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1. Introduction

Type 2 diabetes (T2D) is a prevalent, progressive chronic dis-
ease that increases the risk of heart disease and microvascular 
complications.[1] The occurrence of T2D can be prevented by 
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controlling diet and increasing exercise. 
Thus, early diagnosis and early interven-
tion are very meaningful for patients. 
Although some clinical biomarkers are 
characteristic of diabetes (e.g., glucose and 
HbA1c), biomarkers for predicting dia-
betes are still urgently needed.

Metabolomics, which focuses on endog-
enous small-molecule metabolites, is 
becoming a reliable tool for discovering 
potential biomarkers and explaining the 
pathogenesis of diseases.[2] In prospec-
tive nested case-control studies, cases and 
controls are from the same cohort, and 
selection bias in effect estimation can be 
reduced. Recently, prospective nested case-
control studies have been used to reveal 
the changes in the metabolome ante-
cedent to diabetes and to find predictors of 
future diabetes.[3–5] In a European nested 
case–control study, several glycerophos-
pholipids, sugar metabolites and a purine 
nucleotide were found to be significantly 
changed before the onset of T2D.[3] In 
addition, alanine, phenylalanine, tyrosine, 

and palmitoylcarnitine were also found to be risk factors for 
incident T2D in two independent Chinese prospective cohort 
studies based on a targeted metabolomics method.[4] In another 
Chinese cohort study, 38 lipids were found to be significantly 
associated with the risk of T2D. Then, the combination of six 

In a Chinese prospective cohort, 500 patients with new-onset type 2 diabetes 
(T2D) within 4.61 years and 500 matched healthy participants are selected 
as case and control groups, and randomized into discovery and validation 
sets to discover the metabolite changes before T2D onset and the related 
diabetogenic loci. A serum metabolomics analysis reveals that 81 metabolites 
changed significantly before T2D onset. Based on binary logistic regression, 
eight metabolites are defined as a biomarker panel for T2D prediction. 
Pipecolinic acid, carnitine C14:0, epinephrine and phosphatidylethanolamine 
34:2 are first found associated with future T2D. The addition of the biomarker 
panel to the clinical markers (BMI, triglycerides, and fasting glucose) 
significantly improves the predictive ability in the discovery and validation 
sets, respectively. By associating metabolomics with genomics, a significant 
correlation (p < 5.0 × 10−8) between eicosatetraenoic acid and the FADS1 
(rs174559) gene is observed, and suggestive correlations (p < 5.0 × 10−6) 
between pipecolinic acid and CHRM3 (rs535514), and leucine/isoleucine 
and WWOX (rs72487966) are discovered. Elevated leucine/isoleucine levels 
increased the risk of T2D. In conclusion, multiple metabolic dysregulations 
are observed to occur before T2D onset, and the new biomarker panel can 
help to predict T2D risk.
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lipids and eight clinical parameters improved the predictive 
ability of the clinical parameters from 0.710 to 0.781 in the dis-
covery set and from 0.698 to 0.722 in the validation set.[5]

T2D is a metabolic disease affected by multiple genes and 
has a strong genetic predisposition. Therefore, the discovery 
of genetic loci associated with T2D may help understand the 
pathogenesis. Recently, a metabolome-genome-wide association 
study (mGWAS) was used to verify known gene loci and iden-
tify new related gene loci. In a nested case-control study of a 
Korean population, nine metabolites were found to be signifi-
cantly related to the occurrence of diabetes.[6] These T2D-related 
metabolites were used as intermediate molecular phenotypes 
in mGWAS to link genes and incident T2D. CPS1 (rs1047883), 
which is significantly associated with glycine, was shown to be 
related to the risk of T2D. The newly discovered genetic loci 
and their relationships with metabolites can help understand 
the complex pathogenesis of T2D. However, to the best of our 
knowledge, no mGWAS of T2D has been conducted in Chinese 
prospective nested case-control cohorts so far.

