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Abstract

We present the Unsupervised Phenome Model (UPhenome), a probabilistic graphical model for 

large-scale discovery of computational models of disease, or phenotypes. We tackle this challenge 

through the joint modeling of a large set of diseases and a large set of clinical observations. The 

observations are drawn directly from heterogeneous patient record data (notes, laboratory tests, 

medications, and diagnosis codes), and the diseases are modeled in an unsupervised fashion. We 

apply UPhenome to two qualitatively different mixtures of patients and diseases: records of 

extremely sick patients in the intensive care unit with constant monitoring, and records of 

outpatients regularly followed by care providers over multiple years. We demonstrate that the 

UPhenome model can learn from these different care settings, without any additional adaptation. 

Our experiments show that (i) the learned phenotypes combine the heterogeneous data types more 

coherently than baseline LDA-based phenotypes; (ii) they each represent single diseases rather 

than a mix of diseases more often than the baseline ones; and (iii) when applied to unseen patient 

records, they are correlated with the patients’ ground-truth disorders. Code for training, inference, 

and quantitative evaluation is made available to the research community.
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1. Introduction

Clinicians routinely document the care of their patients in electronic health records (EHRs). 

Throughout the years, patient records accumulate medical history as myriad individual 

observations: results of laboratory tests and diagnostic procedures; interventions; 

medications; and detailed narratives about disease course, treatment options, and family and 

social history. When caring for an individual patient, clinicians reason in the context of the 

patient’s medical history. This is a cognitively difficult task. First, the search space for 

potential diseases that may account for the patients’ symptoms is very large. Second, the 

individual clinical observations that form the patient’s record are many, thus potentially 

overwhelming in aggregate, and at the same time each of them is potentially imperfect and 

uncertain.

Computational tools and techniques that reduce the dimensionality of the many individual 

patient characteristics, that discover underlying clinically meaningful latent states of the 

patient, and that allow reasoning in a probabilistic fashion over them would be powerful 

allies to clinicians. In fact, these tools would also facilitate many analytics tasks when 

applied to entire patient populations, including predicting disease progression, comparing 

effectiveness of treatments, and studying disease interactions[1, 2, 3, 4, 5]. For such tools to 

operate in a robust fashion across varied patients and enable high-throughput search over 

many diseases, modeling from large amounts of patient records is critical. How to build 

these tools is an open research question.
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Here, we tackle this challenge through jointly modeling a large set of diseases and an even 

larger set of clinical observations. The observations are drawn directly from the 

heterogeneous EHR data, and the diseases are modeled in an unsupervised fashion. We refer 

to this task as large-scale probabilistic phenotyping, in essence building computational 

models of diseases from patient records.

We introduce the UPhenome model in its first iteration, a graphical model for large scale 

probabilistic phenotyping. The key contributions of the model are:

• It models diseases and patient characteristics as a mixture model, thus scaling 

easily to large sets of diseases and clinical observations;

• It derives phenotypes—individual disease distributions over patient observations

—from raw data and diverse data types common to most EHRs: text, laboratory 

tests, medications, and diagnosis codes;

• It is unsupervised, and as such, can learn disease models across datasets from 

different institutions and different care settings, such as intensive care, 

emergency care, and primary care;

• It leverages a topic modeling approach, handling issues inherent to EHR data 

such as sparsity and noise, and capturing relations amongst observations that are 

implicit in the records.

2. Related Work

We discuss related work according to two areas of research: computational models of 

disease and probabilistic graphical models in the clinical domain.

Computational models of disease.

One of the promises of the EHR is to enable reasoning and decision support over patient 

record data. Therefore, deriving a computationally actionable representation of patients 

based on their clinical records has been a grand research challenge, with proposed solutions 

from several disciplines and research fields. Since healthcare is driven almost entirely by the 

presence and/or severity of disease, representing diseases in an actionable fashion has been 

much investigated over the years.

The eMERGE phenotyping effort aims to model individual diseases one at a time. It relies 

heavily on expert consensus to build disease definitions that can be applied over a large set 

of EHRs. While time consuming, this effort yields precise phenotypes of single diseases [6]. 

More recently, single disease modeling efforts have focused on automated feature extraction 

from knowledge sources to reduce the manual effort involved in creating precise phenotypes 

[7]. In addition to single disease phenotyping, researchers have also explored the use of 

clustering techniques to identify subtypes of a given individual disease [8, 9, 10, 11].

When it comes to modeling a very large set of diseases at once, most of the work to date has 

been heavily reliant on manual knowledge curation. Ontologies like SNOMED-CT [12] 

encode information about diseases such as potential treatments, symptoms, and the 
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relationships amongst them. Bayesian networks which encode relationships amongst 

diseases and symptoms have also been developed [13]. The Internist 1/QMR-DT resource 

was created manually and allows for computational reasoning about diseases and symptoms 

[14, 15]. One drawback of these resources is that,while their content is curated, they do not 

necessarily link to observation types documented in patient records.

