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Unsteady thermal Maxwell power 
law nanofluid flow subject to forced 
thermal Marangoni Convection
Muhammad Jawad1, Anwar Saeed1, Taza Gul2, Zahir Shah3* & Poom Kumam4,5* 

In the current work, the unsteady thermal flow of Maxwell power-law nanofluid with Welan gum 
solution on a stretching surface has been considered. The flow is also exposed to Joule heating and 
magnetic effects. The Marangoni convection equation is also proposed for current investigation in 
light of the constitutive equations for the Maxwell power law model. For non-dimensionalization, a 
group of similar variables has been employed to obtain a set of ordinary differential equations. This 
set of dimensionless equations is then solved with the help of the homotopy analysis method (HAM). 
It has been established in this work that, the effects of momentum relaxation time upon the thickness 
of the film is quite obvious in comparison to heat relaxation time. It is also noticed in this work that 
improvement in the Marangoni convection process leads to a decline in the thickness of the fluid’s film.

Abbreviations

Symbols
V = (u, v)  Velocity field
(

x, y
)

  Cartesian coordinates
T0  Temperatures of the slit
A  Rivlin Eriksen tensor
M  Magnetic field parameter
Pr  Prandtl number
De  Deborah number
M1  Maragoni number
σ0  Surface tension of the slit
σ1  Surface tension
β  Dimensionless film thickness
θ  Dimensionless temperature
µnf   Dynamic viscosity of nanofluid
ρnf   Density of nanofluid
β0  Applied magnetic field
�  Relaxation time
n  Power law index
T  Temperature of the fluid
Tref   Positive reference temperature
s  Extra tensor
knf   Thermal conductivity of nanofluid
Ec  Eckert number
b  Initial stretching sheet
α, d  Positive constant
k0  Consistency thermal coefficient
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S  Unsteady parameter
h(x, t)  Uniform thin film thickness
αnf   Thermal diffusivity of nanofluid
γ̇  Temperature coefficient
f ′  Dimensionless velocity
υnf   Kinematic viscosity of nanofluid
η  Similarity variable
′   Derivative with respect to η
σnf   Electrical conductivity of nanofluid

In the last two decades “Nanofluid” attracts the attention of researchers because of its high thermal conductivity 
and novel applications in different branches of science, engineering, and technology. The conventional liquids 
consume low thermal conductivity and thus they become inadequate for several heat transfer issues. The study 
of nanofluids is very important for the reason of its unique application that enhances the transfer of heat. That’s 
why scientists take an interest to use nanofluid instead of regular fluids. Many researchers are interested to study 
nanofluids because of their higher thermal capability. Thermal conductivity is a unique characteristic of nano-
fluid which is much higher than any other fluid. A conventional fluid can be transformed into a nanofluid by 
suspending nano-sized particles also termed as nanoparticles into that fluid. The early studies by  Choi1 concerned 
mixtures of common fluids and nano-sized solid particles. These fluids were named as naofluids. After Choi’s 
work, many researchers diverted their attention to discussing the nanofluid characteristics focusing upon the 
heat transfer capabilities of this class fluid. Aziz et al.2 have explored the production of irreversibility in MHD 
Maxwell nanofluid flowing upon stretching surface under the influence of varying thermal conductivity. The 
authors of this work have also exposed the flow system to slip condition and external heat source. Currently, 
Gul and  Ferdous3 have carried out an experimental examination to study the stable distribution of graphene 
nanoparticles between two rotating disks. The authors of this work have transformed the model equations to 
dimensionless form by employing a suitable set of transformations and then have solved that set numerically. 
Maxwell nanofluid flow past an elongating sheet was examined by Sameh et al.4. In this study, they used porous 
surface along with nonlinear thermal radiations and heat generation/absorption.

The flow and thermal transmission in a limited fluid film over a constant exterior are significant in physical 
importance. The MHD of a limited liquid medium, for example, a thin fluid film, on an extending slip was first 
measured by  Wang5 who by methods of similarity alteration diminished the equations to non-linear ODEs. 
The impacts of viscid scattering and inner warmth generation on stream and warmth move in a thin film on an 
uneven extending slip and it ought to be noticed that an overall external heat was contemplated by Aziz et al.6. 
The temperature and velocity profiles were tackled utilizing the Homotopy Analysis Method. The temperature-
dependent constraint expands; the dimensionless heat heightens while the warmth transmission rate diminishes. 
Expanding the power indices has been appeared to have the effect of diminishing the heat of thin-film flow. 
 Crane7 explained the consistent two-dimensional progression of a Newtonian liquid, the prior investigations of 
the fluid movement brought about by the extending elastic level sheet.

