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Abstract

sidClustering is a new random forests unsupervised machine learning algorithm. The first step in 

sidClustering involves what is called sidification of the features: staggering the features to have 

mutually exclusive ranges (called the staggered interaction data [SID] main features) and then 

forming all pairwise interactions (called the SID interaction features). Then a multivariate random 

forest (able to handle both continuous and categorical variables) is used to predict the SID main 

features. We establish uniqueness of sidification and show how multivariate impurity splitting is 

able to identify clusters. The proposed sidClustering method is adept at finding clusters arising 

from categorical and continuous variables and retains all the important advantages of random 

forests. The method is illustrated using simulated and real data as well as two in depth case 

studies, one from a large multi-institutional study of esophageal cancer, and the other involving 

hospital charges for cardiovascular patients.
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1 | INTRODUCTION

Machine learning is generally divided into two branches: supervised and unsupervised 

learning. In supervised machine learning, the response is known and the intent is to train a 

model to predict its value, while in unsupervised learning the target variable needs to be 

determined from a set of known features. One of the most famous examples of this type of 

algorithm is k-means clustering [14] but a major drawback of this method is its lack of 

feature selection which becomes increasingly important as the dimensionality of the problem 

increases. Another challenging aspect is when the data exhibit a mix of both numerical as 

well as categorical feature variables (referred to as mixed data). Such data is very common 

in modern big data settings such as in medical and health care problems. However many 

unsupervised methods are better suited for data containing only continuous variables. This 
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includes methods dependent on densities [12], those that rely on connectivity-based 

approaches [10] and methods that rely on distance metrics such as k-nearest neighbor 

approaches [16]. Even mixture model methods, which are widely used tools for 

unsupervised clustering, are not always appropriate. This is because when the data are of a 

mixed type, standard distributions used for mixture modeling may not be valid [15].

In this paper, we introduce a new random forests based method for unsupervised learning. 

The benefit of using random forests [1] is that we can take advantage of its many excellent 

properties to deal with the challenges of unsupervised learning. For example, dealing with 

mixed data is naturally addressed under the random forests framework, as the process of 

growing and splitting a tree naturally accommodates both continuous and categorical data. 

Also random forests is scalable to big data, due to trees being trained independently, thus 

allowing for parallelization of the algorithm. Furthermore, it is robust to outliers due to the 

well-known robustness property of trees. Feature selection has been shown to be an 

imperative part of high-dimensional clustering [6, 11], otherwise the noise features can 

greatly influence the clustering result away from the desired result. Our approach will be 

able to circumvent this issue by taking advantage of random forests ability to weed out 

uninformative variables.

Algorithm 1

sidClustering

1: procedure SIDCLUSTERING( Xi i = 1
n

, δ)

2:  Sidify the original variables using Algorithm 2

3:  Use SID interaction features to predict SID main features using MVRF

4:  Extract the random forest distance from the trained multivariate forest

5:  Calculate Euclidean distance on the matrix of distances

6:  Cluster the observations based on distance of Step 5 utilizing HC or PAM

7: end procedure

One strategy of unsupervised algorithms involves reworking the problem into a supervised 

classification problem [5, 13]. Breiman’s unsupervised method [2] is one widely known 

random forests method which uses this strategy. The idea is to generate an artificial dataset 

that goes into the model alongside the original data. A random classification forest (RF-C) is 

trained on the combined data (original + artificial) and the proximity matrix is extracted 

from the resulting forest. Then standard clustering techniques can be utilized on the 

proximity matrix such as hierarchical clustering [7] or partitioning about medoids [18] to 

determine clusters (for convenience we refer to these techniques as hierarchcial clustering 

[HC] and partitioning about medoids [PAM], respectively).

Although Breiman’s clustering method has been demonstrated to work well, it is highly 

dependent on the distribution chosen for the artificial data class. Therefore, we introduce a 

new random forests based method for unsupervised learning which we call sidClustering. 

The new sidClustering method is based on two new concepts: (1) sidification of the data; (2) 

multivariate random forests (MVRF) [22] applied to the sidified data to develop distance 
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between points via the multivariate relationship between features and their two-way 

interactions. Section 2 formally describes the sidClustering method and details how 

sidification works. We show uniqueness of the sidification mapping and provide justification 

for how multivariate splitting using sidified interactions yields good clustering properties. 

Section 3 provides two real world data examples illustrating the algorithm. Section 3.1 

describes a case study involving esophageal cancer patients while Section 3.2 presents a case 

study of hospital costs for cardiovascular patients. Section 4 uses benchmark experiments to 

compare sidClustering to Breiman clustering and other competitive procedures using both 

simulations and real datasets and shows superiority of the proposed method in many cases. 

Section 5 discusses our primary findings.

2 | SIDCLUSTERING

Throughout we use X = (X1, …, Xd)T to represent the d-dimensional feature and 

ℒn = Xi i = 1
n  to denote the i.i.d. learning data. Algorithm 1 presents a formal description of 

the sidClustering algorithm. Line 2 creates the enhanced feature space from the sidification 

of the data. We call this new data, staggered interaction data (SID). Line 3 fits a MVRF 

using the SID main features as response values and the SID interaction features as the 

predictors. The distance matrix between points obtained from the multivariate regression are 

extracted in Line 4 and then converted to Euclidean distance in Line 5. Clusters are then 

obtained in Line 6 by applying either HC or PAM using the Euclidean distance based on the 

random forest distance matrix obtained in Line 4.

The key idea behind sidClustering is to turn the unsupervised problem into a multivariate 

regression problem. The multivariate outcomes are denoted by Y = (Y1, …, Yd)T and are 

called the SID main effects. The Y is obtained by shifting the original X features by making 

them strictly positive and staggering them so their ranges are mutually exclusive (we think 

of this process as “staggering”). Translating the range of the original features in this way is 

permissible due to the invariance of trees under monotonic transformations [3]. For example, 

suppose Xj and Xk are coordinates of X which are continuous. Then the SID main effects 

obtained from Xj and Xk are coordinates Yj and Yk of Y defined by

Y j = δj + Xj, Yk = δk + Xk,

where δj, δk > 0 are real values suitably chosen so that Yj, Yk are positive and the range of 

Yj and Yk do not overlap. Section 2 provides a detailed description of sidification, here we 

are discussing things more informally in order to motivate the key ideas behind our 

approach. The features used in the multivariate regression are denoted by Z and are called 

the SID interaction features. The SID interaction features are obtained by forming all 

pairwise interactions of the SID main effects, Y. Going back to our example above, the SID 

interaction corresponding to features Xj and Xk is some coordinate of Z denoted by Xj ★ Xk 

and defined to be the product of Yj and Yk

Xj ★ Xk = Y j × Yk = (δj + Xj)(δk + Xk) .
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As will be shown, the staggering of Yj and Yk so that their ranges do not overlap will ensure 

identification between the SID interactions Z (which are the features in the multivariate 

regression) and the SID main effects Y (which are the outcomes in the multivariate 

regression).