Approaches that leverage healthcare data—whether claims data or EHR data—to represent 

diseases and their interactions have also been proposed in the literature [16, 17, 18]. 

However, these approaches focus on interactions amongst diseases rather than modeling the 

diseases themselves.

Recently, a novel method to learn representations of multiple diseases across a large set of 

patients was proposed based on matrix factorization [19]. In this framework, unseen patients 

can be assigned phenotypes, as defined by a collection of diagnosis codes.

Our work aims for a similar goal to that of Ho and colleagues [19]: the UPhenome model 

learns phenotypes for a wide range of diseases, and derives the model based on EHR data. 

However, the UPhenome model departs from previous work in disease modeling in the 

following ways: it learns a representation jointly over heterogeneous EHR data types, and it 

operates in a probabilistic framework, thus enabling modeling of the uncertainty inherent in 

noisy EHR observations.

Probabilistic graphical models in the clinical domain.

With the growing amount of EHR data in electronic format, modeling the EHR with latent 

variable models has been an increasingly active area of research. The well-established Latent 

Dirichlet Allocation (LDA) model [20] has been applied to raw clinical text for several tasks, 

such as identifying sets of similar patients [21], correlating disease topics with genetic 

mutations [22], and predicting ICU mortality [23] with success, suggesting that topic 

modeling can act as a powerful and reliable dimensionality reduction technique. Such 

unsupervised modeling of topics is attractive as the language of clinical notes is particularly 

noisy with much paraphrasing power, and styles (e.g., abbreviations) that vary widely from 

one institution to another and from one care setting to the next. Most recently, researchers 

applied LDA to billing codes from disparate EHRs and found sets of phenotypes that remain 

consistent across multiple institutions, further demonstrating the power and portability of 

unsupervised learning techniques[24]. Researchers have also investigated novel probabilistic 

graphical models, also used in a variety of tasks, including ICU illness severity scoring [25], 

diagnosis code prediction [26], redundancy-aware topic modeling [27], disease progression 

modeling [28], and disease subtypes identification [11].

While some clinical latent variable models have been evaluated in task-based settings (e.g., 

[23]), evaluating the intrinsic value of the learned latent variables beyond their face validity, 

as well as their ability to infer meaningful latent states on unseen data can yield much 

information about the models. For general domain texts, evaluation methods of topic 

modeling have been much investigated. Experiments to obtain human judgments have been 

proposed [29], and automatic metrics that aim to correlate with such judgments (i.e., held-

out likelihood and automatic topic coherence) have been explored [30, 31, 32]. Reliable and 
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valid human judgments of topics are difficult to obtain, and as such automatic metrics are 

attractive. In the clinical domain, these metrics have not been validated fully, and quality 

judgments from clinicians are critical. When it comes to our phenotyping task, we want to 

evaluate how well the latent variables represent individual diseases. Because clinicians are 

trained to think about diseases as probabilistic mixture of symptoms, treatments, and 

comorbidities, we can leverage this training towards collecting qualitative judgements of 

phenotypes.

Our goal in developing the UPhenome model is to build interpretable disease models that are 

clinically valid and actionable. As such, we developed the model with knowledge of the 

EHR characteristics in mind and designed experiments to test for clinical relevance of the 

learned phenotypes.

3. The UPhenome Model

The UPhenome model proposed in this paper is a mixed membership model, inspired by the 

topic model literature [20, 33]. This model learns computational representations of disease 

based on observations from patient records, as encoded in the EHR. The current version of 

the model is fully unsupervised.

3.1. Inputs and Outputs

The input to UPhenome consists of a large set of patient records, where each record is 

composed of free-text notes, medication orders, diagnosis codes, and laboratory tests. Each 

data type is treated as a bag of elements. The words in the notes are tokenized and simple 

filtering of vocabulary is based on token frequency as well as stop words removal. The 

medication orders are mapped whenever possible to bag of medication classes. The 

diagnosis codes are also encoded as a bag of codes.

There are two outputs to the UPhenome model: learned phenotypes and an inference 

mechanism to identify a specific phenotype distribution for an unseen patient record. The 

learned phenotypes can act as computational models of disease, and can be evaluated 

according to their interpretability and clinical relevance. In addition, the top-ranked 

diagnosis for a given phenotype can be used as a label proxy, thus supporting the 

interpretability of the disease model.

The inference mechanism acts as a dimension reduction technique, where each new patient 

record can now be represented as a distribution over a concise set of clinically meaningful 

variables (the learned phenotypes). Such a representation can be leveraged in many health 

analytics tasks, including patient record summarization, risk prediction, and patient cohort 

selection. The variables of the model are listed in Table 1.

3.2. Baseline Models

Before describing the UPhenome model, we first describe two baseline models. The first 

baseline, LDA-text, considers only the notes in the records, following the hypothesis that 

clinical information about the diseases of a patient will be documented in the notes and thus 

can be captured through standard topic modeling. This is a state-of-the-art approach in 
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several models for clinical data [21, 23]. Our first baseline is thus a vanilla LDA applied to 

the bag of words in the notes. We ran preliminary experiments with LDA on only diagnosis 

codes (similar to the method used by Chen et al. [24]) but chose to focus the discussion on 

LDA-text given our task of large-scale disease modeling and the abundance of words in the 

patient records.