The heat transfer of power law liquid past an extending slip with the influence of Marangoni convection was 
conceded out by Liu et al.8. However, as for the polymer solutions with both viscoelasticity and shear thinning 
properties, it is rarely involved in the work of heat transfer employing the fickle thermal conductivity into Cat-
taneo–Christov heat flux theory. Resulting in this pioneering work, Usha and  Sridharan9 protracted the issue to 
the axisymmetric formation for a plate with an uneven extending indication utilizing a similar outward velocity. 
A steady solution with finite thickness and the reverse stream has been originated in the steady case S = 0.0 . 
Moreover, no solutions are established for S > 4.0 which just implies that no similarity solutions occur and 
does not relate to non-similar solutions. The investigation for unsteady nanofluid film brought about by a linear 
extending velocity over a level flexible slip by utilizing the scientific nanofluid model was depicted by Tiwari 
and  Das10. The nanoparticles when inundated in a liquid are fit for expanding the warmth move limit of the base 
liquid. The conveyance equations are illuminated statistically with a limited volume style utilizing the SIMPLE 
algorithm. As a solid volume fraction expands, the impact is increasingly articulated. Nandeppanavar et al.11 
examined the warm dissemination in Newtonian liquid film stream over a flat slip whose extending amount and 
heat were elements of both space and time.  Nasir12 mathematically investigated a coupled mass and heat impacts 
for Newtonian fluid film buildup. The expansion of the porosity improves the water film buildup. An expansion in 
permeable layer thickness upgrades the water film buildup. A lessening of the porosity and of the permeable layer 
thickness upgrades the warmth and mass exchange exhibitions over the fluid-vapor interface. The diminishing 
of the cooling heat motion or the expansion of the inlet gas and fluid temperature lessens the water film buildup.

Numerous researchers have done lots of studies and made extraordinary accomplishments in power-law 
liquids. The film movement on an uneven extending superficial for a power-law liquid was contemplated by 
Andersson et al.13. For power law liquids, the novelists establish a similarity alteration to lessen the overseeing 
equations to a similarity equation and comprehended it statistically. Ahmed et al.14 investigated Stream and heat 
transference examination of an electrifying directing MHD power-law nanofluid is helped out over the circular 
part conduit, affected by the consistent pressure gradient. With the expansion in attractive field parameter and 
volume fraction of nanoparticles improvement in heat transmission amount has been seen in both shear thin-
ning and shear thickening nanofluids. Improvement in the warmth move rate increments on account of shear 
thickening nanofluid by expanding the estimation of the attractive field parameter. The effect of a higher attrac-
tive field parameter gets articulated and, causes a lessening in the impact of volume division of nanoparticles on 
account of shear thickening nanofluid, which has been seen from the velocity distributions. The flow problem for 
a power-law fluid film over an uneven extending outward utilizing the homotopy analysis method was carried 
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out by Wang and  Pop15. Si et al.16 explored the heat transferal wonder of a power-law fluid laminar film joined 
by power-law warm conductivity. The warm conductivity is thought to be a power-law reliant on the velocity 
gradient. Aziz et al.17 investigated the impact on a power-law liquid former a permeable level disk installed in the 
Darcy type permeable medium. The subsequent arrangement of ordinary differential equations is settled numeri-
cally utilizing Matlab bvp4c Solver. Silva et al.18 introduced a different scientific model almost a power-law liquid 
streaming in a passage partly loaded up with an isotropic and homogeneous permeable medium, and acquired 
mathematical outcomes. Ahmed et al.19 further reached out to the unsteady limit layer stream and warmth move 
of intensity law liquid model over a radially extending sheet, and another non-linear dispersion model regarding 
the laminar limit level movement of power-law liquid was presented by Lin et al.20. Hainke et al.21 examined an 
endeavor was made to quickly sum up the current status of the utilization of attractive fields in crystal growth 
development and under microgravity conditions. In this manner, the primary accentuation was put on the 
Research and development commitments acquired by the Crystal growth development Lab in these fields.

