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Normal tissue architecture determines the
evolutionary course of cancer
Jeffrey West 1✉, Ryan O. Schenck 1,2, Chandler Gatenbee 1, Mark Robertson-Tessi 1 &

Alexander R. A. Anderson 1✉

Cancer growth can be described as a caricature of the renewal process of the tissue of origin,

where the tissue architecture has a strong influence on the evolutionary dynamics within the

tumor. Using a classic, well-studied model of tumor evolution (a passenger-driver mutation

model) we systematically alter spatial constraints and cell mixing rates to show how tissue

structure influences functional (driver) mutations and genetic heterogeneity over time. This

approach explores a key mechanism behind both inter-patient and intratumoral tumor het-

erogeneity: competition for space. Time-varying competition leads to an emergent transition

from Darwinian premalignant growth to subsequent invasive neutral tumor growth. Initial

spatial constraints determine the emergent mode of evolution (Darwinian to neutral) without

a change in cell-specific mutation rate or fitness effects. Driver acquisition during the Dar-

winian precancerous stage may be modulated en route to neutral evolution by the combi-

nation of two factors: spatial constraints and limited cellular mixing. These two factors occur

naturally in ductal carcinomas, where the branching topology of the ductal network dictates

spatial constraints and mixing rates.
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Cancer has been hypothesized to be a caricature of the
renewal process of the tissue of origin: arising from (and
maintained by) small subpopulations capable of con-

tinuous growth1. The strong influence of the tissue structure has
been convincingly demonstrated in intestinal cancers where
adenomas grow by the fission of stem-cell-maintained glands
influenced by early expression of abnormal cell mobility in cancer
progenitors2,3. So-called "born to be bad” tumors arise from
progenitors which may already possess the necessary driver
mutations for malignancy4,5 and metastasis6. These tumors sub-
sequently evolve neutrally, thereby maximizing intratumoral
heterogeneity and increasing the probability of therapeutic
resistance.

The heterogeneous collection of tens of thousands of somatic
alterations may be classified into drivers (conferring advanta-
geous, cancerous phenotypes to neoplastic cells) and passengers
(neutral, nearly-neutral, or slightly deleterious mutations). Highly
deleterious mutations are subject to negative selection and are
removed from the population, while moderately deleterious
mutations can evade purifying selection to remain present in an
evolving tumor under selection pressure, a process known as
“hitchhiking” with the sweeping driver clone7,8.

Patterns of intratumoral genetic heterogeneity (ITH) and
subclonal architecture are the direct consequence of the evolu-
tionary dynamics of tumor growth. Multiregion sequencing has
produced evidence that Darwinian evolution shapes at least part
of ITH9,10. Substantial increases in subclone fitness have been
observed in some cases: 21% of colon cancers, 29% of gastric
cancers, and 53% of metastases11.

Several evolutionary models have been proposed to describe
the transition from premalignant to invasive tumor growth12. For
example, several studies indicated that cell lineages for ductal
carcinoma in situ (DCIS) tumors were distinct from invasive
ductal carcinoma (IDC) tumors13,14. This gives rise to an ‘inde-
pendent lineage model’ which holds that there are different
initiating cells for in situ and invasive populations, respectively15.
In contrast, others have proposed an ‘evolutionary bottleneck’
model whereby multiple clones evolve within the ducts, over-
coming obstacles such as spatial constraints, nutritional limita-
tion, and immune attack16. The parental clone that can conquer
these obstacles emerges from the subclones generated by early
Darwinian evolution. This evolutionary bottleneck establishes key
driver mutations in the invasive parental clone, which are the
ubiquitous mutations measured during the neutral phase of
tumor growth17,18. Casasent et al. challenged both evolutionary
paradigms using single-cell DNA sequencing to measure copy
number profiles of single tumor cells while preserving spatial
information in synchronous DCIS-IDC patients19,20. These data
show that multiple subclones which evolved in ducts during
in situ stages subsequently co-migrated to surrounding tissues,
indicating a high degree of overlap in heterogeneity within and
outside the ducts.