The second baseline, LDA-all, learns topic models based on all observations in the record 

(words, medications, diagnosis codes, and laboratory tests). In this baseline we apply a 

vanilla LDA on all observation types in a single bag. The working hypothesis for this 

baseline is that diseases can be represented across the different data types in the record. This 

baseline model has the exact same input as the UPhenome model.

3.3. Graphical Model

In the UPhenome model, a patient record is represented as a probabilistic mixture of 

phenotypes, and the phenotypes are defined as a mixture of characteristics derived from a 

large, diverse population of patients. A phenotype is defined as a set of distributions over the 

observation vocabularies, one for each of the four heterogeneous data types. As in the LDA 

baselines, we model the observations and phenotype assignments as multinomial 

distributions, and the phenotype distributions as sets of Dirichlet distributions. The details of 

the probabilistic latent variable model are shown in Figure 1 and Algorithm 1. For 

completeness, Ir, Nr, Or, Mr etc. are assumed to be Poisson distributed but in practice this 

does not influence inference as these are fixed quantities.

The UPhenome model departs from the LDA-text baseline by considering all data types in 

the record. It departs from the LDA-all baseline by treating each data type on its own, and 

learning the type-specific phenotype distribution separately (ηp, θp, lp, kp variables). There 

are multiple advantages to treating the data types this way: (i) this formulation adheres to the 

genre and characteristic of EHRs; (ii) it allows for future specification of different levels of 

sparsity and distributions for each data types; (iii) it enables a platform for incorporating 

domain knowledge specific to each data type; and (iv) it enforces the principle that 

conditioned on phenotype assignments, the per-data phenotype distributions are independent 

of each other. Since the four phenotype distributions must separately sum to one, this 

mitigates potential imbalance in data type prevalence, and thus hinders one frequent 

observation type (e.g., words) from overwhelming the less frequent ones (e.g., diagnosis 

codes).
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Algorithm 1: 
Generative story for the UPhenome model.

3.4. Inference

To perform inference on the UPhenome model, we derived a collapsed Gibbs sampler which 

collapses the parameters β, η, θ, l, k. Due to the similarity of the models, inference in the 

UPhenome model follows methods previously outlined for inference in LDA [33]. For 

illustrative purposes, we show the conditional distribution necessary for Gibbs sampling for 

one of the phenotype assignment variables, the laboratory test phenotype assignment, and 

note that the conditionals for the other phenotype assignment variables follow closely.
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p(ζm, r = p ∣ ζ−(m, r), …) ∝
π + ∑r = 1

R Mr, p, l∗
−(m, r)

∑l = 1
∣ κ ∣ πl + ∑r = 1

R Mr, p, l
−(m, r) ×

α + Ir, p + Nr, p + Or, p + Mr, p, l
−(m, r) .

Here, the notation Ir,p represents the total count of all diagnosis code tokens Ir in patient 

record r, that are assigned to phenotype p. Similarly for Nr,p (word tokens) and Or,p 

(medications).

The counts for laboratory tests are performed without counting the particular laboratory test 

instance, m, which belongs to the type l* and for which the conditional distribution is being 

evaluated. Therefore, Mr, p, l∗
−(m, r)

 represents the total count of all laboratory tests, Mr, in patient 

record r, that are assigned to phenotype p, except (represented by a minus) for the current 

laboratory test instance m in record r.

Finally, we note that the denominator of this conditional only contains counts for the 

laboratory test, demonstrating the differences across the phenotype distributions for each 

data type.

4. Experimental Setup

We now describe our datasets, parameter settings and model selection, as well as the 

different evaluation experiments we carried out. Code is available at www.github.com/

rimmap/Phenome_Model.

4.1. Datasets

To investigate the generalizability of the UPhenome model, we experimented with two 

qualitatively different mixtures of patients and patient diseases: (1) records of extremely sick 

patients who are in the intensive care unit (ICU) with constant monitoring, which usually 

spans a few days; and (2) records for outpatients regularly followed by care providers over 

multiple years. These datasets are also from different institutions using different EHR 

systems. In each dataset, 80% of the records were used for training, and 20% for testing. 

Descriptive statistics about the training sets for each dataset are given in Table 2.

MIMIC II ICU Dataset.—The MIMIC II Clinical Database (v2.26) [34] is available at 

http://physionet.org/mimic2_clinical_overview.shtml. MIMIC II contains a de-identified set 

of over 23,000 adults from the Beth Israel Deaconess Medical Center’s Intensive Care Units, 

including medical, surgical, and coronary care units. The dataset contains structured record 

data, and unstructured clinical note data. Patients have a broad set of existing conditions and 

reasons for being in the ICU. As this dataset is available to researchers who sign a data 

usage agreement, any work on this dataset can serve as a benchmark for future automated 

phenotyping algorithms.
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We included all adult patients in the dataset, independently of their present or absent 

conditions. For each record, we selected one ICU admission and all of its corresponding 

observations: discharge summary, all medications, all diagnosis codes, and all laboratory 

tests. Medications and laboratory tests were mapped to the standard vocabulary definitions 

provided by MIMIC. For all data types, we limited the vocabulary to observations that 

appeared at least 20 times across the entire training dataset.

