Skip to main content
. 2021 Feb 12;8(7):2002545. doi: 10.1002/advs.202002545

Table 7.

Summary of studies on the PDAC‐tailored nanomaterials for ablative therapies

Ablative Therapy Nanocarriers Polymers/Macromolecules Active Components Targeting Ligands Exogenous Radiation Cell Lines In vivo Model Outcome Ref
PDT HSA NPs HSA Pheophorbide‐a (P@), GEM

670 nm laser,

10 mW cm–2

BxPC‐3 cells BxPC‐3‐LN7 subcutaneous tumor model

Selective accumulation of NPs within the primary tumors and metastatic lymph nodes,

enhance therapeutic effect toward cancer with lymphatic metastases

[ 224 ]
PDT Polymeric NPs PEI and PEG Chlorin e6 (Ce6)

670 nm laser,

800 mW cm–2

AsPC‐1 cells,

ABCG2‐overexpressing Miapaca‐2 cells

AsPC‐1 orthotopic/subcutaneous tumor model

Enhance intracellular Ce6 concentration and the PDT effect,

reduce tumor volume

[ 227 ]
PTT HSA‐paclitaxel@ liposomes FAP‐α responsive cleavable amphiphilic peptide, DPPC IR‐780 iodide

808 nm laser,

0.8 W cm–2

Panc‐02 cells,

NIH3T3 cells

Panc‐02/NIH3T3 subcutaneous tumor model,

Panc‐02 orthotopic tumor model

Promote the release of small sized HSA‐paclitaxel in deep tumor regions,

enhance combined chemotherapy with PTT

[ 229 ]
PTT Au NPs Polymeric GEM‐ mono‐2‐methacyloyloxy ethyl succinate prodrug Au NPs, GEM

640 nm laser,

1.4 W cm–2

Miapaca‐2 cells Enhance thermal effect, synergistic photochemotherapeutic activity and significant cytotoxicity [ 231 ]
PTT Au NRs Erythrocyte membrane Au NRs, CPA

808 nm laser,

0.75 W cm–2

Capan‐2 cells Capan‐2 subcutaneous tumor model Significant shrinkage of Capan‐2 tumor xenografts [ 232 ]
PTT MSNs@Au nanoshell PEG Au nanoshell Anti‐uPAR antibody

808 nm laser,

2 W cm–2

Panc‐1 cells, SW1990 cells SW1990 orthotopic tumor model

Eradicate tumor cells,

achieve tumor metastasis inhibition and cancer immunotherapy

[ 233 ]
PTT Rod MSNs@Au nanoshell Tf‐PEG Au nanoshell, GEM Tf 808 nm laser, 0.5 W cm–2 Miapaca‐2 cells Miapaca‐2 subcutaneous tumor model Improve GEM penetration and accumulation in tumor tissues [ 234 ]
PTT GQDs Cationic polylactides with pendant tertiary amine groups GQDs, DOX, siKRAS

650 nm laser,

0.2 W cm–2

Miapaca‐2 cells

Keep stable in physiologically mimicking media,

promote KRAS downregulation activity,

enhance bioactivity inhibition and anticancer activity

[ 179 ]
PTT Multi‐walled carbon nanotubes (MWCNs) PEG MWCNs

808 nm laser,

2 W cm–2

Panc‐1 cells Promote cellular damage in PDAC cells via the apoptotic pathway [ 236 ]
PTT Au‐GO Zwitterionic chitosan Au‐GO, DOX

808 nm laser,

3 W cm–2

Panc‐1 cells, Miapaca‐2 cells Panc‐1 subcutaneous tumor model

Increase tumor uptake,

enhance antitumor treatment,

reduce toxicity

[ 237 ]
MH Iron oxide NPs Dimercapto‐succnic acid (DMSA) Iron oxide NPs, GEM Pseudopeptide NucAnt (N6L) Alternating magnetic field (AMF to 43 °C)