In this work, a prospective nested case-control study was 
conducted in the Dongfeng-Tongji cohort[7] of the Chinese 
population. The case group of this study consisted of 500 
participants who developed T2D after an average follow-up 
of 4.61 ± 0.15 years, and each case was matched with a non-
diabetic participant in the cohort to form the control group. 
Serum untargeted metabolomics analysis was performed to 
identify significantly differential metabolites before the onset 
of T2D, and a new combinational metabolite marker panel 
was established to predict T2D in advance. Then, metabo-
lomics and genomics were integrated to reveal possible 

diabetogenic loci and causal relationships between metabo-
lites and T2D.

2. Results

2.1. Baseline Characteristics

Baseline characteristics were compared between the case group 
and control group in both the discovery and validation sets 
(Table 1). As shown in Table  1, there was no significant dif-
ference in age, sex, smoking status, drinking status, or phys-
ical activity in the discovery set between the case and control 
groups. The case group had a significantly higher body mass 
index (BMI), systolic blood pressure (SBP), diastolic blood 
pressure (DBP), triglyceride (TG) level, and fasting glucose 
(FG) level and a lower high-density lipoprotein (HDL) choles-
terol level than the control group (p  <  0.05, false positive rate 
(FDR) < 0.1). The odds ratios (ORs) per standard deviation (SD) 
increment in clinical parameters were calculated by Cox regres-
sion (Table S1, Supporting Information). For the significantly 
different clinical parameters, the risk of T2D was significantly 
positively correlated with baseline BMI, SBP, DBP, TG, and FG 
levels (the ORs per SD increment were greater than 1) and was 
significantly negatively correlated with HDL level (the OR per 
SD increment was less than 1). For the validation cohort, the 
BMI, TG, and FG levels were significantly higher in the partici-
pants in the case group than in those in the control group, and 
these parameters were significantly positively correlated with 
the risk of T2D.

Table 1. Baseline characteristics of participants in the discovery set and validation set.

Variables Discovery set Validation set

Controls (n = 292) Cases (n = 292) pa) FDRa) Controls (n = 208) Cases (n = 208) pa) FDRa)

Age (years) 62.38 ± 7.05 62.34 ± 7.10 0.993 1.000 62.52 ± 7.44 62.47 ± 7.46 0.946 1.000

Men sex, No. (%) 47.3% 47.3% 1.000 1.000 40.9% 40.9% 1.000 1.000

BMI (kg m−2) 24.16 ± 3.31 25.96 ± 3.65 <0.001 <0.001 23.68 ± 3.02 25.64 ± 3.09 <0.001 <0.001

Smoking status, No. (%)

Current smoker 24.8% 20.6% 0.400 23.2% 18.9% 0.450

Former smoker 9.7% 11.3% 0.486 6.3% 7.8% 0.679

Never smoker 65.5% 68.0% 70.5% 73.3%

Drinking status, No. (%)

Current drinker 27.1% 26.7% 0.768 22.6% 19.2% 0.322

Former drinker 3.4% 5.5% 0.870 5.8% 4.8% 0.548

Never drinker 69.5% 67.8% 71.6% 76.0%

Physical activity, No. (%) 90.8% 87.3% 0.186 0.263 88.5% 87.0% 0.654 0.833

Systolic blood pressure (mmHg) 127.00 ± 18.67 130.64 ± 17.93 0.015 0.028 127.07 ± 17.27 129.54 ± 18.54 0.196 0.417

Diastolic blood pressure (mmHg) 76.48 ± 11.07 79.04 ± 11.08 0.010 0.021 77.30 ± 10.19 77.91 ± 10.56 0.480 0.679

HDL cholesterol (mmol L−1) 1.49 ± 0.45 1.40 ± 0.49 0.002 0.004 1.46 ± 0.43 1.38 ± 0.39 0.037 0.089

LDL cholesterol (mmol L−1) 3.01 ± 0.79 3.05 ± 0.72 0.333 0.436 3.01 ± 0.78 2.99 ± 0.74 0.909 1.000

Triglycerides (mmol L−1) 1.29 ± 0.70 1.64 ± 0.93 <0.001 <0.001 1.36 ± 0.83 1.67 ± 1.00 <0.001 <0.001