NewYork-Presbyterian Hospital Outpatient Dataset.—The NewYork-Presbyterian 

Hospital (NYPH) outpatient dataset contains longitudinal records of patients with at least 

three outpatient visits (e.g., specialist or primary care provider). Their records include all 

their visits, however, ranging from outpatient visits to hospital admissions, to emergency 

department visits. Like the MIMIC patients, the NYPH patients have a broad set of 

conditions, but unlike them their records span years instead of days, and the documented 

conditions differ as well.

We included all patients, independently of their conditions. Since their records span decades 

and often hundreds of visits, we considered slices of records for each patient that capture a 

somewhat stable health status (thus again, making for a qualitatively different dataset than 

the MIMIC patients). We selected the most recent time slice of each record, that contained 

four different primary provider notes with no intervening inpatient stays. We defined record 

lengths by number of notes and not absolute time to account for different rates of visit. Any 

patient whose record slice lasted less than 1 month or greater than 4 years was removed and 

this resulted in patient records with mean length of 10 months (7 months standard 

deviation).

Like in MIMIC, we collected all observations related to primary provider notes, 

medications, diagnosis codes, and laboratory tests. The range of medications is much more 

diverse than MIMIC medications, and thus we mapped all medications to their therapeutic 

class when possible (e.g., “Tylenol” was mapped to “Analgesic”). Similarly, the laboratory 

tests were mapped to groups of tests when possible (e.g., “Glucose fingerstick” was mapped 

to “Glucose”). Thus, the vocabulary sizes for these observations was dramatically reduced. 

We applied frequency thresholds to the data to closely match MIMIC vocabulary sizes 

whenever possible.

IRB approval was obtained from the Columbia University Medical Center Institutional 

Review Board. As part of the approved IRB protocol, an application for waiver of 

authorization was filled and approved, as we investigate algorithms for learning statistical 

models across a very large population and historical data across many years, and thus 

obtaining individual consent would be impracticable.

4.2. Model Parameters and Model Selection

We ran UPhenome using 50, 75, 100, 250, 500, 750 phenotypes. All of the hyperparameters 

(α, μ, ν, ξ, π) were set to 0.1 for all models. To ensure appropriate burn-in time for each 

model, the Gibbs sampler was run 7,000 iterations and the log-likelihood curves on training 

data were examined to verify burn-in. The learned phenotype assignment settings for each 
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model were selected as the ones that produced the maximum log-likelihood over all 7,000 

iterations on the training set.

For model selection, we optimized for interpretability of phenotypes, and thus relied on both 

held-out likelihood and coherence of the learned phenotypes. The automated phenotype 

coherence calculation was performed using normalized pointwise mutual information 

(NPMI) over all observation types, as described by Lau et al [32] and using the provided 

open source code. For each model, we used the average NPMI across all phenotypes to 

represent the overall coherence of the learned phenotypes from the model.

For this experiment, NPMI is calculated for each observation (zi) in each phenotype, limited 

to the top 40 (N=40) most probable observations. The per-phenotype NPMI is the average of 

the NPMI of each observation that is associated with that phenotype. The model NPMI is the 

average of each per-phenotype NPMI value and is defined by

NPMI(zi) = − ∑
j = 1

N − 1 log
P (zi, zj)

P (zi)P (zj)
log P (zi, zj) ,

where P(zi) = probability of seeing observation zi and P(zi,zj) = probability of seeing both 

observation zi and observation zj in the same patient record.

To calculate the likelihood on the held-out set, we implemented a Chib-style estimator as 

described by Murray and Salakhutdinov[35]. The likelihood was calculated using 1,000 

iterations of the estimator for every setting of P.

The combination of the two metrics suggested that P=250 was likely to produce the best 

phenotypes given the current parameter settings on the MIMIC dataset. We report results on 

the NYPH dataset that are also obtained with P=250 as well.

For both baseline models LDA-text and LDA-all, we used the MALLET software 

package[36] with similar number of topics as the selected UPhenome model (K=250) and 

similarly with 7,000 iterations to ensure burn-in. The hyperparameter settings for the 

baseline models were 0.01 to increase sparsity due to the larger size of the combined 

vocabulary.

4.3. Evaluation Experiments

In addition to the automated evaluation metrics, such as held-out likelihood and automatic 

coherence of the learned phenotypes, we carried out the following set of experiments: 

qualitative assessment of learned phenotypes (manual coherence, manual granularity, 

pairwise phenotype comparison, label quality) and ability of the phenotypes to characterize 

ground-truth disorders present in a set of unseen patients (disorders to phenotypes 

associations).