The rationale for using sidified data for our multivariate regression tree approach is as 

follows. Because Y is directly related to X, informative X features will be cut by their SID 

interactions Z because this bring about a decrease in impurity in Y (and hence X). This then 

allows cluster separation, because if coordinates of X are informative for clusters, then they 

will vary over the space in a systematic manner. As long as the SID interaction features Z 
are uniquely determined by the original features X, cuts along Z will be able to find the 

regions where the X informative features vary by cluster, thereby not only reducing impurity, 

but also separating the clusters which are dependent on those features.

Obviously uniqueness between X, Y, and Z plays a crucial role in making sidClustering 

work. The identification of sidification will be established shortly, but first we provide an 

example to help motivate the basic idea. For our illustration we simulate data from a V-

shaped distribution that creates two clusters that intersect at the origin (X1, X2)T = (0, 0)T 

and diverge as X1 becomes positive. Table 1 describes the simulation. Notice that d = 10 

because the simulation contains noise variables; however while the data lies in d = 10 

dimensions, the V-shape cluster sits within the lower dimensional space of the first two 

coordinates. For simplicity we therefore focus only on (X1, X2)T and ignore the other 

coordinates for our discussion.

The top left panel of Figure 1 displays the data for the first two dimensions from the 

simulation. Data values are colored black and red to indicate cluster membership: observe 

how points lie along a V-shape. The top right panel plots X = (X1, X2)T against the SID 

interaction feature Z = X1 ★ X2. In the bottom coplot, SID main effects Y = (Y1, Y2)T are 

plotted against Z. We can use this coplot to understand how a multivariate regression tree 

might behave using Y for the outcome and Z as the feature. Looking at the coplot notice 

how there are promising cuts along Z that can not only reduce impurity of the responses (Y1, 

Y2)T but also lead to effective separation between the true clusters. For example, low values 

of Z (region A) yield small Y1 values and large Y2 values, whereas large values of Z (region 

F) yield large Y1 values and large Y2 values, and the two groups are perfectly separated in 

cluster membership. Due to the large difference in response values in regions A and F, a split 

on Z separating these values would lead to a large drop in impurity, and thus a multivariate 

regression tree would seek to split these regions. The same holds true for regions B, C, D, 

and E. On the other hand, consider what would happen if the same tree used the original data 

(X1, X2)T for the multivariate outcome. The coplot from the top panel illustrates this 

scenario. The problem is that (X1, X2)T varies far less than (Y1, Y2)T as Z changes. For 

example, regions C, D, E, which correspond to data near the origin, have similar X1 and X2 

values. Thus a split on Z between these regions would be less effective in reducing impurity 

and the multivariate tree would be less likely to separate region C from D and E. This does 

not happen when (Y1, Y2)T is used because Y1 and Y2 do not overlap due to staggering and 

thus (Y1, Y2)T changes more rapidly with Z. This also explains why we use (Y1, Y2)T and 

not (X1, X2)T for the outcomes in the multivariate regression, even though these two values 
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are directly related (compare the left top panel to the left bottom panel to see the effect of 

staggering).

We also would like to explain why we use SID interactions Z for the features in the 

multivariate regression. Basically, interactions are a way to create meaningful synthetic 

features so that the unsupervised problem can be converted to a multivariate regression 

problem. However for this to work, it is crucial for identification to hold between Z and X. 

This is an important property which does not hold for just any type of interaction: for 

example standard interactions constructed from X do not have this property. Figure 2 

illustrates this point. The figure shows the difference between an algebraic interaction and a 

SID interaction for the V-shaped data. Arrows map (X1, X2)T points to their interaction 

value (displayed on the second horizontal axis). Arrows in the right-hand figure display 

mapping to the algebraic interaction X1 × X2. As X1 gets closer to zero, there is more 

symmetry in the values for X1 and X2 which leads to nearly identical X1 × X2 values. This is 

apparent by the bunching up of arrows (both black and red) for these points. Thus there is a 

lack of uniqueness between X1 × X2 and (X1, X2)T. In contrast, the left-hand figure displays 

the mapping to the sidified interaction Z = X1 ★ X2. Notice that arrows are no longer 

bunched up and are mapped to unique values. Thus SID interactions Z are uniquely mapped 

to the original features (X1, X2)T. This uniqueness is due to the staggering used for (Y1, 

Y2)T because recall that the Z interaction, Z = X1 ★ X2, equals the algebraic interaction of 

the Y values, Z = Y1 ★ Y2, and because of staggering (Y1, Y2)T does not suffer from the 

symmetry seen with (X1, X2)T which is what causes the breakdown in identification.

The remainder of this section is devoted to providing further details for the sidClustering 

algorithm as well as presenting supporting theory. We start in Section 2 by describing 

sidification in detail. A parameter required by sidification is δ > 0 which specifies the size of 

the translation used in staggering. As will be shown in Section 2.3 (Theorem 3) δ can be set 

to an arbitrary positive number (we use δ = 1) under a simple data preprocessing step. 

Multivariate regression trees which are used in Line 3 of the algorithm are discussed in 

Section 2.2. There we describe the relationship between impurity and multivariate splitting. 

Finally, Section 2.4 discusses the random forest distance metric used in Line 4. This is a new 

forest distance metric and calculated in a different way than traditional random forest 

proximity.

2.1 | Sidification

Formally, sidification is a two-step map from the feature space X for the original features X 

to the artificially created SID space for (Y, Z), which we denote by Y × Z. In the first step, 

called staggering, the SID main space is obtained by shifting the original features X by 

making them strictly positive and staggering them so their ranges are mutually exclusive, 

yielding Y. We denote this map by Y = ϕ X . In the second step, SID interaction features Z 

are obtained by forming all pairwise interactions of the SID main effects, Y. We denote this 

second step as the map Z = ψ Y . Thus sidification is the map:

X ∈ x (Y, Z) ∈ y × z = (ϕ(X), ψ(ϕ(X)) : X ∈ x .
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In practice, sidification is applied to the learning data ℒn = Xi i = 1
n . To distinguish abstract 

sidification from sidification used in practice, we will use a subscript of n. In practice, 

sidification maps the learning space to the sidified space as follows:

ℒn ℒnS = (ϕn(Xi), ψn(ϕn(Xi))) : i = 1, …, n
= (Y1, Z1), …, (Y1, Zn) .

Algorithm 2 provides a formal description of this procedure. Lines 2 and 3 translate 

continuous features to be positive with the same maximum value and then reorders them by 

their range. Theorem 3 will show this improves separation of distance between certain types 

of clusters. Lines 4–8 are the staggering process which results in the main SID features 

Yi i = 1
n  (see Line 9). Lines 10–16 form pairwise interactions of main SID features resulting 

in the SID interaction features Zi i = 1
n  described in Line 17. The algorithm returns the 

sidified data ℒn
S = Yi, Zi i = 1

n  in Line 19.