Fasting glucose (mmol L−1) 5.53 ± 0.55 5.99 ± 0.61 <0.001 <0.001 5.51 ± 0.58 6.02 ± 0.56 <0.001 <0.001

a)Values of p and FDR were calculated by nonparametric tests.
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2.2. Significantly Changed Metabolites and Pathways 
Related to T2D Onset

Serum samples of the discovery set were analyzed by a 
liquid chromatography-mass spectrometry (LC-MS)-based 
metabolomics approach. A total of 206 metabolites were iden-
tified according to our in-house database.[8] Among these 
identified metabolites, 94.7% of the metabolites had a relative 
standard deviation (RSD) value less than 30% among quality 
control (QC) samples in the discovery set (Figure S1A, Sup-
porting Information) and were used for the following data 
analysis. Nonparametric tests were conducted to define signifi-
cantly changed metabolites. Figure 1A shows the changes of 81 
significantly differential metabolites whose p values were below 
0.05 and FDR values were below 0.1. To study the relationship 
between differential metabolites and future T2D risk, the ORs 
per SD increment were calculated (Figure  1B). The multivari-
able-adjusted ORs were adjusted by matched factors (age, sex), 
obesity (BMI) and lifestyle factors (smoking status, drinking 
status and physical activity). As shown in Figure  1A,B, the 
levels of acylcarnitines, branched-chain amino acids, aromatic 
amino acids, free fatty acids (FFAs), phosphatidylcholines (PCs) 
and phosphatidylethanolamines (PEs) significantly increased 
before T2D occurred, and those metabolites were significantly 
positively correlated with the risk of future T2D (values of ORs 
greater than 1). Most acylcarnitines and fatty acids remained 
significant after multivariable adjustment. On the other hand, 
the levels of most lysophosphatidylethanolamines (LPEs) and 
lysophosphatidylcholines (LPCs) decreased, and they were 
significantly negatively correlated with the risk of future T2D 
(values of ORs less than 1). In addition, the results of pathway 
analysis based on significantly changed metabolites are shown 
in Figure 1C. Aminoacyl-tRNA biosynthesis (p < 0.001, FDR = 
0.002) and biosynthesis of unsaturated fatty acids (p  <  0.001, 
FDR = 0.002) were the most significantly altered pathways 
before T2D onset.

2.3. Future Risk-Related Metabolites and Metabolic Markers 
for T2D Prediction

To distinguish the control group from the case group, we per-
formed binary logistic regression on the 81 metabolites that 
were significantly different between the case group and con-
trol group in the discovery set. A combinational metabolic 
biomarker panel containing eight metabolites was established, 
including pipecolinic acid, 1,5-anhydro-D-glucitol, LPC 18:2, 
carnitine C14:0, leucine/isoleucine, eicosatetraenoic acid (FFA 
20:4), epinephrine and PE 34:2. For convenience, they are 
named combination metabolite biomarker (CMB). The change 
trends of these eight metabolites are shown in Figure 1A, and 
the distribution of ORs is shown in Figure  1B and Table S2 
(Supporting Information). Compared with those in the control 
group, the levels of carnitine C14:0, leucine/isoleucine, FFA 
20:4, epinephrine and PE 34:2 increased in the case group, 
and their baseline levels were significantly positively correlated 
with the risk of T2D. The multivariable-adjusted ORs per SD 
increment were 0.731 (95% CI 0.597–0.896, p = 0.002) for carni-
tine C14:0, 1.427 (1.157–1.761, p < 0.001) for leucine/isoleucine, 

1.229 (1.009–1.497, p  = 0.041) for FFA 20:4, 1.315 (1.084–1.595, 
p  = 0.005) for epinephrine, and 1.341 (1.103–1.631, p  = 0.003) 
for PE 34:2. Furthermore, before the onset of T2D, the levels of 
pipecolinic acid, 1,5-anhydro-D-glucitol and LPC 18:2 decreased, 
and their baseline levels were negatively associated with future 
T2D risk. The multivariable-adjusted ORs per SD increment 
were 0.731 (0.597–0.896, p  = 0.002) for pipecolinic acid and 
0.808 (0.670–0.973, p  = 0.025) for 1,5-anhydro-D-glucitol. For 
LPC 18:2, the unadjusted OR per SD increment was 0.690 
(0.569–0.837, p < 0.001), but it became insignificant after multi-
variable adjustment (p = 0.116).