All qualitative judgments were obtained from a clinical expert. The learned phenotypes were 

displayed using a modified version of the interactive topic modeling interface [37]. The 

interface is particularly useful to us because it enables users to edit learned phenotypes by 
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adding/removing observations and marking them as important or ignorable. For each 

phenotype, the top 40 most probable observations were displayed and weighted by their 

phenotype probability (normalized by their data-type specific phenotype probability). The 

observations were also color-coded to signify their data types (purple for words, grey for 

medications, green for laboratory tests, and blue for diagnosis codes). See Figure 2 for an 

example of displayed topic.

Manual coherence.—This experiment allows us to capture the intrinsic quality of the 

learned phenotypes across its probable observations, very much like the automatic coherence 

metric aims to. In our case, a coherent phenotype is one that describes a single condition and 

that does not contain observations that are not typically seen in patients with this condition.

For the UPhenome model and the baseline LDA-all model each, 50 phenotypes were 

randomly selected and presented one at a time to the clinical expert. The expert was asked to 

score the coherence of a given phenotype (without being told whether it was produced by the 

LDA-all or UPhenome) according to a 1-5 Likert scale, where 1 designated no coherence 

(i.e., a junk phenotype) and 5, perfect coherence. To help the expert in his assessment, we 

instructed him to use the interface to edit the phenotypes, and use his number of edits as a 

cue for lack of coherence.

Manual granularity.—Because both the baseline and the UPhenome models are 

unsupervised, there is no guarantee that the learned phenotypes are good representations of 

clinically meaningful diseases. In particular, it is possible that the modeling of patient 

observations generates clusters that are reflective of the documentation processes of 

healthcare rather than of the documentation of clinical status of a patient. For instance, 

patient discharge to a nursing home in the MIMIC dataset contains very specific 

documentation patterns, which in an unsupervised setting could be easily grouped.

We asked the clinical expert to categorize the 100 random phenotypes (50 from the 

UPhenome model and 50 from the LDA-all baseline) into one of the following three 

granularities: (i) a non-disease phenotype (e.g., a documentation phenotype, or a junk 

phenotype); (ii) a mix of diseases; (iii) a single disease.

Pairwise phenotype comparison.—In this experiment, we assess the compared overall 

quality between the learned UPhenome phenotypes and learned LDA-baselines phenotypes. 

To ensure that the comparison is fair, we selected the 50 random UPhenome phenotypes, and 

identified the most similar corresponding LDA-all phenotype for each. To compute pairwise 

phenotype similarity, we used Jensen-Shannon divergence over the posterior probabilities of 

all observations [38]. The clinical expert was presented pairs of phenotypes (a UPhenome 

and a paired LDA-baselines phenotype) without him knowing which model generated which 

phenotype. The expert was asked to choose which phenotype was more clinically coherent 

or to code the comparison as impossible when both phenotypes were junk, equivalent, or 

paired improperly.

Label quality.—One of the data types used in the UPhenome model is diagnosis codes. 

The diagnosis codes are ICD-9 codes, which often describe specific diseases (e.g., “breast 
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cancer”), but can also describe classes of diseases (e.g., “malignant neoplasms”), as well as 

generic statements about a patient (e.g., “personal history of other diseases”). Since the 

diagnosis codes are often used in the clinical world as proxies for conditions present in a 

patient, this experiment assesses to which extent the most probable diagnosis code for a 

learned phenotype is a clinically appropriate label for the phenotype as a whole.

Since the LDA-text baseline does not include diagnosis codes, so this experiment was 

skipped for this model. Similarly, since in the baseline LDA-all model it is possible that the 

top-40 most probable observations do not include any diagnosis code (in our experiment, 

this happened actually very often), we assessed label quality for the 50 UPhenome 

phenotypes only.

We asked the clinical expert to categorize the top diagnosis code with respect to the 

phenotype as a whole as (i) related; (ii) unrelated; or (iii) actionable. An actionable label is 

one that accurately represents the phenotype at the right granularity and it can be relied upon 

when making a decision about a patient with the phenotype assigned.

Disorders to phenotypes associations.—While the previous experiments assessed the 

quality of the learned phenotypes, this experiment assesses the ability of the UPhenome 

phenotypes to characterize clinically relevant and ground-truth disorders present in a set of 

unseen patient records. If there is a strong association between phenotypes and the disorders 

in these records, then the phenotypes can be considered clinically relevant for a given 

patient.

A potential application of the UPhenome model to identify present disorders for a given 

patient by inferring the most probable phenotypes for the record. To validate this point, we 

relied on a gold-standard set of records, which contain manual annotations of the disorders 

present and mentioned in the records’ notes. The ShARe gold standard is based on MIMIC 

notes and contains such annotations [39, 40]. We included the 350 discharge summaries 

from the ShARe corpus in our test set. For each record, gold-standard annotation provided a 

list of SNOMED-CT Disorder concepts, along with modifiers such as negation and 

uncertainty [12, 41]. Ground-truth disorders for a record were defined as concepts with no 

negation or uncertainty.