2.1.1 | Uniqueness of sidification—Because sidClustering is designed to uncover 

clustering in the original features, it is clear that sidified data must preserve the structure of 

the original data in order for the procedure to work. In particular to be successful, we require 

a 1:1 relationship between the SID main features, Yi i = 1
n , the SID interaction features, 

Zi i = 1
n , and the original features, Xi i = 1

n .

To satisfy uniqueness, we assume that coordinates of X are either finitely discrete or that 

they are continuous with a nondegenerate density. For notational convenience we assume the 

coordinates of X have been arranged so that discrete features appear first. If 0 ≤ p ≤ d 
denotes the number of discrete features, then the remaining d − p features are assumed to be 

continuous (if p = d then there are no continuous features). We make the following 

assumptions:

A1. If Xj is a discrete feature, then Xj has a discrete density function with respect to 

counting measure and its space X j  satisfies ∣ X j ∣ < ∞.

A2. The joint density for the continuous features has a d − p dimensional support 

with respect to Lebesgue measure on ℝd − p.

Under these mild assumptions, the following uniqueness property of sidification holds (see 

the Appendix for a proof).

Theorem 1. Let (Yi, Zi) be the sidified main and interaction features corresponding to Xi for 
i = 1, …, n. Then with probability one, Zi = Zi′, if and only if Xi = Xi′ if and only if Yi = Yi′.

2.2 | Multivariate regression trees: relationship of impurity to clusters

Earlier we used the V-shaped clustering problem to motivate sidClustering by illustrating 

how impurity and clustering were related (recall Figure 1). This relationship between 

impurity and clustering holds in general and is formalized by the next result. To simplify 

matters, we will assume d = 2 and that both coordinates of Y are continuous. Let Y = (Y1, 
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Y2)T and Y∗ = Y 1
∗, Y 2

∗  be two distinct points to be separated. Let Yn denote the SID main 

space which is assumed to be a two-dimensional rectangle, Yn = a1, a2 × b1, b2 . The 

following result describes how splits defined in the SID interaction space Zn are able to 

separate points in the main effect space Yn while preserving clusters (see the Appendix for a 

proof).

Algorithm 2

Sidification

1: procedure SIDIFICATION( Xi i = 1
n

, δ = 1

2:  Translate each continuous feature so that they are positive and all have the same maximum value (note that the 
minimum value can differ over variables)

3:  Order the variables in terms of their range with variables with largest range appearing first. This applies only to 
continuous variables (factors are placed randomly at the end)

4:  Convert any categorical variable with more than two categories to a set of zero-one dummy variables with one for 
each category

5:  Add δ to the first variable

6:  for number of input variables, excluding the first do

7:   Add δ plus the maximum of the previous input variable to the current variable

8:  end for

9:  Xi i = 1
n

 have now been staggered to Yi i = 1
n = ϕn Xi i = 1

n
 the main SID features

10:  for all pairs of main SID features (from Line 9) do

11:   if a pair consists of two dummy variables then

12:    Interaction is a four level factor for each dummy variable combination

13:   else

14:    Create interaction variable by multiplying them

15:   end if

16:  end for

17:  This yields Zi i = 1
n = ψn ϕn Xi i = 1

n
 the SID interaction features

18: end procedure

19: return ℒn
S = Yi, Zi i = 1

n = ϕn Xi , ψn ϕn Xi i = 1
n

 the sidified data

Theorem 2. Without loss of generality, let Y 1 < Y 1
∗.

Case I: Y 2 ≤ Y 2
∗. Then every value along the vector YY

∗
 from Y to Y* can be separated by a 

single SID interaction split with values along YY
∗
 assigned to Y if they are to the left of the 

split-point and to Y* if they are to the right of the split-point.

Case II: Y 2 > Y 2
∗ and Y 1Y 2 < Y 1

∗, Y 2
∗. Then Y and Y* can be separated using two SID 

interaction splits with values along YY
∗
 to the left of the first split assigned to Y and values 

to the right of the second split assigned to Y*.

Mantero and Ishwaran Page 7

Stat Anal Data Min. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We return to Figure 1 to help explain Theorem 2. Case I applies to points Y = (Y1, Y2)T in 

region C and points Y∗ = Y 1
∗, Y 2

∗ T
 in region E. This is because Y 1 < Y 1

∗ and Y 2 < Y 2
∗ for 

most points in these two regions. Theorem 2 asserts that for any two points satisfying Case I, 

there exists a split on Z that separates the two points as well as any data lying along their 

vector YY
∗
. For example any value of Z in region D would be an example of such a split. 

Because YY
∗
 passes through D, all data in D along this vector will be assigned either to the 

cluster for C (left split on Z) or the cluster for E (right split on Z). Applying this principle to 

all Y and Y* in C and E, we can conclude that since the multivariate tree will seek to split C 

and E (as it will lead to a large impurity drop), it will split C and E within D using a single 

split on Z. This will assign C and E to different nodes of the tree with most values within D 

likely assigned to the node with E.

Case II applies to points in regions C and D. This is because there are Y = (Y1, Y2)T in C 

and Y∗ = Y 1
∗, Y 2

∗  in D such that Y 1 < Y 1
∗ and Y 2 > Y 2

∗. Also, Z = Y 1Y 2 < Z∗ = Y 1
∗Y 2

∗ for any 

two points in C and D. Theorem 2 asserts that for points satisfying Case II, two splits on Z 
are needed. One split will separate data primarily using the Y1 response. The second split 

will separate primarily on Y2. Notice that this makes sense as it would help separate the 

black points in C and the red points D, which are the difficult cases to classify.

2.3 | Ordering coordinates and selecting δ

A third and final case arises for Theorem 2 when the two coordinates have the following 

configurations: Y 1 < Y 1
∗, Y 2 > Y 2

∗ and Y 1Y 2 ≥ Y 1
∗Y 2

∗. This is a more difficult scenario but can 

be mitigated by the simple remedy of ordering the coordinates so that the first coordinate 

always has a much larger range; thus helping to reduce this scenario. This helps explain why 

we use the ordering step in Line 3 of the sidification algorithm (Algorithm 2). Ordering also 

has an another important consequence for sidClustering. By reordering the original features 

in descending order of range, this maximizes the range of the resulting SID interaction, thus 

further improving separation of distance for the two cases considered in Theorem 2.

The next result describes how ordering increases the range of SID interactions. However as 

the result shows, this requires setting δ > 0 to a suitable value. Because this may not always 

be easy to do, a simple method for preprocessing the data is provided which makes the 

choice of δ irrelevant. This preprocessing step is implemented in Line 2 of Algorithm 2. See 

the Appendix for a proof of the following.