In addition, binary logistic regression was also performed 
on significantly different clinical parameters in the discovery 
set. BMI, TG, and FG were defined as a combinational clinical 
biomarker panel (CCB). The ORs per SD increase in T2D were 
3.028 (95% CI 2.332–3.933, p < 0.001) for CCB, 2.243 (95% CI 
1.808–2.782, p < 0.001) for CMB and 3.445 (95% CI 2.604–4.558, 
p < 0.001) for the combination model (CMB + CCB) (Figure 1D). 
The areas under the receiver operating characteristic curves 
(AUCs) of CMB and CCB were 0.708 and 0.755, respectively. 
Adding CMB to CCB significantly improved the predictive 
ability (AUC = 0.773, p = 0.031) (Figure 1E).

To validate these three predictive models, 208 pairs of cases 
and matched control samples were used as the validation set. 
Serum samples in the validation set were analyzed by the same 
LC-MS-based metabolomics approach, and 89.8% of the 206 
identified metabolites had an RSD value of less than 30% in 
the QC samples (Figure S1B, Supporting Information). The 
ORs per SD increase in CMB, CCB and their combination 
were 1.832 (95% CI 1.475–2.276), 2.742 (95% CI 2.090–3.599) 
and 3.150 (95% CI 2.338–4.244), respectively, and all p values of 
the ORs were less than 0.001 (Figure  1D). The AUCs of CMB 
and CCB were 0.687 and 0.772, respectively (Figure 1F). Adding 
CMB to CCB significantly improved the predictive ability 
(AUC = 0.797, p = 0.017).

2.4. Susceptibility Loci and Causal Relationships

On the basis of the above study, we conducted mGWAS 
between significantly changed metabolites at baseline and 
SNPs to find the potential locus related to incident T2D. The 
GWAS results of FFA 20:4 are shown in Figure 2. Figure  2A 
is the Manhattan plot showing the correlation between loci on 
each chromosome and FFA 20:4. Detailed information on the 
p values is given in Table S3 (Supporting Information), and 13 
loci were found to be related to FFA 20:4 at the suggestive or 
significant genome-wide thresholds. The Q–Q plots are shown 
in Figure S2 (Supporting Information), and Figure S2A (Sup-
porting Information) illustrates that the analysis models of FFA 
20:4 were reasonable. Chromosome 11 was the most relevant 
for FFA 20:4. According to the local Manhattan plot (Figure 2B), 
the association of the FFA 20:4 level with chromosome 11 was 
primarily driven by rs174559 (p  = 2.30 × 10−10). Rs174559 is in 
the region of FADS1 (fatty acid desaturase 1) gene. The alleles at 
rs174559 are alleles G and A, with A being the major allele and 
G being the minor allele (minor allele frequency (MAF) = 0.39). 
The minor allele was related to an increased level of FFA 20:4 
(β = 0.206).
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Figure 1. A) Scatter plot of significantly changed metabolites whose p values were below 0.05 and FDR values were below 0.1 in the discovery set. The 
diameter of the circles indicates the degree of metabolite changes. Significantly changed metabolites with an increased level in the case group are marked 
in red. Significantly changed metabolites with a decreased level in the case group are marked in green. B) Significantly changed metabolites and the risk of 
diabetes in the discovery set. Unadjusted ORs per SD increment and multivariable-adjusted ORs per SD increment are shown (*: p < 0.05; **: p < 0.01). 
The multivariable-adjusted ORs were adjusted by age, sex, BMI, smoking status, drinking status, and physical activity. C) Pathway analysis based on 
significantly changed metabolites before diabetes onset. D) ORs per SD increment in predictive model scores of T2D. ROC curves of the discovery set 
E) and validation set F). CMB consisted of eight metabolites, and CCB consisted of BMI, TG and FG. The combination was composed of CMB and CCB.