How does tissue structure influence somatic evolution? Some
have speculated that modes of evolution (Darwinian to neutral)
may be the outcome of cellular architecture of the tumor (e.g., the
glandular structure of colorectal cancers or the ductal structure of
ductal carcinomas can limit the effects of selection), or of the
malignancy’s anatomical location, governing access to resources,
or strong spatial constraints for growth5,11,21. Some structures are
“amplifiers” of natural selection, improving the odds of advan-
tageous mutants22,23 (e.g., pancreatic ducts that control migration
rates between patches24 and spatially segregated colon glands
with a centralized stem cell pool3). The well-defined tissue
structure begins to break down as the cancer transitions to
increasing invasiveness, often with sudden, “punctuated” accrual
of copy number alterations needed to facilitate invasion into the

stroma25,26. It is our point of view that this switch from Darwi-
nian to neutral evolution is highly influenced by the tissue
structure where the founding clone arises, and that transition to
neutrality may occur early in tumor progression (before
invasion).

The effect of spatial structure, dispersal, migration, and tissue
turnover is well-studied topics in population ecology and popu-
lation genetics. Spatial structures allow for the emergence of
coexistence between populations with differential fitness27 even
when birth and death are spatially decoupled28. Hierarchically
organized structures in self-renewing tissues limit the accumu-
lation of somatic mutations29. Cellular differentiation “washes”
out harmful mutations, while hierarchical architecture limits
overall cellular turnover required to maintain the tissue, thus
limiting the chance for new mutations30. The probability of
fixation of an allele is strongly position-dependent: alleles near
centrally-located, high turnover regions are orders of magnitude
more likely to fix31. Barton et al. showed that the slow-down of
clonal sweeping caused by large domains tends also to reduce the
size of the genomic region over which diversity is depressed by a
sweep32. The role of dispersal between spatially segregated
habitats or “patches”, is also well-studied, often utilizing multi-
path metapopulation models under weak-selection33. Migrative
potential is shown to amplify the invasion probability of a het-
erogeneous population34, an effect that increases when the dis-
persal network is more structured23.

While many mathematical passenger–driver tumor evolution
models use branching processes35 or stochastic, well-mixed (non-
spatial), agent-based models21,36–39, some have investigated the
role of spatial competition on local heterogeneity and circulating
tumor cells40, resistance to therapy41, metastasis6,27, and trade-
offs between migration and proliferation42. The model introduced
here is a spatially-explicit extension of a previously published
non-spatial model of passengers and drivers in tumor
evolution7,36,37.

In this work, we extend these findings on the importance of
structure, dispersal, migration, and turnover to a more biologi-
cally realistic setting: the three-dimensional branching topology
of a breast ductal network spatial structure, recapitulating the
intratumoral heterogeneity in precancerous lesions of ductal
carcinoma in situ (DCIS). In this setting, two otherwise identical
tumors may realize dramatic differences in the fitness depending
on constraints imposed by tissue architecture. This leads us to the
following insight: the surrounding spatial context modulates the
“realized tumor fitness”, defined as the rate of change of the ratio
of driver mutations to mutation burden.

Results
Tumor evolution is played out on a two- or three-dimensional
grid where each grid point can contain at most one cell. Each cell
carries heritable genetic changes classified into driver mutations
(e.g., an activating mutation in KRAS) or passenger mutations.
Cells begin each simulation with a single driver mutation, where
each subsequent driver increases the birth rate (i.e., multiplicative
epistasis) by a factor of a fitness advantage parameter, sd. Simi-
larly, passenger mutations decrease the birth rate by a factor of
fitness penalty, sp. In Fig. 1, we quantify heterogeneity of both
drivers and passengers. Results for neutral and deleterious pas-
sengers across several diversity metrics are shown in the sup-
plementary information (see Supplementary Figs. 1–4). Tp/d is the
mutation target sizes for drivers/passengers36, such that the
effective mutation rate is given by μp/d= μTp/d. We begin with a
systematic and generalized understanding of the underlying
mathematical model (with varied spatial domain sizes and mixing
rates) in Figs. 1 and 2.
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The effect of domain size on functional and genetic hetero-
geneity. Tumors constrained to smaller domain sizes (Fig. 1, top;
video V1) show consistently lower driver and passenger diversity
than for larger domain sizes. Small, tightly-coupled homogeneous
populations of cells are able to quickly sweep each successive
driver mutation. Larger domains consist of a heterogeneous
population; with many more cell divisions, the odds of accruing
another driver mutation are increased, but they have little chance
of sweeping through the large domain. While differences in
heterogeneity measures (Fig. 1a, b) diverge quickly for varied
domain sizes, they do not approach steady states until extreme
time scales. In short, small domain sizes enable clonal sweeping
and low diversity. This intuitive model result is consistent across
several alternative diversity metrics (Supplementary Fig. 4, rows),
for neutral, nearly-neutral, or non-existent passenger mutations
(Supplementary Fig. 4, columns).