Witkowski and  Walker22 deliberated the axisymmetric stream determined by Marangoni convection and 
turning attractive field in alignment for altered Marangoni number and short Prandtl number estimations. A cor-
respondence examination for simply the velocity distribution for the Marangoni stream that is fundamentally the 
same as this deduction yet the outcomes are successfully restricted to superficial tension varieties that are linear 
recognized with the superficial point were introduced by Arafune and  Hirata23. A portion of the papers generally 
pertinent to this effort incorporate the significant level examination of the Marangoni stream assumed by Okano 
et al.24 that provided the overall patterns for the variety of the Grashof number with the Reynolds, Prandtl, and 
Marangoni numbers. Hirata and his collaborators empirically and statistically explored the Marangoni stream for 
different elements in geometries with level exteriors applicable to this effort. The impacts of solutal Marangoni 
convection on flow and mass transport marvels are talked  about25.  Chen26 stretched out the Newtonian liquid 
to the power-law liquid and analyzed the constrained thermal Marangoni convection flow highlight of the thin 
film. The thermo-capillary force will in general condense the film and marks in a nearby least of velocity, a more 
extensive Thermo-capillarity shows an increasingly articulated impact on the temperature and velocity profiles 
at a lesser changed Prandtl number.

Maxwell fluid is one of the non-Newtonian fluids and it was originally modeled by Maxwell to obtain vis-
coelastic performance of air through the dynamic theory of gasses. In physical situations, many fluids, such as 
glycerine, crude oils, Eos, blood and some other polymeric materials, behave like Maxwell fluids.  Christov27 
thought the simplification of Fourier’s law identified as the Maxwell–Cattaneo law, has been reevaluated from 
the perspective of substantial invariance. Lin et al.28 investigated the Attractive field impacts in the power-law 
limited thin film over an uneven extending slip with varying warm conductivity was concentrated. The gov-
erning PDEs were changed into an arrangement of strong non-linear ODEs utilizing a comparison alteration. 
These ODEs were comprehended statistically utilizing the package BVP4C. They deliberated that the attractive 
field will in general log jam the speed and to expand the heat of the liquids. The impact of thermocapillarity on 
the stream and warmth move in a thin fluid film on a flat extending slip was investigated by Dandapat et al.29. 
The administering limit layer conditions for thermal energy and momentum are decreased to a lot of combined 
ODEs by using an exact similarity transformation. The uneven movement and warmth transference of power-
law nanoliquid thin film over an extending slip with varying attractive field and power-law velocity slip impacts 
was investigated by Zhang et al.30.

The shear thinning effect is more necessary for the viscoelastic fluids like Maxwell fluid to reduce their viscos-
ity to gain the desirable outputs for the various engineering phenomena’s like hydraulics calculations and decreas-
ing in the pumping pressures. Furthermore, highly shear thinning fluids (power law model fluids) improve the 
flow efficiency of the viscoelastic fluids. Therefore, we have selected the current model using the combination of 
Power law model with Maxwell  fluid31. Zhang et al.32 have discussed Maxwell-power-law constitutive equation, 
which can simultaneously describe both shear thinning and viscoelasticity, is established based on a rheologi-
cal experiment with welan gum solution. Few related work to our research work are found  in33–37. Liang et al.38 
have investigated the uni-dimensional exact for nonlinear Schrodinger problem with a description of dynamics 
Einstein solution. Wang et al.39 have discussed the transportation characteristics for F = 2 spinor one dimensional 
BEC loaded optical lattice in light of five components semi discrete GP equations. Ji et al.40 have discussed the 
dynamical creation for fractional half quantum vortices Einstein condensate of sodium atoms. Wang et al.41,42 
have carried out further investigation about the related concept.

In light of the previously mentioned examinations, in the present investigation, we considered the power-
law nanofluid thin film flow over an extending surface with the magnetic effects and Joule heating impacts. The 
Maxwell-power-law liquid flow and heat transfer possessions with variable thickness film are also examined. The 
Maxwell and Power law model fluids are considered in a single constitute equation and this is the first attempt to 
consider these two fluids in combined. Thermal Marangoni convection; MHD and solid nanoparticles are also 
used in the form of extension in the existing literature.