Global Challenges 2021, 5, 2000088



www.advancedsciencenews.com

2000088 (5 of 9) © 2021 The Authors. Global Challenges published by Wiley-VCH GmbH

www.global-challenges.com

The GWAS results of pipecolinic acid and leucine/isoleucine 
are also shown in Figure 2. Specific information on important 
SNPs related to pipecolinic acid and leucine/isoleucine at the 
suggestive or significant genome-wide thresholds is summa-
rized in Table S3 (Supporting Information). The rs535514 SNP 
on chromosome 1 is in the region of Cholinergic Receptor 

Muscarinic 3 (CHRM3) gene, which is related to insulin secre-
tion.[9] As shown in Figure  2D, allele C of rs535514 is related 
to an increased pipecolinic acid level (p = 5.40 × 10−7, β = 0.157, 
MAF = 0.42). Rs72487966 (SNP on chromosome 16) is located 
in the WW domain containing oxidoreductase (WWOX) gene 
region, which is a risk gene for T2D.[10] As shown in Figure 2F, 

Figure 2. A) Manhattan plot of FFA 20:4. B) Regional plot showing LD (r2) and p values of FFA 20:4-related SNPs near the FADS1 gene. C) Manhattan 
plot of pipecolinic acid, D) Regional plot showing LD (r2) and p values of pipecolinic acid-related SNPs near the CHRM3 gene. E) Manhattan plot of 
leucine/isoleucine. F) Regional plot showing LD (r2) and p values of leucine/isoleucine-related SNPs near WWOX gene. The blue line and red line 
indicate the suggestive (p < 5.0 × 10−6) and significant (p < 5.0 × 10−8) genome-wide thresholds, respectively.
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allele G of rs72487966 is related to an increased leucine/
isoleucine level (p  = 2.92 × 10−6, β  = 0.411, MAF = 0.03). We 
also attempted to conduct two-sample Mendelian randomiza-
tion (MR) analysis to evaluate whether there are causal relation-
ships between pipecolinic acid or leucine/isoleucine and T2D. 
Based on the meta-analyses using summary statistics of the 
Dongfeng-Tongji cohort, and the publicly available results of 
the KORA cohort and the Twins UK cohort,[11] two-sample MR 
analysis of leucine/isoleucine levels was conducted, and the 
OR per SD genetically predicted difference was scaled using an 
inverse-variance-weighted method. As a result, the relationship 
between leucine/isoleucine and T2D was proven to be causal 
(OR = 0.004, 95% CI 1.001–1.006, p = 0.001).

3. Discussion

In this nested Chinese prospective cohort, an untargeted 
ultra-performance liquid chromatography-mass spectrometry 
(UPLC-MS)-based metabolic profiling of serum samples was 
performed and integrated with genomics. To the best of our 
knowledge, this is one of the most comprehensive metabo-
lomics studies conducted on Chinese participants without dia-
betes at baseline to reveal the significant metabolic changes 
before the onset of T2D and predict the risk of future T2D. 
According to our results, 206 metabolites were identified. 
Among them, 81 metabolites, including carnitines, amino 
acids, fatty acids, organic acids, and lipids were significantly 
changed before T2D onset. Eight metabolites related to future 
T2D risk were defined as a CMB for T2D prediction. Among 
them, four metabolites (LPC 18:2, 1,5-anhydro-D-glucitol, FFA 
20:4 and leucine/isoleucine) were reported in other cohort 
studies[12–15] and validated in our Chinese prospective cohort 
study. Four of them (pipecolinic acid, carnitine C14:0, epineph-
rine and PE 34:2) were first reported to be significantly asso-
ciated with future T2D risk in a prospective cohort study. The 
AUCs of CMB were 0.708 and 0.687 in the discovery and vali-
dation sets, respectively, indicating that CMB had an accept-
able predictive ability for the onset of T2D. The combination of 
CMB and CCB significantly improved the predictive ability of 
CCB from 0.755 to 0.773 in the discovery set and from 0.772 to 
0.797 in the validation set.