To control for population size effects in this evolutionary arms
race, identical domains are segregated into non-interacting
regions of varying size (Fig. 1, bottom; video V2). Again, smaller
(highly constrained) regions are more homogeneous. Any clonal
sweep stops at each region’s boundaries, resulting in a hetero-
geneous population of locally homogeneous regions (Fig. 1h).
Boundaries limit new clones from expanding beyond a single
region, decreasing the average number of drivers in the
population (Fig. 1i).

Functional and genetic heterogeneity with limited dispersal.
Bounded, non-interacting regions play a role in human pre-
cancerous lesions, which are often locally constrained to a single
gland or a duct. Such glandular or ductal structures allow for
limited cellular mixing during premalignant growth, enabling the

tumor to explore new (and often less constrained) environments.
In Fig. 2, each segregated region may now circulate cells into a
neighboring region at a low or high rate of mixing (left and right
columns, respectively). This model mimics the structure of pre-
cancerous breast lesions, the majority of which likely originate
within the terminal ductal lobular units (TDLUs) which are
connected through a series of extralobular ducts43. Similar to the
spatially segregated patches (or habitats) commonly found in
ecological models, the structure of mammary lobules provides
segregation (i.e., the lobule) with some limited dispersal (through
the ductal network).

To show how this segregation-dispersal structure accelerates
evolution, we plot tumor evolution on two axes: genetic
(mutation burden; x-axis) and phenotypic (average number of
driver mutations, �kd ; y-axis). The evolution of an unsegregated
tumor is shown in black (Fig. 2c, e), accumulating genetic
diversity (left-to-right) over time with a slow accumulation of
drivers (bottom-to-top). This state-space diagram allows us to
track the accelerated acquisition of drivers in a precancerous
population, with respect to tumor size.

The trajectory of a tumor’s evolution quantifies the tumor-scale
effect of domain size and mixing, over time. Despite seeding
simulations with identical parameterization, tumors may evolve
in a neutral or Darwinian mode (or on a continuous scale
between the two, shown in Fig. 2b), subject to selection imposed
by domain size and cellular mixing. “Neutral” tumors acquire
drivers at a rate equal to the ratio of drivers to all mutations
(Fig. 2c, e; blue arrows). Conversely, “Darwinian” tumors sweep
each new driver mutation through the population, resulting in a
vertical trajectory (Fig. 2c, e; green arrows). There is a continuum
between neutral and Darwinian evolution which is time-

Fig. 1 The effect of spatial constraints on heterogeneity. Cells divide and die on a regular square lattice. A cell selected for birth can divide only into an
empty grid location and may accrue passenger or driver mutations. Top: simulations on varied sizes of domains, ranging from 100 cells in diameter to 900
cells, seeded with 100 cells (kd= 1, kp= 0) at time zero (Tp= 5 ⋅ 106, Td= 700, sd= 0.1, sp= 0.01). a, b An increase in domain size results in increased driver
and passenger heterogeneity, with standard deviation shown (shaded colors) for ten stochastic simulations. c–g Representative snapshots after 4000 cell
generations. Bottom: Identical domain size (seeded with one-third of the domain filled; kd= 1, kp= 0) segregated into varied number of non-interacting
regions (Tp= 106, Td= 700, sd= 0.1, sp= 0.01, μ= 10−8). h driver heterogeneity increases with number of segregated regions. i Boundaries limit new clones
from expanding beyond a single region, decreasing the average number of drivers in the population. j–o Representative snapshots after 2000 cell
generations. See attached videos V1 and V2. Solid lines indicate mean value, bands indicate ± 1 standard deviation for N= 10 simulations in a, b, h, i.
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dependent, and modulated by the degree of spatial constraints
and cellular mixing. The unsegregated tumor traces out a
trajectory that lies slightly above the neutral evolution line
(Fig. 2c; black), but segregated tumors with limited dispersal trace
out more vertical trajectories (Fig. 2c; blue, red, green).