It is applicable in polyamide (PA) barrier films, plastic packaging and new energy etc. In the part of math-
ematical formulation, our model is formulated by using appropriate similarity transformation and then has 
solved the nonlinear system by HAM.

Basic equations of Maxwell and power law model
Since for Maxwell fluid we  have27

(1)
(

1+ �
D

Dt

)

S = µ1A.
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In Eq. (1) � is relaxation time, µ1 is dynamic viscosity, A is Rivlin–Ericksen tensor while S is extra stress ten-
sor. Further we have µ1 = µγ̇ n−1 where γ̇ signifies the shear rate, n symbolizes a power-law index. The Maxwell 
power law equation cam be described as

For one-dimensional shear flow, a Maxwell-power-law fluid constitutive equation is simplified as: where τ 
represents the shear stress.

Problem formulation
We explore the unsteady 2D flow of an incompressible Maxwell-power-law nanofluid for a finite film past an 
extending surface. The outcome of heat transfer and the consistent magnetic field β0 is deliberated in the flow. 
The temperature and flow filed are described respectively as T , (u, v, 0) . For current flow problem x - axis 
considered along stretching sheet while y-axis is normal to it (see Fig. 1).

The stretched sheet through �Uw(x, t) =
bx

1−αt , here b and α signifies widening constraints and y-axis is per-
pendicular to it. From Eq. (2), the continuity and the momentum equations  are32:

Moreover, the stretching sheet temperature takes as Tw = T0 + Tref dbx
3n+1
n+1 (1− αt)−

3n
n+1 , T0. So energy can 

be articulated  as30

Individually, ρnf  , µnf  , σnf  and αnf  are the density, viscosity, electrical conductivity and thermal diffusivity of 
nanofluid and is characterized as:

The volume fraction φ , heat capacitance knf  , and thermal conductivity 
(

ρCp

)

nf
 are stated as

The Marangoni convection flow due to the surface tension gradient cannot be overlooked. Generally 
the surface tension σ1 of the fluid film changes in a linear manner with respect to temperature described as 
σ1 = σ0[1− γ (T − T0)] . Further γ = − 1

σ0
· ∂σ1

∂t  shows the thermal  coefficient30 while the shear stress in com-
bination of surface tension along interface is given by τ = ∂σ

∂x
30. Using operator 1+ �

D
Dt to the formula, according 

to Eq. (2), the modified Marangoni convection boundary condition is as follow:

In Eq. (9) h(x, t) represents the thickness of the uniform film:

(2)
(

1+ �
∂

∂t

)

S = µγ̇ n
A.

(3)
(

1+ �
∂

∂t

)

τ = µγ̇ n.

(4)ux − vy = 0,

(5)ut + uux + vuy + �
(

u2uxx + 2uvuxy + v2uyy
)

+
σnf β

2
0

ρnf
u =

µnf

ρnf

(

∣

∣uy
∣

∣

n−1
uy

)

y
.

(6)Tt + uTx + vTy +
σnf β

2
0

(

ρcp
)

nf

u2 = αnf

(

∣

∣uy
∣

∣

n−1
Ty

)

y
.

(7)ρnf = (1− φ)ρf + φρs , µnf =
µf

(1− φ)2.5
,αnf =

knf
(

ρCp

)

nf

.

(8)
(

ρCp

)

nf
= (1− φ)

(

ρCp

)

f
+ φ

(

ρCp

)

s ,
knf

kf
=

ks + 2kf − 2φ
(

kf − ks
)

ks + 2kf + 2φ
(

kf − ks
) .

(9)σTTx + �σT
(

Ttx + uTxx + vTty

)

= µnf

∣

∣uy
∣

∣

n−1
uy at y = h(x, t).

Figure 1.  Geometry representation of the flow.
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The group along with stream function is given  by8

By incorporating Eq. (11) into Eqs. (5) and (6) we have

While the related boundary conditions transformed to following form

Non-dimensionalize form of Marangoni convection boundary condition is as

Above ε1 and ε2 are constants described in the resulting  from9:

where De = �b
/

(1− αt) denotes the Deborah number concerned with relaxation time, S = α
b indicates the 

dimensionless unsteadiness parameter, M=σf β
2
0

/(

ρf b
)

 denotes the magnetic factor, Pr = νf
α

 means a Prandtl 
number, M1 = µ− 1

1+n ρ− 1
1+n b

1−2n
1+n Tref dσ0γ represents the Marangoni number, Ec = U2

w

/(

(

cp
)

nf
(Ts − T0)

)

 
signify Eckert number.