Theorem 3. For a suitably large enough δ > 0, sorting the SID main effects in descending 
order of range of the original features maximizes the range of SID interaction features. Thus 
the range of Xk ★ Xl is larger when Xk is placed before Xl in the design matrix if the range 
of Xk is larger than Xl. Because selecting δ may be difficult to do in practice, the following 
preprocessing step can be used which allows any value of δ > 0 to be used: prior to sidifying 
the data, first translate each continuous feature so that they are positive and all have the same 
maximum value. Then if variables are sorted by their range, the conclusion above holds for 
the resulting sidified data for any δ > 0. For concreteness the value δ = 1 is used in all 
examples throughout the paper.
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2.4 | New forest distance

Finally we discuss the new forest distance metric used in Line 4 of Algorithm 1. Like 

proximity, the goal of the new distance is to measure dissimilarity between observations, 

however unlike proximity it does not use terminal node membership for assessing closeness 

of data points. Instead, it uses a measurement of distance based on the tree topology to 

provide a more sensitive measurement. The issue with proximity is that if two observations 

split far down the tree versus close to the root node, both scenarios are counted as having a 

proximity of zero, even though the first scenario involves data points closer in the sense of 

the tree topology.

Let Tb denote the bth tree in a forest. The forest distance is applied to SID interaction 

features Z. For each pair of observed data points Zi and Zj, define S(Zi, Zj, Tb) to equal the 

minimum number of splits on the path from the terminal node containing Zi to the terminal 

node containing Zj in Tb such that the path includes at least one common ancestor node of 

Zi and Zj. Similarly, define R(Zi, Zj, Tb) as the minimum number of splits on the path from 

the terminal node containing Zi to the terminal node containing Zj in Tb such that the path 

includes the root node. We define the forest distance between Zi and Zj as:

D(Zi, Zj) = 1
ntree ∑

b = 1

ntree
D(Zi, Zj, Tb)

= 1
ntree ∑

b = 1

ntree S(Zi, Zj, Tb)
R(Zi, Zj, Tb) .

As an example, observe when two observations share the same terminal node, we have D(Zi, 

Zj, Tb) = 0 since the numerator is a measure of zero splits. Also, in the case where two 

observations diverge at the first split, S(Zi, Zj, Tb) = R(Zi, Zj, Tb), and the tree distance 

equals one.

2.5 | Motivating examples comparing sidClustering to Breiman clustering

We end this section by providing two detailed examples that illustrate the difference in 

splitting between Breiman clustering, the current clustering method used by random forests, 

and sidClustering. These examples neatly explain why sidClustering is superior.

Algorithm 3 presents a formal description of the Breiman clustering method. The algorithm 

requires the following parameters: ntree (number of trees trained in the forest), nodesize 

(terminal node size), and mtry (number of random features used to split a tree node). As 

discussed earlier, the idea is to generate an artificial dataset with an artificial class label and 

then train a random classification forest on the combined data. Clustering is performed using 

the proximity matrix extracted from the resulting forest. As was mentioned, a concern with 

Breiman’s clustering method is its sensitivity to the method used to generate the artificial 

data. Shi and Horvath [21] refine Breiman’s clustering method to address this. They 

considered two different modes for generating the artificial class data which we will use as 

comparative procedures:
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SH mode 1: Randomly draw from each set of observed features to form new 

features.

SH mode 2: Fit a uniform distribution for each of the features and draw from it. 

The uniform distribution is constrained to lie between the minimum and maximum 

value of a given feature.

Algorithm 3

Breiman Clustering

1: Develop second artificial set of data

2: Label original observations class 1 and newly devised ones class 2

3: Set the class label Ci as the response i = 1, …, N where N = 2n

4: procedure RF-C( Xi, Ci i = 1
N

, ntree, nodesize, mtry)

5:  for ntree do

6:   Select N values with replacement from (Xi, Ci), i = 1, .., N

7:   for all nodes do

8:    while observations in node > nodesize & impurity present do

9:     Randomly select mtry features for splitting

10:      Split tree node decreasing impurity most

11:    end while

12:   end for

13:  end for

14: end procedure

15: Utilizing HC or PAM, cluster the data using the proximity matrix for the original observations

2.5.1 | V-shaped cluster simulation—For our first example, we return to our previous 

V-shaped cluster simulation. Figure 3(A) displays the results of running a single multivariate 

regression tree on the sidified data (results are displayed for the first two coordinates). 

Observe how the tree is able to accurately separate the two clusters. This is confirmed by the 

confusion matrix displayed in table (D). The latter was obtained by running sidClustering 

using 1000 multivariate regression trees. Clusters were obtained using PAM.

Comparing sidClustering to Breiman clustering, panels (B), (C) display the partition 

resulting from a single classification tree using artificial data obtained using Shi-Horvath 

Modes 1 and 2 (denoted by SH1 and SH2). The goal in Breiman clustering is for the tree to 

separate the artificial data (gray points) from the true classes (black and red points). 

However even with a very deep tree (large number of cells), the tree is not able to properly 

discern differences between the two clusters. This is most apparent as we move toward the 

origin, which is where clustering is the most difficult. This poor performance is confirmed 

by tables (E) and (F). The two tables display the confusion matrices obtained by running 

1000 trees using Breiman clustering for SH1 and SH2 data with PAM applied to the 

proximity matrix. The tables clearly demonstrate poor performance.

2.5.2 | Four-bivariate normal clusters—Table 2 presents our second example and 

changes the problem in two major ways. First, we now have two-way symmetry between the 
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clusters, and second we have increased the number of clusters from 2 to 4. Again, we see 

that both SH methods require heavy splitting to detect the clusters (subpanels (C) and (D) of 

Figure 4). This unfortunately works diametrically to the idea of random forest proximity. 

Random forest proximity measures the average number of times two observations share a 

terminal node and if each tree requires deep splitting to discern clusters then it is likely that 

the average proximity between any two given points will be close to zero. This is illustrated 

in tables (F) and (G) by the tendency of both methods to put the vast majority of points in 

the same cluster (in other words, SH is only detecting one cluster). In comparison, the 

partitions for SID are able to carve out the space such that the clusters are grouped together 

(subpanel (B) of Figure 4), and this in conjunction with random forest distance, allows for 

observations in different terminal nodes to still have an informative measure (table (E)). 

Notice from the coplot in Figure 4 (subpanel [H]) how there are promising cuts along the 

SID interaction feature x1 ★ x2 that can reduce impurity of the SID variables (x1, x2) while 

also separating the four clusters.

3 | REAL WORLD EXAMPLES

In this section, we provide two illustrations of sidClustering to real world data. In both cases, 

sidClustering was implemented using the randomForestSRC R-package [8]. Because feature 

selection was necessary to reduce dimensionality in the two problems, and in order to 

control run time performance, we utilized a feature selection algorithm. We used Shi–

Hovarth’s method as a first pass through, which is relatively computationally cheap, and 

used variable importance [9] from the classification forest to select the most informative 

variables. sidClustering was then run using the filtered variables.

