Skip to main content
. 2021 Feb 12;8(7):2002545. doi: 10.1002/advs.202002545

Table 3.

Summary of studies on the nanomaterial‐enabled drug delivery for PDAC therapy

Nanocarriers Polymers/Macromolecules Targeting Ligands Drugs Cell Lines In vivo Models Outcomes Ref
Micelles Cetuximab C225‐poly(ethylene glycol)‐block‐poly(2‐methyl‐2‐carboxyl‐propylene carbonategraft‐dodecanol (C225‐PEG‐PCD), GEM conjugated poly(ethylene glycol)‐block‐poly(2‐methyl‐2‐carboxyl‐propylene carbonate‐graft‐dodecanol‐graft‐tetraethylenepentamine) (PEG‐b‐PCC‐g‐GEM‐g‐DC‐g‐TEPA) Cetuximab C225 GEM, miR‐205 Miapaca‐2 cells Miapaca‐2 orthotopic tumor model

Enhance EGFR‐mediated cellular uptake,

increase accumulation of C225‐micelles,

increase apoptosis and reduce EMT

[ 113 ]
Micelles Poly(ethylene glycol)‐poly(l‐/d‐ glutamate) Cisplatin BxPC3 cells BxPC3 subcutaneous tumor model

Promote NPs accumulation and retention,

improve antitumor efficacy

[ 114 ]
Micelles Poly(styrene maleic acid)‐hyaluronic acid (SMA‐HA) HA 3, 4‐difluorobenzylidene curcumin (CDF) Miapaca‐2 cells, AsPC‐1 cells

Increase the uptake of NPs,

reduce CD44 expression, inhibit NF‐KB

[ 306 ]
Polymeric NPs Dendrigraft poly‐l‐lysine‐EGPLGVRGK‐poly(ethylene glycol)‐poly(caprolactone) (DGL‐EGPLGVRGK‐PEG‐PCL) GEM Panc‐02 cells, 4T1 cells

Panc‐02/NIH3T3 subcutaneous tumor model,

4T1/NIH3T3 subcutaneous tumor model

Increase long‐term antitumor effect [ 132 ]
Polymeric NPs Cell‐penetrating peptide (CPP)‐based amphiphilic peptide (C2KG2R9)‐cholesterol monomers Human fibroblast activation protein‐α (FAP‐α) monoclonal antibody (mAb) DOX

CAFs cells,

PC‐3 cells,

HUVECs

CAFs/PC‐3 subcutaneous tumor model

Enhance tumor targeting, penetration, and accumulation of various therapeutics,

improve the cellular uptake and the antitumor efficacy

[ 146 ]
Polymeric NPs Chaperonin GroEL DOX MDA‐MB‐231 cells MDA‐MB‐231 subcutaneous tumor model, Panc‐1 subcutaneous tumor model Effective and highly selective drug delivery without adverse effects on the major organs [ 121 ]
Polymeric NPs Human serum albumin (HSA)

Paclitaxel, tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand

(TRAIL)

Miapaca‐2 cells Miapaca‐2 subcutaneous tumor model

Increase apoptotic activity,

improve antitumor efficacy

[ 104 ]
Polymeric NPs Bovine serum albumin (BSA) GEM Miapaca‐2 cells, Panc‐1 cells

Enhance cellular uptake and stability of GEM,

increase apoptotic activity

[ 99 ]
Polymeric NPs Aptamer/cell‐penetrating peptide‐camptothecin prodrug GBI‐10 aptamer Camptothecin Miapaca‐2 cells Miapaca‐2 orthotopic tumor model Enhance tumor penetration and antitumor efficacy, reduce cytotoxicity [ 107 ]
Polymeric NPs Poly(ethylene glycol)‐poly(d,l‐lactic acid) (PEG‐PLA) Salinomycin (SAL) AsPC‐1 cells AsPC‐1 subcutaneous tumor model

Increase cell mortality and apoptosis,

inhibit invasion and harness EMT,

eradicate tumor and increase survival rate

[ 110 ]
Polymeric NPs Fourth generation poly(amidoamine) (PAMAM) dendrimer‐HA HA CDF Miapaca‐2 cells