Here we propose a classification of time-dependent tumor
evolution as its “realized Darwinian fitness”, the time-varying
angle on the mutation-driver state space (see Fig. 2b). Tumors are

able to realize much higher fitness levels (Fig. 2c) with high spatial
constraints and limited mixing, enabling rapid acquisition of
drivers, despite no changes in subclonal fitness effects.

This view of Darwinian fitness represents a paradigm shift in
tumor neutrality. Previous work has often focused on inferring
cell-specific fitness (i.e., subclonal selection) through variant allele
frequency distribution metrics (e.g., the 1/f power law
distribution)5,44,45. Alternatively, we argue that there is a scale

Fig. 2 Spatial segregation with cell mixing accelerates evolution. a A Muller plot of tumor evolution represents genotypes color-coded by driver (kd)
value. The horizontal axis is time (cell generations), with height corresponding to genotype frequency. Descendant genotypes are shown emerging from
inside their parents. b A tumor’s “realized fitness” can be quantified as the time-varying slope of the evolutionary trajectory. c Tumors evolve on the genetic
(mutation burden; x-axis) and phenotypic (average drivers; y-axis) axes. For low mixing, smaller regions impose higher selection pressure, accelerating the
acquisition of drivers in the population (vertical axis). Simulations are run to identical tumor size (25% of the total domain). d The domain is segregated
into regions where cells disperse are allowed to mix between segregated regions at a low rate (0.01; c; left column) or high rate (0.1; e right column). e As
mixing increases, tumor evolution “collapses” back onto the unsegregated single region case shown in black in (b). Snapshots are shown every 500
generations. Simulations repeated for 3 by 3 regions (f, g), 7 by 7 regions (h, i), and 11 by 11 regions (j, k). Parameters: Tp= 5 ⋅ 106, Td= 700, sd= 0.1, sp=
10−3, μ= 10−8. See attached video V3.
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of fitness that should be considered: tumor-scale. The surround-
ing spatial context modulates the “realized tumor fitness”. Spatial
constraints accelerate evolution, without changes in cell-specific
fitness.

Tumor diversity can be visualized on a Muller plot46,
displaying each clone’s abundance over time, colored by driver
mutations (Fig. 2f–k; video V3). Tumors with low mixing rates
(Fig. 2, left column) tend to evolve by a Darwinian mode of
evolution: clonal sweeping which maintains a lower genetic
diversity. Increasingly smaller regions allow new drivers to more
easily sweep within a local region (Fig. 2c). Introducing
segregated regions increases spatial constraints, allowing the
tumor to realize increased levels of selection (Fig. 2, left column)
even without changes in cell-specific fitness. Importantly, this
accelerated mode of evolution is lost when mixing between
regions is too high (see Fig. 2e). The high mixing rate (right
column) recapitulates the evolutionary trajectory of a relatively
unconstrained tumor, decreasing the tumor’s realized fitness.

Spatial context modulates DCIS realized tumor fitness. As
mentioned in the introduction, the seminal study by Casasent
et al. performed single-cell DNA sequencing on ten synchronous
DCIS-IDC patients to quantify intratumoral heterogeneity while
preserving spatial information20. Synchronous patients provide
an advantage over comparisons of DCIS with recurrent IDC
samples which are often collected many years apart. Their find-
ings, reproduced in Fig. 3a–f, indicates a high degree of intratu-
mor heterogeneity within ductal regions with the major clones
also present in invasive regions. These data provide evidence for
the multiclonal invasion model in DCIS, where one or more
clones escape the ducts and migrate into adjacent tissues, main-
taining much of the heterogeneity (the IDC heterogeneity is not
shown here). This section focuses on the role tissue architecture
plays in shaping the pattern of ductal carcinoma heterogeneity.