In this study, before the onset of T2D, the levels of most 
LPEs and LPCs were decreased, while the levels of PCs and 
PEs were increased in the case group (Figure  1A). LPCs and 
LPEs are primarily derived from PCs and PEs by the action of 
phospholipase A.[16] It was reported that the levels of phospho-
lipids were significantly changed in diabetic patients.[17] The sig-
nificant changes of those phospholipids in our study hint that 
abnormal phospholipid metabolism appears before the onset of 
T2D. It is worth mentioning that as a member of CMB, a lower 
level of LPC 18:2 was found to be associated with future T2D 
risk in a European cohort,[12] which was consistent with our 
results in the Chinese cohort. Furthermore, PE 34:0 was first 
reported to be associated with future T2D risk, and defined as a 
discriminant marker in our study.

FFAs are important energy substances that can be trans-
ferred into mitochondria for β-oxidation with the help of car-
nitine. In our results, the levels of FFAs and acylcarnitines 

were significantly increased before T2D occurred. Most of  
them were significantly positively correlated with the devel-
opment of T2D (values of ORs greater than 1 and values of 
multivariable-adjusted p values less than 0.05). Among them, FFA 
20:4 and carnitine C14:0 were also defined by binary logistic 
regression as predictors of T2D. According to published 
studies, the levels of FFAs and acylcarnitines are significantly 
increased in T2D patients.[18,19] FFA 20:4 was reported to be 
positively associated with future T2D in a French prospec-
tive cohort.[13] Baseline carnitine C14:0 was also analyzed in 
another Chinese prospective cohort of T2D, but neither sig-
nificant differences between the case group and the control 
group nor a significant relationship with the risk of future 
T2D was found.[20] Furthermore, we calculated the ratio of 
carnitine C4:0/carnitine C3:0, which can indicate the activity 
of short-chain acyl-CoA dehydrogenase (SCAD).[21] SCAD is 
the rate-limiting enzyme of electron transport, which is the 
initial reaction in mitochondrial β-oxidation.[22] In our case 
group, the ratio of carnitine C4:0/carnitine C3:0 was signifi-
cantly increased (p  <  0.001), indicating the activity of SCAD 
was decreased. This demonstrated that before the occurrence 
of T2D, β-oxidation of fatty acids may have been impaired. 
Notably, it was reported that incomplete fatty acid β-oxidation 
can contribute to insulin resistance, which plays an important 
role in the pathogenesis of T2D.[23]

Furthermore, according to our mGWAS results, the most 
relevant SNP of FFA 20:4 was rs174559 (SNP on chromo-
some 11), which is in the region of FADS1 gene (Figure 2A,B). 
Some other SNPs mapping to the FADS1 gene were reported 
to be significantly associated with FFA 20:4.[24] FADS1 encodes 
an important enzyme in the metabolism of unsaturated fatty 
acids.[25] According to the pathway analysis in this study 
(Figure  1C), a significant disturbance in the biosynthesis of 
unsaturated fatty acids existed before the onset of T2D. FADS1 
was also reported to be associated with an increased risk of T2D 
in a Japanese study.[26]

Pipecolinic acid was decreased in the case group in our study 
and significantly negatively associated with future T2D risk. 
Pipecolinic acid was also analyzed in a prospective cohort of 
T2D patients in a Mediterranean population, but no significant 
association between the baseline level of pipecolinic acid and 
T2D risk was found (p > 0.05).[27] This is the first time that the 
baseline level of pipecolinic acid was found to be significantly 
related to future T2D risk. Furthermore, rs535514 was related 
to the pipecolinic acid level based on the mGWAS results, and 
rs535514 was in the regions of the CHRM3 gene (Figure 2D). 
The CHRM3 gene encodes the cholinergic receptor muscarinic 
3, which can interfere with the control of the hypothalamus to 
regulate appetite. Notably, an association between CHRM3 and 
the risk of early occurrence of T2D was found in a Pima Indian 
population.[28] CHRM3 is a gene related to the stimulation of 
insulin secretion.[9] Together with the cholinergic receptor mus-
carinic 3, acetylcholine is capable of regulating insulin secre-
tion,[9] controlling islet cell proliferation and maintaining the 
glucose levels.[29]

