Skip to main content
. 2021 Apr 6;9(1):17. doi: 10.1007/s13755-021-00145-9

Table 4.

Comparison of classification techniques

Classifier Toddler Child Adolescent Adult
F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%)
OneR 0.81 80.551 0.79 78.98 0.76 76.63 0.83 83.18
PART 0.95 94.59 0.90 90.37 0.87 87.10 0.94 94.45
JRip (RIPPER) 0.94 93.45 0.87 87.43 0.85 84.68 0.94 94.28
Ridor 0.92 92.40 0.88 87.82 0.85 85.08 0.93 92.94
Nneg 0.93 92.60 0.82 82.32 0.81 81.05 0.88 88.55
Naive Bayes 0.96 95.54 0.93 92.93 0.91 91.13 0.94 94.10
LibSVM 0.97 96.96 0.49 49.31 0.93 92.74 0.96 96.42
Multilayer Perceptron (MLP) 1.0 100 1.0 100 0.98 98.79 1.0 100
Logistic regression (LR) 0.97 99.62 0.99 99.21 0.95 94.76 0.97 97.32
Simple logistic (SL) 1.0 100 0.99 99.80 0.96 95.97 0.99 99.82
SMO 1.0 100 1.0 100 0.97 97.18 1.0 100
IBK 0.93 92.70 0.88 88.016 0.89 88.71 0.92 92.13
KStar 0.95 94.50 0.84 84.09 0.88 88.31 0.93 92.58
LWL 0.85 84.54 0.79 78.98 0.79 79.03 0.79 78.35
Bagging 0.93 93.17 0.80 80.16 0.76 76.21 0.87 87.30
Iterative classifier optimizer (ICO) 1.0 100 0.99 99.41 0.97 97.18 0.99 99.91
LogitBoost (LB) 1.0 100 0.99 99.41 0.97 97.18 0.99 99.91
Multi class classifier 0.99 99.62 0.99 99.21 0.95 94.76 0.97 97.32
Real Adaboost (RAB) 1.0 100 0.99 99.80 0.97 97.18 0.99 99.82
Hoeffding Tree 0.95 95.25 0.91 91.16 0.90 90.73 0.93 92.84
J48 (C4.5) 0.90 90.32 0.89 88.99 0.81 81.85 0.93 93.29
LMT 1.0 100 0.99 99.80 0.96 95.96 0.99 99.82
NBTree 0.96 95.54 0.93 93.12 0.87 86.69 0.94 94.19
Random Forest 0.95 95.45 0.88 87.63 0.88 87.5 0.92 92.13
Random Tree 0.91 91.08 0.79 78.59 0.79 79.84 0.86 85.87
Simple CART 0.91 90.89 0.81 81.34 0.81 81.05 0.90 89.62
SysFor 0.93 92.79 0.87 86.84 0.86 85.89 0.93 93.38

Acc. accuracy