After DCIS initiation, the branching topology of a breast ductal
and glandular network structure acts as an evolutionary
accelerant, where spatially segregated regions (ductal branches)
work in combination with cell mixing (subject to varied
branching topology) to accelerate tumor evolution. Another
previously published mathematical model which explicitly
modeled ductal structure has indicated that the rate of tumor
advance is inversely correlated to the ductal radius, but does not

consider the key role of dispersal and migration into neighboring
ducts47.

Here, the mathematical model is extended to a three-
dimensional domain and constrained to grow inside a ductal
network reconstructed with data from anthropomorphic breast
phantoms48. The model is parameterized (see fig. 3g–l; see
‘Methods’) by performing 10,000 stochastic simulations for a
range of driver mutation rates (μd∈ [10−7, 1]) and fitness (sd∈
[10−3, 10]). The simulated evolution of DCIS is initialized and
constrained to grow inside a realistic three-dimensional topology
of a continuously connected series of progressively smaller
branches, as shown in Fig. 4a (see also video V4 and V5,
Supplementary Figs. 5 and 6). Measures of clonal heterogeneity
for all polyclonal DCIS tumors in ref. 20 were compared to
diversity outcomes of the mathematical model (eqn. (3)). The
range of parameterizations that recapitulate the heterogeneity for
each DCIS tumor is shown in Fig. 3g–l. Parameterizations follow
a linear relationship between driver fitness and mutation rate (on
a log-scale; characterized by a best-fit to Eqn. (4)). As
heterogeneity increases in a–f, the slope of this best fit (m) also
increases in g–l (see Supplementary Fig. 7).

In Fig. 4, the model is simulated for two patient parameteriza-
tions: low (DC13; Fig. 3a, g) and high (DC16; Fig. 3f, l)
heterogeneity, subject to different initial spatial conditions. As
seen in Fig. 4b, high heterogeneity DC18 (dashed lines) begins
with an initial steep Darwinian slope, reaching higher average
driver number, albeit with high levels of mutation burden. In
contrast, low heterogeneity patient DC13 is characterized by
lower slope and lower mutational burden.

There is some evidence that precancerous breast lesions
typically originate within lobular areas associated with the highest
rates of cellular turnover, especially terminal ductal lobular units
(i.e., at the top of Fig. 4a)43. Although likely less frequent, we also
simulate tumors that originate near the root of the ductal network
(i.e., at the bottom of Fig. 4a) to showcase the important role of
spatial constraints on tumor evolution. Tumors initiated inside
larger ductal branches near the root of the network (z= 25%,
blue, Fig. 4b) begin with less spatial constraints and increased
access to expand into new branches. These tumors evolve more
neutrally (left-to-right trajectories in Fig. 4b). Tumors initiated
further from the ductal root in smaller, more constrained
branches (e.g., purple curve) are characterized by clonal sweeping

Fig. 3 Model parameterization of DCIS heterogeneity. a–f Muller diagrams of inferred clonal heterogeneity of the six polyclonal synchronous DCIS-IDC
patients from Casasent et al.20, arranged from low (a) to high (f) heterogeneity. g–l The mathematical model is extended to a three-dimensional domain
and constrained to grow inside a ductal network (Fig. 4a) and 10,000 stochastic simulations for a range of driver mutation rates (μd∈ [10−7, 1]) and fitness
(sd∈ [10−3, 10]) are simulated to N= 104 cells. Parameterizations for which clonal diversity of the mathematical model (eqn. (3)) lie within error bounds
reported in Casasent et al. are plotted and fit to eqn. (4). As heterogeneity increases in a–f, the slope of this best fit (m) also increases in g–l. Source data
for a–f are provided as a Source Data file.
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(vertical trajectories) early. At later times, the tumor expands into
new unexplored territories, shifting toward neutral trajectories. A
tumor originating in a tightly constrained duct enables an
accelerated acquisition of drivers early in tumor progression (104

cells), which may be a more dangerous, highly homogeneous
population of malignant cells that have all acquired new traits
such as invasiveness, motility, or metastatic capabilities. These
important conclusions are lost when considering identical
parameterizations of a non-spatial model (Fig. 4b, yellow),
unconstrained two-dimensional model (orange), or uncon-
strained three-dimensional model (purple).