3.1 | Identifying patient differences across multiple institutions

The World Wide Esophageal Cancer Collaboration (WECC) was a large multi-institutional 

effort to accrue data from esophageal cancer patients. The goals were to: (1) better 

understand clinical and pathologic prognostic implications for the disease; (2) better 

facilitate pretreatment prognostication; and (3) improve clinical decision-making [19]. In 

total, 22,654 patients were accrued at 33 different institutions from 6 different continents. Of 

these patients, 13,993 were adenocarcinoma, which will be the focus of our analysis.

Patients were represented across the spectrum of common therapies. This included 

esophagectomy alone, the primary treatment for esophageal cancer patients, esophagectomy 

and adjuvant therapy, neoadjuvant therapy with esophagectomy and neoadjuvant and 

adjuvant therapy with esophagectomy. Additionally patients receiving endoscopy only, 

chemoradiotherapy only, palliative care and no therapy were also accrued. Patient cancer 

variables included clinical level characteristics (cTNM), pathological level characteristics 

(pTNM), and characteristics for patients with neoadjuvant therapy (ypTNM). Other cancer 

characteristics included histologic grade, length of tumor, number of regional resected 

nodes, and location and distance of cancer. Patient level information included demographics 

(age, gender, race), patient characteristics (BMI, weight loss, ECOG), and comorbidities 

(example: diabetes, heart related diseases, other cancers, kidney). In total, there were d = 38 

variables comprising dichotomous, categorical, and continuous variables.
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The endpoint used for the primary WECC analysis was all-cause mortality defined from first 

management decision for a patient. Here we consider a different goal and remove the 

outcome and apply sidClustering to the unsupervised data in order to study and quantify 

differences in patient makeup across institutions. We regard this as the first step in assessing 

quality of hospital care. Quantifying patient characteristics helps to identify possible 

systematic differences between hospitals. This is important, since if systematic bias exists, 

then quality of care cannot be assessed by direct comparison of outcomes, and advanced 

techniques (such as causal inference) would have to be applied to obtain correct inference.

Hierarchical clustering (HC) was applied to the distance matrix obtained from running 

sidClustering to the data. Number of clusters was set to 20. The results are displayed in 

Figure 5. Features appear along rows of the heatmap, while columns are patients which have 

been sorted by institution with institutions grouped by proximity according to clusters.

Figure 5 reveals no general systematic differences between institutions. Most differences 

that do exist appear largely related to patient therapy assignment. For example, prevalence of 

palliative care and chemoradiotherapy is generally low (red values) across all institutions 

excepting a few small patches near the left hand side (blue values). Upon investigating, we 

found that these two therapies (which are generally rare) were predominately found in one 

hospital. Another noticeable pattern we found relates to the variable psmp, defined as 

number of lymph nodes resected by lymphadenectomy. Fewer nodes are generally 

associated with improved survival. We observe a pattern of low values for this variable (red 

regions to the right of heatmap and some also in the middle). This pattern is mirrored by low 

values of bilirubin, low values of weight loss, and to a lesser extent, higher pT2 prevalence 

(the variable “pT” measures tumor invasiveness). Low bilirubin can be considered a sign of 

health and a patient with stable weight is also a positive indicator. Also pT2 is a less invasive 

cancer than pT3, which is the predominant pT classification. This pattern suggests therefore 

a small subset of hospitals with a slightly healthier patient cohort. Indeed, upon careful 

inspection of the data this does match with what we found—although we certainly would 

not have been able to discern such a subtle difference without the results of the unsupervised 

analysis.

3.2 | Hospital charges

Cost data for cardiovascular patients was collected at a large US hospital. Values recorded 

included cost, margin, and profit characteristics of each encounter along with data on the 

type of procedure, location of residence of the patient, and referral source of the patient. 

This data (sample size n = 5741, d = 37 attributes) was run through sidClustering with 

hierarchical clustering (HC) used for the distance matrix. The intention was to determine if 

there existed clusters in the data for which the financial attributes were unique versus the rest 

of the population. Figure 6 depicts the most influential variables across clusters that had the 

most differentiating effect between clusters.

There were several clusters of note that were revealed by the analysis. One example was the 

pair of clusters, numbers 17 and 23. These represent a high proportion of heart transplants 

but they vary vastly in regards to profit margin despite being very similar in regards to many 

of the plotted metrics. Looking further it can be observed that the tech margin (amount made 
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in tech charges or revenue, minus tech costs to the hospital) varied just as largely suggesting 

that this is the component that drew down the profit of the encounter since the overall profit 

margin is the sum of the margins from all sources including tech. Technician services 

include labs, tests, equipment use and other procedures not provided by doctors or nurses. 

This may suggest that adjustments to charges may be required for a particular subset of 

patients to adjust for tech costs that are outpacing their corresponding charges and bringing 

overall profit down despite the comparable revenue levels being collected. Opposite 

adjustments may be applied to the high profit group for higher equability. Another 

interesting cluster is number 14 which contains many of the bypass procedures and we can 

see that overall their profit margins are very middle of the range but the tech margin drags it 

down which indicates that the other components are what bring it back to a median profit 

margin. Lastly, it was very interesting to see how valves as a service was distributed across 

many difference clusters as opposed to the other services that tended to concentrate. This 

suggests high levels of heterogeneity in this service type which is further confirmed by the 

plot. For example, if we look at days at hospital, we can see this includes the full range of 

encounter lengths from very short to very long.

4 | BENCHMARK EXPERIMENTS

In this section we used benchmark experiments to compare sidClustering to Breiman 

clustering using Shi–Hovarth’s two generation modes (SH1 and SH2). Performance was also 

compared to the Cluster Forest (CF) method of Yan et al. [23] and to Gaussian Mixture 

Models (GMM) described in [17]. Both simulated and real world data were used in the 

experiments. sidClustering was applied with and without the feature selection algorithm. 

The procedure using variable selection is referred to as SID varselect. As before, all random 

forest calculations including sidClustering were implemented using the randomForestSRC 

R-package [8]. For all competing methods default settings are utilized including ntree = 

1000 and nodesize = 5. For sidClustering and Shi–Horvath, both HC and PAM were used for 

clustering the distance and proximity matrices.

4.1 | Performance measures

Performance of methods was assessed using measures based on Gini and entropy, which are 

related to mutual information proposed by Romano et al. [20]. These measures function as 

weighted averages of impurity in the predicted clusters. Weights are determined by cluster 

size which then takes into count the possibility of gaming the measure by forming small 

clusters. Smaller clusters have a higher chance of being pure by random chance but their 

contribution to the score is reduced to compensate. The idea is that we want clusters that are 

both as large and pure as possible in order to obtain the best possible score. The entropy and 

Gini measures of performance are as follows:

ρE = ∑
i = 1

k ni
n ∑

j = 1

k
−

Lij
ni

log2
Lij
ni

,

ρG = ∑
i = 1

k ni
n ∑

j = 1

kt Lij
ni

1 −
Lij
ni

,
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where:

n = total number of cases;

ni = number of cases in cluster i;

kt = number of clusters targeted by clustering algorithm;

k = true number of clusters;

Lij = number of cases when predicted cluster label is j when true label is i.