The levels of amino acids in serum were significantly 
increased and positively related to future T2D, including 
branched-chain amino acids (leucine/isoleucine), aro-
matic amino acids (phenylalanine and tyrosine), lysine and 
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methionine. According to previous studies,[30,31] amino acid 
metabolism is closely related to T2D. For example, aromatic 
amino acids and branched-chain amino acids were reported 
to be correlated with insulin resistance.[30] Furthermore, high 
levels of branched amino acids were confirmed as risk factors 
for incident diabetes in a Japanese cohort.[14] Branched amino 
acids were also chosen as predictors of future diabetes.[31] 
In our work, leucine/isoleucine was significantly positively 
related to future T2D risk and selected as a marker for pre-
dicting the occurrence of diabetes, which is consistent with 
the previously mentioned article. According to the mGWAS 
results, a SNP (rs72487966) in the WWOX gene was related 
to leucine/isoleucine (Figure 2F). The WWOX gene is related 
to HOMA-β,[32] can regulate glucose metabolism[33] and was 
found to be a susceptibility gene for diabetes.[10] Moreover, 
according to the results of two-sample MR analysis, the rela-
tionship between leucine/isoleucine and T2D was causal, and 
the elevated concentration of leucine/isoleucine increased 
the risk of T2D, which has been mutually confirmed with 
other published cohort studies.[11] This indicates that these 
metabolic pathways that produce leucine/isoleucine may con-
tribute to the development of T2D.

To the best of our knowledge, this study reports correlations 
between pipecolinic acid and CHRM3, and between leucine/
isoleucine and WWOX for the first time. The new associa-
tion might provide new insights into the pathogenesis of T2D. 
However, the correlations were suggestive, and more validation 
studies are needed.

Epinephrine and 1,5-anhydro-D-glucitol were two of the 
metabolites that made up the CMB in our study. Epineph-
rine can increase endogenous glucose production.[34] The 
lower 1,5-anhydro-D-glucitol level has been clinically used as 
a marker of the increase in blood glucose levels.[35] According 
to our results, a significant increase in epinephrine and a sig-
nificant decrease in 1,5-anhydro-D-glucitol preexisted before the 
occurrence of T2D (Figure 1). A prospective study in Shanghai, 
China, reported that 1,5-anhydro-D-glucitol was negatively 
related to the risk of future T2D.[15] However, to the best of 
our knowledge, this is the first report of a positive association 
between adrenaline and future T2D risk.

However, some limitations existed in our study. The par-
ticipants were all Chinese individuals from Wuhan and were 
relatively old, so more research is needed to verify whether our 
research results are applicable to other age groups and other 
ethnic groups. In addition, the results of this study should be 
independently replicated in cohorts from different centers for 
verification.

In summary, we discovered metabolic changes that occurred 
prior to the onset of T2D and eight risk-related metabolites 
that can be used to predict future T2D case in advance. Four 
metabolites among them were reported for the first time to be 
associated with future diabetes risk. The FADS1, CHRM3 and 
WWOX genes were found to be associated with T2D-related 
metabolites. Furthermore, the relationship between increased 
levels of leucine/isoleucine and an increased risk of T2D was 
proven to be causal. Although further biofunctional valida-
tion studies are needed, our findings complement the current 
understanding of diabetes onset and can provide a basis for fur-
ther mechanistic studies.

4. Experimental Section
Study Design and Participants: The flowchart of the study is shown 

in Figure 3. Participants were from the Dongfeng-Tongji cohort.[7] All 
participants were retired employees of Dongfeng Motor Corporation 
with a mean age of 63 years. From September 2008 to June 2010, 
baseline serum samples were collected from 27009 individuals. All 
participants completed a lifestyle questionnaire and underwent a 
physical examination. In 2013, 25978 participants underwent a follow-up 
examination, which accounted for 96.2% of all participants. Written 
informed consent was provided by all participants involved in this study, 
and approval of the research protocol (No. 2012(10)) was provided by 
the Ethics and Human Subjects Committee of Tongji Medical College, 
Huazhong University of Science & Technology.