Neutral evolution has previously been quantified using the
distribution of the cumulative number of mutations in the

tumor with respect to inverse allelic frequency (1/f power-law
distribution)5. We simulate sequencing (over time) for both
patients and quantify the linearity of the 1/f power-law
distribution (Fig. 4e, f) and repeat the analysis subject to
spatial constraints on ten anthropomorphic breast phantom
ductal network reconstructions shown in Fig. 4c. Although all
tumors (regardless of spatial constraints) initially are quantita-
tively shown to be non-neutral (Fig. 4e, f), all eventually
progress to a neutral or nearly-neutral evolutionary mode (the
neutral minimum threshold of 0.985 shown in black). Using
this metric, initial high spatial constraints (green bars)
transition to neutral evolution more slowly than lack of spatial
constraints (blue), especially for patient DC16 (Fig. 4f). When
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tumor growth is more spatially constrained it, therefore,
consists of a smaller population, enabling easier subclonal
expansion of more fit clones (see Supplementary Figs. 8 and 9;
Video V6).

Discussion
Importantly, two otherwise identical tumors may realize dramatic
differences in fitness depending on constraints imposed by tissue
architecture. On the cell scale, any given subclone may indeed
have a selective advantage (i.e., a higher birth rate). Yet, the
effective outcome of this subclonal advantage depends on the
surrounding competitive context of that cell. In other words, cell-
specific phenotypic behavior can be “overridden” by the tissue
architecture, allowing the tumor to realize increased fitness. This
subclonal selection at the cell-scale may be below the detectable
threshold, using traditional metrics, of selection from bulk
sequencing methods (i.e., 1/f; Fig. 4e, f). Our approach adds
clarity to the debate of neutral tumor evolution by exploring a key
mechanism behind both inter-patient and intratumoral tumor
heterogeneity: competition for space, in addition to tracking
temporal changes.

There is an apparent discrepancy between Figs. 1 and 2.
Highest levels of driver acquisition, kd, are found in large domains
in Fig. 1 (see panel i). In contrast, the maximal kd is found in
collections of small domains with low mixing in Fig. 2 (see panel
c). This illustrates the importance of considering the role of time
(Fig. 1), as well as the role of tumor size (Fig. 2) when studying
evolution. For example, large domains (see Fig. 2f, h, j) accrue
more drivers in equal time, but comparisons of tumors with
identical size (Fig. 2f, h, j; vertical dashed lines) reverse this result.
The mechanism of increased evolution per cell (or, simply,
increased driver acquisition) is as follows: spatial constraints
maintain smaller tumors for prolonged periods of time, which
facilitate easier clonal sweeps.

It is clear that spatial competition can no longer be ignored in
evolutionary models of tumor evolution. These results (sum-
marized in Fig. 5) help to unify the debate surrounding neutral
tumor evolution by clarifying the role of space in the transition
from Darwinian to neutral evolution. The impact of spatial
competition and cellular mixing on cancer evolution (Figs. 1 and
2) is broadly applicable across a range of precancerous lesions,
including the particular case study of DCIS shown here.

Initial spatial constraints determine the emergent mode of
evolution (neutral to Darwinian) without the necessity for
changes in cell-specific mutation rate or fitness effects. The
branching topology of ductal networks at tumor initiation
determines two important evolutionary accelerants: spatial con-
straints and cellular mixing. This connectivity is likely to be
highly heterogeneous between patients, leading to variability in
rates of cellular mixing between spatially distinct niches within a
tumor. Although all tumors tend toward neutrality, spatial con-
straints allow tumors to linger in the non-neutral mode for
longer, acquiring more drivers per cell. Limited connectivity
enables subclones to undergo high levels of local selection due to
spatial constraints. Our metric of realized fitness emphasizes the
need to consider both space and time when inferring the mode of
evolution. These results indicate that we must be cautious when
interpreting non-spatial measures of evolution.