Both measures can be normalized to a range of 0–1 by dividing by the maximum value 

which occurs under uniform guessing. A lower score indicates better overall clustering. 

Also, squaring the normalized measure retains the 0–1 range and adds a middle point of 

comparison where a score of 0.5 corresponds with 50% correct clustering. It should also be 

noted that these are measures of purity which are robust to label switching since our goal is 

to determine ability to cluster similar observations.

When testing these two measures we noticed that they ranked procedures similarly. We 

chose therefore to use the entropy measure for evaluating performance due to the 

involvement of Gini splitting by random forests which may marginally, but unfairly, favor 

the methods based on random forests.

4.2 | Synthetic experiments

Tables 3 and 4 describe simulations utilized in our experiments. The number of noise 

variables is represented by d, which is set to d = 17 and d = 100 in order to reflect low- and 

high-dimensional settings. The simulations drew inspiration from the examples of Shi and 

Horvath [21]. In addition to these simulations we also ran the V-shaped cluster and 4-

bivariate normal simulation (Table 2) described earlier. All simulations were run 100 times 

independently.

Figure 7 displays the results from the experiment. We can see that in nearly all simulations, 

sidClustering outperforms the other methods by a large margin. Furthermore, in some cases 

the performance was nearly equal to a supervised forest (red values) calculated using the 

true class labels (which should be our limit of performance since this is the case where the 

target is known). We notice that the clustering algorithm used on the proximity matrix seems 

to be important for SH1 and SH2, while for sidClustering, performance does not vary very 

much if we switch between HC or PAM. We suspect the geometry of the clusters hinders the 

ability of SH1 and SH2. Since in the simulations the informative features are mostly 

categorical and the only continuous one has very little space between the clusters, it made it 

very difficult for either method to flood the empty space with the artificial class.

4.3 | Real data experiments

Performance of sidClustering was also tested on a collection of real datasets (Table 5): some 

have purely continuous or categorical features or mixed, the number of true classes varies, as 

well as sample size. For each simulation, the entire procedure was run 100 times using 
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stratified subsampling (40% rate) in order to assess variability of performance. Stratified 

subsampling was used because we wanted to ensure that all clusters were represented in 

each run, otherwise k could potentially vary between runs. Some of these results are 

displayed in Figure 8, the remaining can be found in Figure A1 of the Appendix. As in the 

synthetic experiments, a supervised random forest was run using the true class labels to 

provide a benchmark performance value (depicted using red values). Performance was 

calculated by comparing the predicted out-of-bag (OOB) class labels to the truth.

Table 6 summarizes overall performance of methods. We also make the following 

comments:

1. For SH1 and SH2, the type of clustering algorithm used on the proximity matrix 

was again found to greatly affect performance in most cases, while sidClustering 

was for most cases generally robust to this.

2. There is only one sidClustering mode, therefore there is no possibility of 

choosing the incorrect mode, while if one chooses the incorrect mode between 

SH1 and SH2, performance could be greatly hindered. This issue is further 

compounded by the fact that in practice the truth is not known therefore there is 

no way of knowing which is correct. Also, although in many cases SH1 does 

outperform SH2, there are two cases, Renal and Iowa housing (categorical), 

where SH2 rendered better performance.

3. The sidClustering variable selection algorithm performed very well. Performance 

was also very good in the previous synthetic experiments. This shows it is 

possible to use the dimension reduction to improve computational cost while at 

the same time retaining clustering performance. This is especially true for the 

two high-dimensional cases where the original data contained over 100 features 

which produced over 4000 total SID features.

5 | DISCUSSION

sidClustering is a random forests based clustering algorithm that greatly eases on the 

requirements for the original Brieman clustering approach. No artificial set of observations 

needs to be generated. In most data where performance was compared, sidClustering 

outperformed either one, or both, of Shi–Hovarth’s modes. In the cases where sidClustering 

did not outperform both there usually was a wide margin in the performance between the 

two Shi–Hovarth modes. This means that if the incorrect mode were to be chosen then 

performance can potentially be greatly hindered. As complexity of the data increases, it 

becomes more difficult to determine the correct mode.

Another point worth noting is the constraints imposed on the artificial data used by Breiman 

clustering. Here the number of observations in this class has to be roughly the same as the 

original data. The problem is that if we unbalance the combined data, then this potentially 

becomes a class imbalanced problem. This would hinder any machine learning algorithm’s 

ability to differentiate the two classes. This constraint precludes one from taking the most 

direct solution to artificial data creation, which would be to replicate each of the points a few 

times plus a small amount of error to create the second class. Then the resulting artificial 
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class would perfectly cover the first and truly force the random forest to fit a model that 

distinguishes the two classes. It would be similar to what is done in data smearing [4] for 

increasing predictive performance of random forests. Unfortunately, each time one replicates 

a point in the original class, this diminishes the ratio between the original class and the 

artificially generated class, thus increasing the potential of inducing a class imbalanced 

problem.

Looking at GMM and CF, we notice there are a number of high performing situations but 

they seem to falter in certain places. For example, GMM seems to have issues with more 

than two clusters or purely continuous features. This could stem from the increased number 

of conformations clusters could take in this case and increase the difficult of selecting 

borders between clusters. The more complex these boundaries can be, the more difficulty 

GMM seems to have. In the case of CF, we have somewhat the opposite with regard to 

complexity of the data: CF performs well in cases with purely continuous features, this may 

be because the algorithm is tree based and therefore able to select very precise boundaries. 

However CF falters in purely categorical cases, possibly due to sparsely filled space which 

makes selection of the boundary more tricky. This is an advantage of SID which performs 

will with both continuous and categorical features.

In future work, we will include the implementation of semisupervision in the clustering in 

order to emphasize what features should be most driving clusters. Also, we believe that it is 

possible to use this method to determine the number of clusters that should be created. And 

lastly, since random forests was used to develop the groups, then random forests should be 

able to also impart the identity of the group’s members; therefore, we intend to develop a 

rule generator for this purpose.
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APPENDIX A.: PROOFS

Proof of Theorem 1. First suppose that p > 1 so that X contains at least two discrete 

features. We can assume without loss of generality that the discrete features X1, …, Xp are 

all dichotomous. Because if they were not, then Line 4 of Algorithm 2 would convert them 

to a finite set of q > p dichotomous values (and notice q remains finitely bounded as n → ∞ 
because of the finite discrete Assumption A1).

X1 = {0, 1} ϕD
Y(1) = {1, 2} = 2 − (1 − X1)

X2 = {0, 1} ϕD
Y(2) = {3, 4} = 4 − (1 − X2)

X3 = {0, 1} ϕD
Y(3) = {5, 6} = 6 − (1 − X3)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Xj = {0, 1} ϕD
Y(j) = {2j − 1, 2j} = 2j − (1 − Xj)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Xp = {0, 1} ϕD
Y(p) = {2p − 1, 2p} = 2p − (1 − Xp).