HAM solution
Semi analytical technique HAM is employed to solve the modeled problem in dimensionless form with the help 
of Mathematics Package-10. The detail of the solution is mentioned below:

where the linear operators denoted by L
f̂
, L

θ̂

where

where e1, e2 and e3 are constants.
The consistent non-linear operators N

f̂
,N

θ̂
 are prudently designated as:

(10)
u =Uw , v = 0,T = Tw , at y = 0;

v =uhx + ht , uy = 0,Ty = 0, at y = h(x, t).

(11)
η =b

2−n
n+1 v

− 1
n+1

f x
1−n
n+1 (1− αt)

n−2
n+1 y,ψ = b

2n−1
n+1 v

1
n+1

f x
2n
n+1 (1− αt)

2n−1
n+1 f (η), u = ψy , v = −ψx

T =T0 + Tref dbx
3n+1
n+1 (1− αt)−

3n
n+1 θ(η),β = h(x, t)b

2−n
n+1 v

− 1
n+1

f x
1−n
n+1 (1− αt)

n−2
n+1 .

(12)

S

(

f ′2 − η
n− 2

n+ 1
f ′′
)

+f ′2 −

(

2n

n+ 1

)

ff ′′ + De

[

4n2

(n+ 1)2
f 2f ′′′ −

8n

(n+ 1)2
ff ′f ′′

]

+
σf
ρnf
ρf

Mf ′ = ε1

(

∣

∣f ′′
∣

∣

n−1
f ′′
)′
,

(13)S

(

3n

n+ 1
θ − η

(

n− 2

n+ 1

)

θ ′
)

+

[(

3n+ 1

n+ 1

)

f ′θ +
1− n

1+ n
f θ ′

]

+MEcθ f ′2 =
1

pr
ε2

[

∣

∣f ′′
∣

∣

n−1
θ ′
]′
.

(14)f ′(0) = 1, f (0) = 0, θ(0) = 1, f (β) =
2− n

2n
Sβ , θ ′(β) = 0.

(15)
(∣

∣f ′′(β)
∣

∣

)n−1
f ′′(β) = −M1

(

3n+ 1

n+ 1
θ(β)+ DeS

3n

n+ 1

3n+ 1

n+ 1
θ(β)+ De

2n

n+ 1

3n+ 1

n+ 1
f ′(β)θ(β)

)

.

(16)ε1 =
1

(1− φ)2.5
[

(1− φ)+ φρs
/

ρf
] , ε2 =

knf
/

kf
[

(1− φ)+ φ
(

ρCp

)

s

/

(

ρCp

)

f

] ,

(17)f̂0(η) =
2nη3 − 2Sη3 + nSη3 − 6nη2β + 6Sη2β − 3nSη2β + 4nηβ2

4nβ2
, θ̂0(η) = 1,

(18)L
f̂
(f̂ ) = f̂ ′′′, L

θ̂
(θ̂ ) =θ̂ ′′,

(19)L
f̂
(e1 + e2η + e3η

2) = 0, L
θ̂
(e4 + e5η) = 0,

(20)

N
f̂

[

f̂ (η; ζ )
]

=S

(

f̂ ′2 − η
n− 2

n+ 1
f̂ ′′
)

+ f̂ ′2 −

(

2n

n+ 1

)

f̂ f̂ ′′

+ De

[

4n2

(n+ 1)2
f̂ 2 f̂ ′′′ −

8n

(n+ 1)2
f̂ f̂ ′ f̂ ′′

]

+
σf
ρnf
ρf

Mf̂ ′ =

(

∣

∣

∣
f̂ ′′
∣

∣

∣

n−1

f̂ ′′
)′

,
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For Eqs. (12) and (13) the 0th-order system as:

While BCs are:

While the embedding constraint is ζ ∈ [0, 1] , to regulate for the solution convergence �⌢
f
 and �⌢

θ
 are used. 