Methods
Consistent with previous models of passenger driver evolution, tumors will
undergo progression with a low mutation rate (less total deleterious passengers) or
a low passenger fitness sp (see Supplementary Fig. 2a, b). We specifically are
focused on measures of functional (drivers) and non-functional (passengers) het-
erogeneity and the conclusions drawn from the model apply in the assumption of
neutral or non-neutral passengers.

Model overview. Each model simulation is carried out on a two- or three-
dimensional grid lattice where each tumor cell is allowed to occupy a single grid
point. Simulations are started with r20 initial cells (r0= 10 unless otherwise noted).
During each time step, each cell undergoes a birth–death process with the following
birth (Pb) and death (Pd) probabilities:

Pb ¼ b
ð1þ sdÞkd
ð1þ spÞkp

ð1Þ

Pd ¼ d ð2Þ

where b and d are the baseline birth and death rates, respectively. Tumor cells are
initiated with exactly one driver mutation (i.e., kd= 1) and zero passenger muta-
tions (i.e., kp= 0). During the birth process, cells may undergo mutations at a rate
μd= Tdμ (driver mutations) and μp= Tpμ (passenger mutations). The model is a
spatially-explicit extension of ref. 36 where a driver mutation is a rare event with
confers a fitness advantage to birth rate known as sd and a passenger mutation is a
relatively common event that confers some fitness penalty, sp. Here we make the
simplifying assumption that each subsequent driver (and each subsequent pas-
senger) has an equal effect, rather than a distribution of fitness effects, but others
have shown that relaxing this assumption gives similar dynamics36.

Fig. 4 Three-dimensional model of tumor evolution constrained by ductal network structure. a Realistic three-dimensional topology of breast ductal
networks (reconstructed with data from anthropomorphic breast phantoms in48) provides full three-dimensional maps to seed and constrain tumor
evolution simulations. b Tumor evolution is shown for varied points of initiation (z-dimension shown in a), to identical sizes (N= 104 cells). See attached
videos V4 and V5. Two parameterizations are shown: DC13 (solid lines; μp= 10−2; μd= 10−3.0; sd= 10−1; sp= 10−3; indicated as red circle (a) in Fig. 3g)
and DC16 (solid lines; μp= 10−2; μd= 10−2.5; sd= 10−2; sp= 10−3; indicated as green circle (b) in Fig. 3l). The slope of trajectories (schematic) on this
phase portrait is termed “realized tumor Darwinian fitness” and is dependent on spatial constraints at the point of tumor initiation. Simulations closer to the
ductal root (e.g., blue curve, z= 25%) in larger, less constrained branches are characterized by a steady left-to-right (neutral) evolution and constant
acquisition of new clones. Simulations further from the ductal root (e.g., green, z= 75%) in smaller, more constrained branches are characterized by clonal
sweeping (bottom-to-top evolution) early, but with a shift toward neutrality (left-to-right) at later times. Trajectories may be compared to alternative
models with identical parameterizations: non-spatial model (dashed yellow), unconstrained two-dimensional model (dashed orange), or unconstrained
three-dimensional model (dashed purple). c The analysis is repeated subject to spatial constraints on ten highly distinct anthropomorphic breast phantom
ductal network reconstructions. In general, ductal branches far from the root decrease in size and increase in number (see Supplementary Fig. 5). d All
simulations tend to follow an initially Darwinian evolutionary trajectory (steep slope) followed by a transition to neutral evolution (shallow slope). e, f An
alternative metric of tumor neutrality: the linearity of cumulative mutation distribution with respect to inverse allelic frequency, sometimes called the 1/f
power-law distribution5. Although all tumors initially are quantitatively shown to be non-neutral, all eventually progress to neutral or nearly-neutral state
(the neutral minimum threshold of 0.985 shown in black). Tumors with initially high spatial constraints (green violin plots) transition to neutral evolution
more slowly than those with less spatial constraints (blue violin plots). High spatial constraints enable accelerated evolution over a range of ductal
networks in (c) (see Supplementary Fig. 4). Violin plots show median (diamond), 25/75 percentiles, and smallest/largest values within 1.5 times the
interquartile range above/below quartiles) for N= 10 simulations for each z value.
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Model parameters. Consistent with the range reported36,37, the following para-
meter values were used: sd= 0.1, sp= 10−3, Td= 700, Tp= 106, μ= 10−8. Due to
the possibility of extensive variability in these parameters (see ref. 37), each of these
parameters was varied several orders of magnitude to ensure the robustness of
conclusions drawn. Birth and death rates were kept constant at b= d= 0.5 unless
otherwise noted, and do not significantly alter results for b, d∈ [0.1, 0.5] (see
Supplementary Fig. 2b).