We will first look at identification for the discrete features. Now because we are working 

with finite sample spaces (of cardinality two without loss of generality), we can dispense 

with the distinction between the theoretical and actual sidification map and simply work 

with the theoretical map. For notational convenience, we use a superscript D to indicate we 

are subsetting to discrete features. The following is the theoretical staggering map 

ϕD : XD YD, where we assume as in Algorithm 2 that δ = 1: We now show that an 

arbitrary ZD ∈ ψ ϕ XD  cannot be produced using two different XD ∈ XD. Because the 

SID interaction feature ZD is comprised of all possible pairwise interactions of YD (Lines 

10–16 of Algorithm 2),

ZD = (Y (1)Y (2), …, Y (1)Y (p), Y (2)Y (3), …, Y (2)Y (p), …, Y (p − 1)Y (p))T .

Observe that each of the coordinates of ZD is of the form

Y (j)Y (k) = (2j − 1 + Xj)(2k − 1 + Xk)

which is a factor with one of the following four unique categories (Line 12 of Algorithm 2),

(2j − 1)(2k − 1), (2j)(2k − 1), (2j − 1)(2k), (2j)(2k) .

Thus, each coordinate of ZD uniquely determines the values for two coordinates Xj and Xk, 

and since ZD contains all possible pairs of coordinates, it follows that ZD can only 

correspond to one specific XD. Finally, it is clear that YD can only correspond to one XD 

value.

Thus, we have shown that when X contains at least two discrete coordinates, Zi
D = Zi′

D if and 

only if Xi
D = Xi′

D if and only if Yi
D = Yi′

D.

Consider next the case when X contains at least one discrete and one continuous coordinate. 

Suppose that coordinates j and k of X are discrete and continuous, respectively. By Line 14 

of Algorithm 2, the interaction between a continuous and binary feature is obtained by 

multiplying their staggered values. Thus, we must show for two data cases i ≠ i′

Y ijY ik = Y i′jY i; k (A1)

if and only if
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(Xij, Xik)T = (Xi′j, Xi′k)T

if and only if

(Yij, Yik)T = (Yi′j, Yi′k)T .

The staggered discrete coordinate j is

Yij = 2j − 1 + Xij, Yi′j = 2j − 1 + Xi′j,

while the staggered continuous coordinate k is

Yik = δkn + Xik, Yi′k = δkn + Xi′k,

where δkn > 0 denotes the value used to stagger Xk. It is clear there is a 1:1 map between 

staggered values and the original features. Therefore, we focus on proving the first if and 

only if. Observe that (A1) holds if and only if

(2j − 1 + Xij)(δkn + Xik) = (2j − 1 + Xi′j)(δkn + Xi′k) .

Canceling and collecting terms, we obtain

(2j − 1)(Xik − Xi′k) + δkn(Xij − Xi′j) = Xi′jXi′k − XijXik .

Recall that Xj ∈ {0, 1} is binary. If Xij = Xi′j, then

(2j − 1)(Xik − Xi′k) = Xij(Xi′k − Xik),

which implies Xik = Xi′k regardless if Xij = 0 or Xij = 1. On the other hand, suppose that Xij 

≠ Xi′j. If Xij = 1 and Xi′j = 0, we obtain

2jXik = (2j − 1)Xi′k − δkn,

which occurs with probability zero by Assumption A2 because Xk is continuous and Xik and 

Xi′k are independent. A similar conclusion holds if Xij = 0 and Xi′j = 1.

The final case is when X contains at least two coordinates that are continuous. Suppose that j 
and k are coordinates that are continuous. Then their SID interaction is obtained by 

multiplying their SID main effects similar to (A1). In this case, (A1) holds if and only if

(δjn + Xij)(δkn + Xik) = (δjn + Xi′j)(δkn + Xi′k) .
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Under Assumption A2, (Xj, Xk) has a nondegenerate density. Using this and independence, 

deduce that the above event occurs with probability zero unless Xij = Xi′j and Xik = Xi′k.

Proof of Theorem 2. Let Z = Y1Y2 and Z∗ = Y 1
∗Y 2

∗. Define

α(θ) = θY1 + (1 − θ)Y1*, β(θ) = θY2 + (1 − θ)Y2*, 0 ≤ θ ≤ 1 .

By convexity, Y θ = α θ , β θ T ∈ Yn. Therefore Y(θ) is a properly defined SID main effect 

and Z(θ) = α(θ)β(θ) is a properly defined SID interaction value. Notice also that every point 

along the vector YY
∗
 between Y and Y* can be written as

Y + (1 − θ)(Y∗ − Y) = θY + (1 − θ)Y∗ = Y(θ)

for some 0 < θ < 1. Therefore the SID interaction value for a point Y(θ) along YY
∗
 is Z(θ).

We consider Case I first. By assumption we have Y 1 < Y 1
∗ and Y 2 ≤ Y 2

∗. Therefore

Y1 < α(θ) < Y1*, Y2 ≤ β(θ) ≤ Y2*, 0 < θ < 1 .

By uniqueness Z ≠ Z*. Therefore because all values are non-negative due to sidification,

Z = Y1Y2 < Z(θ) = α(θ)β(θ) < Z* = Y1*Y2*, 0 < θ < 1 .

Therefore, we can use the split-point Z(θ) to assign cases to Y if their SID interactions 

values are less than or equal to Z(θ) or to Y* if their SID interactions values are greater than 

Z(θ). Furthermore, because Z(θ*) is the SID interaction value for a point Y(θ*) along the 

vector YY
∗
, this shows that assignment of points along YY

∗
 depend on whether Z(θ*) ≤ 

Z(θ) or Z(θ*) > Z(θ).

Now for Case II, we have Y 1 < Y 1
∗ and Y 2 < Y 2

∗. Also by assumption, Z < Z*. Therefore since 

Z(θ) → Z for θ → 1 and Z(θ) → Z* for θ → 0, we can find values 0 < θ , θ∗ < 1 such that

Z = Y1Y2 < Z(θ ) < Z(θ*) < Z* = Y1*Y2* .

Therefore assign all values to the left of Z θ  to Y and all values to the right of Z θ∗  to Y*.

Proof of Theorem 3. It suffices to consider features X1 ∈ [a, b] and X2 ∈ [c, d] (the same 

argument can then be applied to the remaining finite number of features). We can assume 

without loss of generality that R = b − a > r = d − c and the ranges of our features have a 

lower bound of at least zero and a strictly positive upper bound due to the sidification 
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algorithm which translates all features to this space. Therefore, assume without loss of 

generality

b, d > 0 and a, c ≥ 0 b − a = R > 0 and d − c = r > 0.

We can now define the SID main features:

Y1 ∈ [a + δ, b + δ], Y2 ∈ [c + δ + b + δ, d + δ + b + δ] .

We denote ZDES as the SID interaction feature formed when the ranges are descending in 

order:

ZDES ∈ [(a + δ)(c + b + 2δ), (b + δ)(d + b + 2δ)] .

