE | 89.88 |
| Variational pathway reasoning (VPR) [25]/2019 | DE | 94.3 |
| Sequential backward selection SVM [26]/2019 | Hjorth features, standard deviation, sampling entropy, wavelet entropy | 89 |
| Spiking NN [27]/2020 | DWT, FFT, variance | 96.67 |