In total, for each of the 350 records, we have ground-truth disorder concepts (from a set of 

2,000+ unique concepts in the corpus) and inferred phenotype assignments. We created an 

association matrix, similar to [33], visualizing the degree of association between present 

concepts and phenotypes. We selected the concepts which occurred in at least 50 records. 

This experiment examines associations between common disorders and learned phenotypes; 

with 350 patients, there are not enough annotations to associate phenotypes with rare 

disorders. The association was computed using normalized pointwise mutual information, 

and for each concept the top phenotype was selected.

5. Results

Figure 2 shows an example of learned phenotype on the NYPH dataset. The label on the left 

is the most probable diagnosis code, in this case SLE (Systematic Lupus Erythematosus). 

Pivovarov et al. Page 12

J Biomed Inform. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The words (in purple) are indeed related to this disease and refer to abbreviations in clinical 

notes (“rheum”) or mentions of important laboratory tests for SLE (“ana”, “esr”), as well as 

mentions of specific drugs indicated for SLE (“plaquenil”). The medications are also related 

(plaquenil, one of the most common drug for SLE is an antimalarial medication), as well as 

prednisone. Both C3 and C4 levels are used as diagnosis tests for SLE, while ESR and 

others test for level of inflammation in a patient. SLE is a phenotype learned from the 

NYPH dataset, which represents outpatient records over long periods of time. Since SLE is a 

chronic disease it makes sense that it was discovered in this dataset. For comparison, there is 

no phenotype learned on the MIMIC dataset that captures characteristics of SLE. Because 

the UPhenome model is unsupervised, it models the diseases that are of interest to a given 

input clinical setting/patient cohort.

For the remainder of the paper, we present results of our experiments on the publicly 

available MIMIC dataset. Furthermore, for the comparison of the UPhenome model with 

baselines, we report its comparison to the LDA-all baseline alone, but note that the results 

were similar as for the comparison to the LDA-text baseline.

Manual coherence.

Figure 3 shows the distribution of coherence scores for the 50 phenotypes from the 

UPhenome model and the 50 phenotypes from the LDA-all model. The LDA-all phenotypes 

contained many more junk phenotypes than the UPhenome ones, and at the same time 

contained slightly more perfectly coherent phenotypes than the UPhenome ones. Overall, 

about 66% of the UPhenome phenotypes were scored as good (coherence score above 4), 

while only about 52% of the LDA-all phenotypes were scored as good.

Manual granularity.

The UPhenome model yielded more phenotypes that are clinically well-defined as 

representing a single disease than the LDA-all baseline. Furthermore, the LDA-all baseline 

suffered from a high number of junk phenotypes (as confirmed by the Manual coherence 

experiment).

For the UPhenome phenotypes, the clinical expert categorized 10% as non-disease 

phenotypes, 10% as a mix of diseases, and 80% as representing a single disease. In contrast, 

for the LDA-all phenotypes, the clinical expert categorized 42% as non-disease phenotypes, 

6% as a mix of diseases, and 52% as representing a single disease.

Pairwise phenotype comparison.

Figure 4 displays an example of paired phenotypes shown to the clinical expert. We can see 

that the most probable observations in the LDA-all phenotype are words and laboratory tests 

(except for one medication), with only a few highly probable and relevant words/tests and 

most irrelevant to iron deficiency anemia. In comparison, the most probable observations in 

the UPhenome phenotype are spread across data types, with a majority of observations 

relevant to iron deficiency anemia.
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Overall, out of the 50 pairs of phenotypes assessed, the clinical expert considered 

comparison impossible for 9 pairs. The UPhenome phenotype was superior to the LDA-all 

one in 80.4% of the remaining pairs.

Label quality.

Overall, the most probable diagnosis code for a given phenotype was evaluated as promising 

proxy for a phenotype label. The clinical expert assigned a label as actionable for 48% of the 

UPhenome phenotypes, 44% of them were considered related, while only 8% of them were 

considered unrelated.

Disorders to phenotypes associations.

Figure 5 shows the association matrix between the present disorders in the gold standard 

ShARe corpus and the inferred phenotypes on the gold-standard records. There were 15 

disorder concepts that were present for at least 50 patients in the dataset. As such the matrix 

is 15x15. For clarity purposes, we grouped the 15 disorder concepts based on each other’s 

clinical similarities. For instance, hypertension, hypercholesterolemia, and type II diabetes 

are often seen together in patients, and similarly for the symptoms nausea and vomiting.

The hgure indicates there is an association between the common disorders present in the 

gold-standard records and their inferred phenotypes. Upon inspection of the inferred 

phenotypes, they are good representations of the present disorders. For instance, Phenotype 

7 has the highest association with the disorder Mitral Valve Regurgitation, and its most 

probable observations are perfectly coherent with respect to this disease.