Enhance cellular uptake,

increase in the IC50 value

improve safety and therapeutic margin

[ 115 ]
Polymeric NPs PCL‐CDM‐PAMAM/Pt (G3, G5, G7), PEG‐PCL, PCL Pt prodrug c,c,t‐[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] Panc‐02 cells, MCSs Panc‐02 orthotopic tumor model Balance tumor penetration, cell internalization, and tumor retention [ 116 ]
Polymeric NPs PEG2000‐S‐S‐PLA6000, N3‐PEG2000‐PLA6000 MMP‐7 DOX, curcumin

BxPC‐3 cells,

AsPC‐1 cells

Facilitate the cellular internalization preferentially in the cancer cells, and subsequent nuclear transport [ 119 ]
NPs‐Liposomes HSA, dipalmitoylphosphatidylcholine (DPPC), Brij78 Ellagic acid (EA) BxPC‐3 cells BxPC3/HPaSteC subcutaneous tumor model

Improve drug blood retention,

facilitate penetration and accumulation of NPs into tumor matrix,

increase apoptosis and inhibit tumor growth

[ 133 ]
NPs‐Gels Monomethoxy (polyethylene glycol)‐poly(d,l‐lactide‐co‐glycolide)‐poly(l‐lysine)‐cyclic peptide (arginine‐glycine‐asparticglutamic‐valine acid) (mPEG‐PLGA‐PLL‐cRGD) cRGD Paclitaxel

Aspc‐1 cells,

Aspc‐1/PTX cells

Aspc‐1/PTX subcutaneous tumor model, Aspc‐1/PTX orthotopic tumor model

Prolong the release and elimination times,

enhance the paclitaxel uptake and the antitumor effects

[ 134 ]
MSNs DPPC, cholesterol, 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐[methoxy(polyethyleneglycol)] (DSPE‐PEG) Paclitaxel, GEM Panc‐1 cells Panc‐1 orthotopic tumor model

Enhance dual delivery carrier efficacy,

increase the phosphorylated DNA‐interactive GEM metabolite,

decrease the inactivated and deaminated metabolite,

inhibit primary tumor growth and eliminated metastatic foci,

no local/systemic toxicity

[ 127 ]
MSNs 1,2‐Distearoyl‐sn‐glycero‐3‐phosphocholine (DSPC), cholesterol, DSPE‐PEG Irinotecan

Panc‐1 cells,

KPC cells

KPC orthotopic tumor model

Increase drug accumulation at tumor site,

treat tumor metastases,

improve PDAC survival,

decrease toxicity in the gastrointestinal, liver, and bone marrow

[ 100 ]
MSNs Cancer cell membrane DOX

BxPC3 cells,

human pancreatic stellate cells (hPSCs)

BxPC3/hPSCs subcutaneous tumor model

Improve immunoevasion,

enhance ECM penetration, tumor accumulation, and antitumor efficacy

[ 128 ]
CdSe/ZnS QDs MMP‐9 detachable PEG, cathepsin B‐cleavable GEM cRGD GEM BxPC3 cells BxPC3 subcutaneous tumor model

Increase the accumulation of NP in tumor tissue,

enhance the tumor inhibitor activity,

reduce the side effects

[ 122 ]
Iron oxide NPs F127 GEM, curcumin

HPAF‐II cells,

Panc‐1 cells,

pancreatic cancer stem cells (CSCs)

HPAF‐II/PSCs orthotopic tumor model

Increase accumulation and uptake of NPs in tumor site,

reduce metastasis and tumor growth

[ 123 ]
Iron oxide NPs Citric acid Gambogic acid Capan‐1 cells

Induce apoptosis,

enhance anticancer activity

[ 129 ]
Metal‐organic frameworks (MOFs) GEM Panc‐1 cells Enhance therapeutic efficiency [ 124 ]
Calcium phosphosilicate NPs mPEG 5‐FU, GEM

Panc‐1 cells,

BxPC‐3 cells

Panc‐1 orthotopic tumor model Enhance NP/drug delivery and the uptake by tumor cells [ 125 ]