When ζ = 0 and ζ = 1 we have:

Expand the 
⌢

f (η; ζ ) and 
⌢

θ(η; ζ ) through Taylor’s series for ζ = 0

While BCs are:

Now

(21)
N
θ̂

[

f̂ (η; ζ ), θ̂ (η; ζ )
]

=S

(

3n

n+ 1
θ̂ − η

(

n− 2

n+ 1

)

θ̂ ′

)

+

[(

3n+ 1

n+ 1

)

f̂ ′θ̂ +
1− n

1+ n
f̂ θ̂ ′

]

+MEcθ̂ f̂ ′
2
=

1

pr
ε2

[

∣

∣

∣

ˆf ′′
∣

∣

∣

n−1

θ̂ ′

]′

.

(22)(1− ζ )L⌢
f

[

⌢

f (η; ζ )−
⌢

f 0(η)

]

= P�⌢
f
N⌢

f

[

⌢

f (η; ζ )

]

,

(23)(1− ζ )L⌢
θ

[

⌢

θ(η; ζ )−
⌢

θ 0(η)

]

= P�⌢
θ
N⌢

θ

[

⌢

θ(η; ζ ),
⌢

f (η; ζ )

]

.

(24)

∂
⌢

f (η; ζ )

∂η

∣

∣

∣

∣

∣

∣

η=0

= 0,
⌢

f (η; ζ )

∣

∣

∣

∣

η=0

= 0,
⌢

θ(η; ζ )

∣

∣

∣

∣

η=0

= 0,

⌢

f (η; ζ )

∣

∣

∣

∣

η=β

=
2− n

2n
Sβ ,

∂2
⌢

f (η; ζ )

∂η2

∣

∣

∣

∣

∣

∣

η=β

= 0, ,
⌢

θ(η; ζ )

∣

∣

∣

∣

η=β

= 0.

(25)
⌢

f (η; 1) =
⌢

f (η),
⌢

θ(η; 1) =
⌢

θ(η).

(26)

⌢

f (η; ζ ) =
⌢

f 0(η)+
∑∞

n=1

⌢

f n(η)ζ
n

⌢

θ(η; ζ ) =
⌢

θ 0(η)+
∑∞

n=1

⌢

θn(η)ζ
n,

(28)
⌢

f n(η) =
1

n!

∂
⌢

f (η; ζ )

∂η

∣

∣

∣

∣

∣

∣

p=0

,
⌢

θn(η) =
1

n!

∂
⌢

θ(η; ζ )

∂η

∣

∣

∣

∣

∣

∣

p=0

.

(29)

⌢

f ′(0) = 1,
⌢

f (0) = 0,
⌢

θ(0) = 1,

⌢

f (β) =
2− n

2n
Sβ ,

⌢

f ′′(β) = 0,
⌢

θ ′(β) = 0.

(30)

ℜ

⌢
f
n (η) =S

�

⌢

f ′
2

n−1 − η
n− 2

n+ 1

⌢

f ′′n−1

�

+
⌢

f ′
2

n−1 −

�

2n

n+ 1

� w−1
�
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While

Results and discussion
In the current investigation the modeled problem has transformed to dimensionless form by employing suitable 
set of similar variables. During this process some substantial parameters have been encountered that further have 
some influence upon flow system. In this section the impact of these emerging parameters upon flow system has 
discussed with the help of graphical view as presented in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.

It appears from Figs. 2 and 3 that an upsurge in magnetic factor M declines the velocity profiles for both 
Newtonian and non-Newtonian fluids and inverse for temperature profile. Actually the Lorentz force resists the 
flow and acts in the direction opposite to the flow direction. This resistive force slows down the fluid motion and 
increases the temperature of the fluid. Moreover, the induced magnetic field boundary layer thickness grows up 

(32)χn =

{

0, if n ≤ 1

1, if n > 1.

Figure 2.  Influences of M on f (η).

Figure 3.  Effect of M on θ(η).
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with augmenting values M. Physically it can be interpreted as the both applied well as induced magnetic fields are 
in similar direction. So with augmentation in magnetic field there is a reduction in flow of fluid while a growth 
in boundary layer thickness.

From the Figs. 4 and 5, it is clear that flow and thermal characteristics decline with increasing values of power 
law index. These figures present that at a particular location η the thermal as well as flow profiles decline with 
augmenting values of power law index that leads a decline in the thickness of boundary layer.