When concepts shared clinical characteristics (e.g., nausea and vomiting or the cluster of 

hypertension, diabetes, and hypercholesterolemia), the associated phenotypes are also shared 

amongst them (e.g., phenotypes 12,13 and phenotypes 1,2).

We display two more examples of phenotypes. Phenotype 10, which is associated with 

hemorrhage shows several diagnosis codes, all potentially leading or describing 

hemorrhages. Phenotype 11 is a junk topic, containing highly prevalent observations 

throughout the MIMIC dataset.

6. Discussion

The results of the various automated and manual evaluations suggest that the UPhenome 

model is a promising approach to discover models of disease. We discuss next two 

characteristics of our model—the joint modeling of heterogeneous data types and their 

unsupervised modeling— as well as the differences between automated and manual 

coherence assessments for the task of phenotyping.

Joint modeling of heterogeneous EHR data.

The UPhenome model is designed to leverage the innate heterogeneity of EHR data. By 

modeling each data type separately as opposed to a bag of observations like in the LDA-all 

baseline, the model can accommodate for imbalance of observations from each data type. 

For instance, there are many more words than diagnosis codes, even after stop words 
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removal and vocabulary filtering. By design, the UPhenome model ensures that each data 

type is represented in the learned phenotypes, thus truly modeling across data types. This 

explains for instance, why all UPhenome phenotypes given as examples in the paper have a 

mix of data types, while most LDA-all phenotypes are overwhelmed by words and 

laboratory tests (i.e., the most common data types in our observations, as described in Table 

2.

Generative unsupervised modeling of EHR data.

Like all unsupervised models, UPhenome is exciting in its ability to discover patterns in 

input datasets, such as disease models. When applied to the MIMIC corpus, the learned 

phenotypes are representative of diseases that are documented in an intensive care unit, like 

acute kidney failure, while when applied to the NYPH dataset, the learned phenotypes are 

more representative of chronic and acute conditions that do not require intensive care, such 

as SLE.

Without careful modeling however, unsupervised models can yield unwanted results. The 

LDA-all phenotypes often highlighted information about hospital course in aspects 

nonspecific to any underlying condition, such as coagulation status, palliative care status, 

type of drug exposure, and plan for discharge. All of these topics make sense and represent 

distinct patterns in the input datasets, but they do not represent diseases. In contrast, the 

UPhenome phenotypes represented a greater number of distinct disease than the LDA-all 

phenotypes. Furthermore, they were more clinically relevant, as multiple aspects of a given 

disease were included such as secondary complications or potential treatments.

In this version of the model, we did not explore the use of different distributions, maybe 

more adapted to our task. For instance, several learned phenotypes corresponded to highly 

prevalent diseases (i.e., these diseases had several phenotypes representing them). Potential 

fixes for this phenomenon include tuning the hyper-parameters [42] and choosing a different 

distribution for the data-type specific phenotype distributions.

Automated coherence metrics vs. human judgments.

When comparing the average coherence of the LDA-all phenotypes and the UPhenome 

phenotypes, LDA-all yielded a significantly higher average Normalized Pointwise Mutual 

Information (NPMI) (.07 vs .014).

NPMI was established as a valuable automated evaluation metric of learned topics and was 

shown to correlate with human judgments of topic coherence[32]. In our experiments 

however, we found little correlation between the clinician’s judgments and the NPMI of the 

learned phenotypes (Pearson R=0.31 and Spearman=0.33 over 50 UPhenome phenotypes). 

In our settings, the UPhenome model is a mixture model over text but also coded data (e.g., 

diagnosis codes, medications, and laboratory results). It is possible that the computationally 

coherent (often co-occurring terms) are not actually clinically relevant. For instance, the 

LDA-all phenotype with the highest NPMI contained the following most probable 

observations: “pm total co pt potassium gap sodium urea chloride anion glucose creat hct 

hgb rbc mcv mchc mch wbc rdw”, a mix of routine, non-discriminatory laboratory tests. It is 

also possible that different observations within coded data types may not occur frequently 
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together. For instance, there are several diagnosis codes which are highly clinically relevant 

with each other, and yet do not get coded together in patient records: different stages of 

pancreatic cancer for example, would make sense in a single phenotype for the disease, but 

will not be seen jointly over many patients at a time.

7. Conclusion and Future Work

Building computational models of disease has been an active area of research, with 

approaches ranging from building ontologies and taxonomies of diseases based on clinical 

expertise, to creating highly precise model of specific diseases of interest through a mix of 

data-driven and clinical expertise, to discovering models directly from clinical observations. 

The UPhenome model is an unsupervised, generative model, which given a large set of EHR 

observations, learns probabilistic phenotypes. The phenotypes are learned jointly over 

heterogeneous EHR observations drawn from a large set of potential medications, diagnosis 

codes, laboratory tests, and free-text clinical notes. When applied to specific patient records, 

the UPhenome model can provide actionable representation of the records, by describing 

them as a distribution over the patient’s inferred phenotypes.