After 4.61  ± 0.15 years of follow-up, a total of 1039 eligible 
participants developed incidents in the Dongfeng-Tongji cohort, 
among whom 500 new-onset T2D subjects, excluding participants 
with cardiovascular disease or cancer, were selected as the case group. 
T2D was diagnosed if any of the following three criteria were met:[36] 
1) fasting blood glucose level higher than 7.0 mmol L−1; 2) hemoglobin 
A1c level higher than 6.5%; and 3) self-reported diagnosis of T2D. 
Healthy subjects (n  = 500) matched 1:1 by age and sex at baseline 
were selected as the control group. A total of 292 pairs of cases and 
matched control samples were randomly selected as the discovery set. 
The remaining 208 pairs of case and matched control samples were 
used as the validation set.

Untargeted UPLC-MS-based metabolic profiling of baseline fasting 
serum samples from the 1000 participants was performed. A Waters 
ACQUITY UPLC system (Waters Corp., Milford, MA, USA) was used 
for the separation of metabolites. For positive ion mode analysis, 
an ACQUITY UPLC BEH C8 (2.1  mm × 50  mm, 1.7  µm particle size, 
Waters Corp.) column and a TripleTOF 5600 mass spectrometer 
(AB SCIEX, Framingham, MA, USA) were used. For the negative 
ion mode analysis, an ACQUITY UPLC BEH T3 (2.1  mm × 50  mm, 
1.8 µm particle size, Waters Corp.) column and a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific, Bremen, Germany) were 
used. The UPLC-MS method was specifically designed for large-scale 
metabolomics studies to assure the robustness and repeatability.[37] 
Differential metabolites between the groups with or without the onset 
of diabetes were identified in the discovery set, and the metabolites 
used as the CMB were selected from them. The optimal clinical 
parameters were selected as the CCB and combined with the CMB 
to create as a combination predictive model. The predictive ability of 
each model for T2D onset was assessed by the AUC. In addition, the 
predictive abilities of the three models were further evaluated in the 
validation set. Genotyping of SNPs of the participants was performed. 
Furthermore, a metabolome-genome-wide association study was 
performed to find associations between T2D-related metabolites and 
gene loci. Mendelian randomization (MR) analysis was conducted to 
scale possible causal relationships.

Statistical Analysis: Detailed information on the preparation of 
serum samples and the LC-MS methods for metabolomics analysis 
are shown in the Supporting Information. According to the in-house 
database,[8] metabolites were identified by retention time, m/z value 
and MS/MS information. The peak areas of metabolites were adjusted 
by internal standards. The identified metabolites whose RSD below 
30% in QCs were used for subsequent data analysis. Nonparametric 
tests were conducted by Multi-Experiment Viewer software (version 
MEV 4.7.4)[38] to identify significantly changed metabolites and clinical 
parameters (p < 0.05, FDR < 0.1) between the case and control groups. 
Pathway analysis of significantly changed metabolites was conducted 
by using MetaboAnalyst 4.0[39] (Xia  Lab,  McGill  University,  Montreal, 
QC,  Canada; https://www.metaboanalyst.ca/). All of the following 
analyses were conducted by IBM SPSS Statistics for Windows (version 
25.0, IBM Corp, Armonk, New York, USA). Odds ratios and 95% 
confidence intervals were calculated by the Cox regression model. 
Binary logistic regressions were carried out to define clinical biomarkers 
and metabolic biomarkers. Receiver operating characteristic (ROC) 
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curves were plotted to show the ability to differentiate between the 
controls and cases. Detailed information on the genotyping of SNPs of 
participants and genotype–metabolite association analysis is shown in 
the Supporting Information. As a result, ≈81 million SNP markers were 
obtained. Genotype-metabolite association tests were performed by an 
SE-weighted meta-analysis with METAL (https://genome.sph.umich.
edu/wiki/METAL_Documentation). The mendelian randomization-based 
website (http://www.mrbase.org/) was used to conduct two-sample MR 
analysis.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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