The impacts of unsteady constraint on the liquid velocity are established in Fig. 5. From this figure it is noticed 
that initially the flow along the surface declines with augmenting values of unsteadiness parameter that leads 
to a decreasing behavior in the momentum boundary layer thickness in the closed vicinity of the wall. On the 
other hand the flow of fluid grows up at locations away from the wall with augmenting values of unsteadiness 
parameter S . Hence the flow characteristics and boundary layer thickness seem to have reverse behavior for 
augmenting values of unsteady constraint.

Figure 7 determines the impact of unsteadiness parameter upon thermal characteristics. From this figure it is 
observed at some specific location the thermal characteristics seems to be declining with augmenting values of 
unsteadiness parameter S that leads to a decrease in the heat transfer rate from fluid to the sheet. Moreover, it is 

Figure 4.  Impression of n on f (η).

Figure 5.  Effect of n on θ(η).
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worth mention that with higher values of S the rate of cooling is much higher, while for steady flow the cooling 
may take longer time.

Figure 8 indicates that the augmenting values Deborah number De leads a decline in the flow characteristics. 
Since De is the ratio of characteristic time to scale time of deformation. So when De grows up the time of relaxa-
tion augments that leads to slow regaining process. It is also to be noticed that De = 0 leads to a pure viscous fluid.

Figure 9 reveals that the larger Marangoni number M1 leads to a thinner film. Moreover, the variation in the 
values of M1 results an upsurge in the temperature of the film.

Figure 10 recognizes the effect of Eckert numbers Ec upon temperature. It is seen that in view of progress 
in Eckert number there is an upsurge in thermal energy transportation of Maxwell power-law fluid. Actually 
indicates Joule heating impacts. So, upsurge in Ec increases the temperature of nanofluids due to this physical 
phenomenon of heat transportation, heat dissipation decays, and heat advection grows up.

Actually, the ratio of kinematic viscosity with thermal diffusivity is known as prandtl number Pr, thus Fig. 11 
tells us the temperature decreases with Pr increases due to a reduction in heat diffusion.

Table 1 shows the impact of different physical parameters over the velocity profile of the moving fluid. The 
selected parameters to analyze the flow behavior of the active fluid are power law index n , stress tensor S , The 
Deborah number De . From Table 1 we clearly noted that the moving speed of the fluid enhances by enlarging 
the values of stress tensor S while the contras behavior of fluid motion is detected for enlarging the numerical 

Figure 6.  Outcome of S on f (η).

Figure 7.  Impact of S on θ(η).
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estimations of power law index n, De, and magnetic field parameter M . Table 2 shows the heat transfer rate of 
the moving liquid, we noted that the heat transfer enhances for boosting Eckert number Ec magnetic parameter 
M and Stress tensor S while the inverse action is noted for temperature θ(ξ) when we increase the estimation of 
Prandtl number Pr and index of power law n . Also we can see that from Table 2 that the rate of heat transfer of 
the active fluid enhances for the enhancing the estimation of Eckert number Ec , magnetic factor M , and Stress 
tensor S while the reverse action is noted for Prandtl number Pr , power law index n . The comparison of the 
present work with the existing literature is displayed in Table 3.

Conclusions
The variable magnetic field impacts on flow of incompressible Maxwell-power-law liquid in a finite film over 
a widening sheet are deliberated in this exploration. The flow is also exposed to Joule heating and magnetic 
effects. The Marangoni convection equation is also proposed for current investigation in light of the constitutive 

Figure 8.  Influence of De on f (η).

Figure 9.  Effect of M1 on θ(η).
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equations for Maxwell power law model. After detail investigation of the current flow problem the following 
points are highlighted:

• For great estimations of M the nanofluid films velocity distribution declines and inverse impact for tempera-
ture profile.

• The growing estimations of Pr , upsurges the surface temperature, where converse effect is producing for S 
that the surface temperature diminishes because of great values of S.

• The unsteady parameter can develop the fluid velocity.
• The variations of M1 shows an increment in temperature of the film.
• It is observed in this study that, the thickness of boundary layer declines with growing values of Deborah 

number De or diminishing power-law index n.
• An upsurge temperature distribution is detected for better estimations of Eckert number and vice versa.

Figure 10.  Outcome of Ec on f (η).

Figure 11.  Effect of Pr on θ(η).
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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