We demonstrate that the UPhenome model can learn from different care settings and 

documentations of different healthcare institutions, without any adaptation needed. Our 

experiments show that the UPhenome model yields phenotypes that (i) combine all these 

data types in a coherent fashion better than baseline models; (ii) are representative of single 

diseases, while baseline models tended to produce representations of either mixes of disease 

or high-level healthcare process; and (iii) when applied to unseen patient records, are 

correlated with the patients’ ground-truth disorders.

The code for the UPhenome model is available at www.github.com/rimmap/

Phenome_Model. Furthermore, the MIMIC dataset is available to the research community.

This paper presents the first iteration of the UPhenome model, which as such makes several 

simplification assumptions about the data and the task. We describe next our future work to 

address these current limitations.

Future Work.

We plan our future work along the following directions: (i) temporality of EHR data and 

diseases; (ii) better modeling of the different data types; and (iii) grounding of the learned 

phenotypes with clinical knowledge about disease.

In its current version, the UPhenome model does not explicitly encode any temporality about 

given patient records. Because longitudinal records and diseases themselves are often not 

time invariant [43], and progress at different time resolutions, it is a non-trivial task to model 

temporality across all diseases at once. A simple baseline experiment toward incorporating 

temporality is to infer phenotypes over time, much like the approach of dynamic topic 

models [44].

Each of the considered data types in the UPhenome model have specific characteristics that 

can be exploited further. The EHR text, especially when learning from several notes for each 
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patient, has much redundancy that can be accounted for [27]. Medications and diagnosis 

codes are hierarchical in nature, with evidence that incorporating that structure helps in 

modeling clinical information [26]. Finally each laboratory test has associated values, and it 

is clear that different distributions of the same test can describe different diseases; for 

instance, glucose with a distribution biased towards high values would belong to a 

phenotype describing diabetes, while glucose with a distribution with mean towards low 

values would be probable in a hypoglycemia phenotype. Better modeling of the data types 

based on the genre of EHR datasets is an attractive and promising avenue of research.

In addition to incorporating knowledge about EHR characteristics, we are eager to 

investigate the use of clinical knowledge in improving probabilistic phenotyping. A primary 

goal of our work is to generate phenotypes compatible with clinician’s mental models of 

diseases. Incorporating a human in the loop, like in interactive topic modeling [37] and 

clinical anchor learning [45] is a promising approach. Another approach to support this goal 

is to incorporate knowledge from existing clinical knowledge resources, inspired by the 

advances in constrained topic modeling [46, 47, 37], and incorporating known semantic 

relations in disease modeling [48, 7].
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Highlights

We present the UPhenome model, which derives phenotypes in an unsupervised manner.

UPhenome scales easily to large sets of diseases and clinical observations.

The learned phenotypes combine clinical text, ICD9 codes, lab tests, and medications.

UPhenome learns phenotypes that can be applied to unseen patient records.

Pivovarov et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Graphical representation of the UPhenome model.
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Figure 2: 
An example of learned phenotype from the NYPH dataset. The top-40 most probable 

observations for the phenotype are listed. Words are purple, laboratory tests are green, 

medications are grey, and diagnosis codes are blue.
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Figure 3: 
Distribution of manual coherence scores for the UPhenome and LDA-all phenotypes. A 

score of 1 represents a junk phenotype and 5, a perfect phenotype.
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Figure 4: 
An example of LDA-all and UPhenome phenotypes, both about Iron Deficiency Anemia, as 

paired automatically by Jensen Shannon divergence.
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Figure 5: 
Association of manually identified ground-truth concepts and automatically inferred 

phenotypes over a set of patients, along with four example phenotypes.
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Table 1:

Variables in the UPhenome model.

P Number of phenotypes

R Number of patient records

βr Phenotype distribution for patient record r

ηp Diagnosis code distribution for phenotype p

Ir Number of diagnosis codes in record r

vi,r Diagnosis code instance i in record r

γi,r Phenotype assignment for diagnosis code i in record r

θp Words distribution for phenotype p

Nr Number of words in record r

wn,r Word instance n in record r

δn,r Phenotype assignment for word n in record r

lp Medications distribution for phenotype p

Or Number of medication orders in record r

xo,r Medication instance o in record r

ϵo,r Phenotype assignment for medication o in record r

kp Laboratory test distribution for phenotype p

Mr Number of laboratory tests in record r

ym,r Laboratory test instance m in record r

ζm,r Phenotype assignment for test m in record r
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Table 2:

Descriptive statistics for the MIMIC and NYPH training datasets. In this work, the number of patients and the 

number of input records is equivalent. Each MIMIC patient has one input record consisting of all data gathered 

during one ICU stay and each NYPH patient has one input record consisting of all data gathered during four 

consecutive outpatient visits.

Data Type MIMIC
Total / Unique

NYPH
Total / Unique

Patients 18,697 / 18,697 9,828 / 9,828

Words 13,086,278 /12,919 13,494,149 /13,158

Medications 1,044,541 / 855 9,978 / 273

Lab Tests 7,499,446 / 309 351,992 / 300

Diagnoses 159,740 / 985 177,420 / 931
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