BxPC3 cells,

Panc‐1 cells

BxPC3 subcutaneous tumor model

Inhibit PDAC cell growth,

induce PDAC cell death,

reduce proliferation

[ 240 ]
MH Iron oxide NPs PLGA Iron oxide NPs, 17‐ N‐allylamino‐17‐demethoxygeldanamycin (17AAG) 25 kOe AMF Miapaca‐2 cells Facilitate anti‐PDAC activity [ 242 ]
MH

Iron oxide NPs,

cetuximab‐conjugated,

GEM‐containing magnetic albumin nanospheres (C225‐GEM/MANs)

BSA Iron oxide NPs, GEM Cetuximab 230 kHz AMF

AsPC‐1 cells,

Miapaca‐2 cells

Increase apoptosis,

enhance double‐targeted thermo‐chemotherapy against PDAC cells

[ 241 ]
MH Iron/iron oxide NPs 3‐(3,4‐dihydroxyphenethylcarbamoyl) propanoic acid tetraethylene glycol ester Iron/iron oxide NPs 145 kHz AMF Panc‐02 cells Panc‐02 disseminated peritoneal tumor model Promote active delivery of NPs [ 244 ]
RFA

Cetuximab‐conjugated Au NPs (10 nm),

PAM4‐conjugated Au NPs (20 nm)

Au NPs Cetuximab, PAM4 single‐chain IgG 600 W generator power RF field Panc‐1 cells, Capan‐1 cells Panc‐1 subcutaneous tumor model, Capan‐1 subcutaneous tumor model Promote noninvasive induction of intracellular hyperthermia [ 253 ]
RFA Ni‐Au core‐shell nanowires (CSNWs) Ni‐Au CSNWs 12–15 W, 900–950 MHz RF field Panc‐1 cells Panc‐1 subcutaneous tumor model Induce PDAC cell death [ 254 ]
US Nab‐paclitaxel; BG8610, BG8214 microbubbles (MBs) BG8610, BG8214 MBs, Nab‐paclitaxel

Frequency

1 MHz US

BxPC‐3 cells BxPC‐3 subcutaneous tumor model

Decrease the tumor volume,

increase therapeutic efficacy

[ 259 ]
US Hollow MSNs‐l‐arginine‐CO2 CO2

1 W cm–2, frequency

1 MHz US

Panc‐1 cells Panc‐1 subcutaneous tumor model

Inhibit tumor growth,

reduce side effects

[ 260 ]
US Cyclic decapeptide‐HMSNs‐l‐arginine PEG H2O2, l‐arginine as NO donors Cyclic decapeptide CGLIIQKNEC

1 W cm–2, frequency

1 MHz US

Panc‐1 cells Panc‐1 subcutaneous tumor model

Increase retention,

inhibit tumor growth,

prolong survival

[ 262 ]
SDT Magnetic superparamagnetic iron oxide NPs and perfluorobutane (PFB) gas loaded MBs (MagMBs) DBPC, DSPE‐PEG2000, DSPE‐PEG2000‐biotin

Rose Bengal,

5‐FU

Biotin

3.0 W cm–2, frequency

1 MHz US

BxPC‐3 cells, Miapaca‐2 cells,

Panc‐1 cells, T110299 cells

BxPC‐3 orthotopic tumor model

Reduce tumor volume,

promote sonodynamic/antimetabolite therapy

[ 269 ]
SDT MagMBs DBPC, DSPE‐PEG2000, DSPE‐PEG2000‐biotin

Rose Bengal,

GEM

Biotin

Magnetic‐acoustic device (MAD):

US: 1.17 MHz,

Magnet: 0.2 T

BxPC‐3 cells, Miapaca‐2 cells

BxPC‐3

subcutaneous tumor model

Increase the therapeutic payload deposition ≈1.4 fold,

decrease tumor volume 9% at 8 d after treatment

[ 270 ]
SDT Fluorocarbon (FC)‐chain‐functionalized hollow MSNs (FHMSNs) IR780

1 W cm−2, frequency

1 MHz US

Panc‐1 cells Panc‐1 subcutaneous tumor model

Inhibit hypoxia‐induced resistance to SDT,

promote killing and shrinkage of hypoxic PDAC

[ 268 ]