Heterogeneity. Heterogeneity of driver and passenger mutations is calculated
using Shannon entropy, given by:

H ¼ exp �∑
i
pilog pi

� �
ð3Þ

where pi is the proportion of cells within the population with exactly i driver (Hd)
or passenger (Hp) mutations.

Parameterization using DCIS patient data. Model parameterizations were per-
formed by simulating 10,000 stochastic realizations of the mathematical model for
a range of driver mutation rates (μd∈ [10−8, 1]) and fitness (sd∈ [10−3, 10]), with
constant passenger fitness (sp= 10−3) and rate (μp= Tpμ= 10610−8= 10−2) and
spatial location (z= 75%). After the tumor size reaches 104 cells, heterogeneity is
measured and plotted in Fig. 3 if it lies within the bounds of error reported in
Casasent et al.20 and a best-fit of all acceptable realizations is performed via the
following equation:

log 10ðsdÞ ¼ mlog 10ðsdÞ þ b ð4Þ
Alternatively, Supplementary Fig. 7 shows the effect of passenger fitness, spatial
location, and tumor size on heterogeneity. Note: Casasent et al. uses an alternative
definition of Shannon entropy (�∑iðpilog piÞ), which is converted before com-
parison of heterogeneity in Fig. 3g–l (using Eqn. (3)).

Dispersal rate between glands and ducts. Because there are no reliable data on
the probability of tumor cell mixing and dispersal between breast ducts, a range of
dispersal rates (rate∈ [0.01, 0.1]) are simulated in dimensions, while realistic breast
ductal network structure in three dimensions with varied ductal branch sizes and
branching topology (with varied initial conditions) are given by ref. 48.

Quantification of ductal number and area. Simulations were performed subject
to spatial constraints on ten anthropomorphic breast phantom ductal network
reconstructions, shown in Supplementary Fig. 5. For each two-dimensional slice
(e.g., Supplementary Fig. 5b), the number of ductal branches is counted and
quantified using OpenCV and scikit-image for the Python programming language.
In order to minimize bias introduced when ductal branches run parallel to a given
slice, an ellipse is fit (Supplementary Fig. 5b, bottom) to each ductal branch to find

the length of the minimum axis, dmin.. Distributions of dmin. are shown in Sup-
plementary Fig. 5a for each range of z values (colored purple, gray, pink, yellow)
and repeated for ten breast ductal network structures. In general, there are fewer,
larger ducts near the root of the ductal network and many, smaller ducts as z-layer
increases (Supplementary Fig. 5c).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No new experimental or clinical data were collected. Data of DCIS-IDC heterogeneity in
Fig. 4 may be found at: https://doi.org/10.1016/j.cell.2017.12.007 (ref. 20). The remaining
data and code are available within the Article, Supplementary Information, or available
from the authors upon request. Source data are provided with this paper.

Code availability
All figures were produced using an agent-based modeling platform (Java) known as HAL:
Hybrid Automata Library49. Ductal branches were counted and quantified using opencv-
python (version 4.3.0) and scikit-image (version 0.17.0) for the Python programming
language. The code for the model described in this paper is freely available open-source
at: https://github.com/MathOnco/tissue-structure-modulates-evolution.
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