The range of the SID interaction feature is

range(ZDES) = (b + δ)(d + b + 2δ) − (a + δ)(c + b + 2δ)
= bd + b2 + 2bδ − ac − ab − 2aδ + δ(d + b + 2δ − c − b − 2δ)
= b2 − ac + b(d − a) + 2δ(b − a) + δ(d − c) .

Now we reverse the order of the ranges to obtain the suboptimal ordering effect:

X1 ∈ [c, d], X2 ∈ [a, b] .

The resulting SID main effects are:

Y1 ∈ [c + δ, d + δ], Y2 ∈ [a + δ + d + δ, b + δ + d + δ] .

We denote ZASC as the SID interaction feature when the ranges are suboptimally ordered 

ascendingly:

ZASC ∈ [(c + δ)(a + d + 2δ), (d + δ)(b + d + 2δ)] .

Its range equals,

range(ZASC) = (d + δ)(b + d + 2δ) − (c + δ)(a + d + 2δ)
= db + d2 + 2dδ − ca − cd − 2cδ + δ(b + d + 2δ − a − d − 2δ)
= d2 − ca + d(b − c) + 2δ(d − c) + δ(b − a) .

Now taking the difference between the ranges of the two SID interaction features, we have
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range(ZDES) − range(ZASC)
= b2 − ac + b(d − a) + 2δ(b − a) + δ(d − c)
− (d2 − ca + d(b − c) + 2δ(d − c) + δ(b − a))
= b2 − ba − d2 + dc + δ(b − a) − δ(d − c)
= bR − dr + δ(R − r) .

(A2)

The proof is completed if we can show (A2) is strictly positive. If b ≥ d, then

bR − dr + δ(R − r) = d b
dR − r + δ(R − r)

≥ d(R − r) + δ(R − r) = (d + δ)(R − r)

which is greater than zero for any δ > 0 since d > 0 and R > r by assumption. On the other 

hand, if d > b, then (A2) is strictly positive if and only if

δ > dr − bR
R − r . (A3)

Such a δ can always be found since the denominator is nonzero ensuring that the bound is 

finite.

In fact, it is only the case d > b when δ must be selected carefully, since (A2) is strictly 

positive for any δ > 0 when d ≤ b. Therefore we are free to choose any δ > 0 if we eliminate 

the latter case. This can be readily achieved as follows. Prior to reordering the data, translate 

each continuous feature so that all feature values are positive and all have the same 

maximum value. Even though the minimum value may differ over variables their maximum 

value is the same which forces d = b and removes the case d > b.
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FIGURE A1. 
Results on real world data. Red boxplot signifies supervised random forest performance. 

(Section 4.1 discusses normalized enotrpy)

APPENDIX B.: PERFORMANCE ON REAL DATA

Performance of sidClustering on a collection of datasets. For each dataset, the true class 

label was removed and sidClustering applied. The entire procedure was run 100 times using 

stratified subsampling (40% rate). Comparison procedures include Breiman clustering [2] 
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under Shi–Hovarth’s [21] two generation modes (SH1 and SH2) and cluster forest (CF) [23]. 

A supervised random forest was run using the true class labels to provide a benchmark 

performance value (depicted using red values). Performance was calculated by comparing 

the predicted OOB class labels to the truth.
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FIGURE 1. 
V-shaped two cluster simulation illustrating the basic concept behind sidification and 

sidClustering. Data are displayed as points on the figures and are colored black and red to 

indicate cluster membership (observe how points lie along a V-shape). Top right panel shows 

coplot of original features (X1, X2)T against SID interaction Z = X1 ★ X2. Regions labeled 

A–E in the coplot are identified by rectangles in the left scatter plot. In the bottom panel, the 

coplot is displayed in terms of the SID main effects (Y1, Y2)
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FIGURE 2. 
V-shaped two cluster simulation illustrating uniqueness of sidification. Arrows map (X1, X2) 

points to their interaction value displayed on the second horizontal axis. Left-hand figure 

shows mapping to the sidified Z interaction. Right-hand figure is the map to the usual 

algebraic product X1 × X2. Observe the bunching up of arrows indicating lack of uniqueness
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FIGURE 3. 
Splitting by three methods on V-shaped cluster problem. (●) Cluster 1; ( ) Cluster 2; ( ) 

SH artificial data
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FIGURE 4. 
Splitting by three methods on 4-bivariate normal cluster problem. ( ) Cluster 1; ( ) Cluster 

2; ( ) Cluster 3; (●) Cluster 4; ( ) SH artificial data
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FIGURE 5. 
Heatmap from sidClustering analysis of WECC esophageal cancer data where data have 

been sorted by institution (columns of the heatmap). Rows display patient and cancer 

characteristics for identifying patient differences across institutions
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FIGURE 6. 
Heatmap from sidClustering analysis of hospital costs data. Rows display encounter 

characteristics for identifying different clusters of encounters
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FIGURE 7. 
Results on simulated datasets. Red boxplot signifies supervised random forest performance. 

(Section 4.1 discusses normalized entropy)
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FIGURE 8. 
Results on real world data. Red boxplot signifies supervised random forest performance. 

(Section 4.1 discusses normalized enotrpy)
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TABLE 1

V-shaped cluster simulation

Variable Simulated by

X1 (signal variable) ~Uniform(0, 1)

X2 (signal variable) First 250, = X1 + Normal(0, 0.2)

Last 250, = −X1 + Normal(0, 0.2)

X3, …, X10 (noise variables) ~Uniform(0, 1)
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TABLE 3

Eight-cluster simulation

Variable Simulated by

X1 ~Binomial(m = 1, p = 0.5)

X2 ~Binomial(m = 1, p = 0.5)

X3
First 1000 ~ Uniform(0, 1),
second 1000 ~ Uniform(1.1, 2.1)

X4, …, Xd Noise variables ~ Uniform(0, 1)

Cluster X1 X2 X3

1 1 1 ≥1.1

2 1 1 ≤1.0

3 0 1 ≥1.1

4 0 1 ≤1.0

5 1 0 ≥1.1

6 1 0 ≤1.0

7 0 0 ≥1.1

8 0 0 ≤1.0
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TABLE 4

Twelve-cluster simulation

Variable Simulated by

X1 ~Binomial(m = 1, p = 0.5)

X2 ~Binomial(m = 1, p = 0.5)

X3
First 1000 ~ Uniform(0, 1),
second 1000 ~ Uniform(1.1, 2.1)

X4, …, Xd Noise variables ~ Uniform(0, 1)

Cluster X1 X2 X3

1 1 1 ≥1.1

2 1 1 ≤1.0

3 0 1 ≥1.1

4 0 1 ≤1.0

5 1 0 ≥1.1

6 1 0 ≤1.0

7 0 0 ≥1.1

8 0 0 ≤1.0

9 0 2 ≥1.1

10 0 2 ≤1.0

11 1 2 ≥1.1

12 1 2 ≤1.0
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