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Abstract

Background: The recently emerged technology of methylated RNA immunoprecipitation 

sequencing (MeRIP-seq) sheds light on the study of RNA epigenetics. This new bioinformatics 

question calls for effective and robust peaking calling algorithms to detect mRNA methylation 

sites from MeRIP-seq data.

Methods: We propose a Bayesian hierarchical model to detect methylation sites from MeRIP-seq 

data. Our modeling approach includes several important characteristics. First, it models the zero-

inflated and over-dispersed counts by deploying a zero-inflated negative binomial model. Second, 

it incorporates a hidden Markov model (HMM) to account for the spatial dependency of 

neighboring read enrichment. Third, our Bayesian inference allows the proposed model to borrow 

strength in parameter estimation, which greatly improves the model stability when dealing with 

MeRIP-seq data with a small number of replicates. We use Markov chain Monte Carlo (MCMC) 

algorithms to simultaneously infer the model parameters in a de novo fashion. The R Shiny demo 

is available at https://qiwei.shinyapps.io/BaySeqPeak and the R/C ++ code is available at https://

github.com/liqiwei2000/BaySeqPeak.

Results: In simulation studies, the proposed method outperformed the competing methods 

exomePeak and MeTPeak, especially when an excess of zeros were present in the data. In real 

MeRIP-seq data analysis, the proposed method identified methylation sites that were more 

consistent with biological knowledge, and had better spatial resolution compared to the other 

methods.

Conclusions: In this study, we develop a Bayesian hierarchical model to identify methylation 

peaks in MeRIP-seq data. The proposed method has a competitive edge over existing methods in 

terms of accuracy, robustness and spatial resolution.
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INTRODUCTION

Epigenetic modifications of DNAs and histones have demonstrated substantial effects on 

many biological functions, such as cellular differentiation and development [1,2]. Diverse 

epigenetic modifications of RNAs are also involved in essential regulatory functions in 

various biological processes [3]. More than 100 chemical modifications of RNA have been 

found in eukaryotes and some viruses, among which N6-methyladenosine (m6A) is the most 

prevalent in mRNAs and long non-coding RNAs (lncRNAs) [4–6]. Although m6A 

modification was first discovered in the 1970s [7–9], not until recently was it found that 

m6A modification is a dynamic and reversible process in which adenosine 

methyltransferases (“writers”), demethylases (“erasers”) and m6A binding proteins 

(“readers”) play distinct roles in methylation, demethylation and recognition of m6A and 

conferring downstream effect [10–13]. It has been shown that RNA m6A methylation 

contributes to the regulation of a wide range of fundamental biological processes, such as 

mRNA maturation and degradation, and RNA-protein interaction [14,15]. However, the 

mechanism that determines methylation sites and the association between m6A 

modifications and functional consequences are largely unknown.

In 2012, two independent studies [4,5] developed a new approach called methylated RNA 

immunoprecipitation sequencing (MeRIP-seq) to map the transcriptome-wide landscape of 

mRNA m6A methylome. This technology first fragments total mRNA into short sequences 

of length approximately 100 nt. Next, the fragmented mRNAs are separated into two parts. 

One part is used as the control (input) sample, and the other part is subject to 

immunoprecipitation (IP) by the anti-m6A antibody to isolate the methylated sequences. 

Both the control and IP samples are then submitted for high-throughput sequencing. The IP 

sample contains enriched methylated RNA fragments because unmethylated fragments are 

washed off in the immunoprecipitation step, while the control sample includes all RNA 

fragments and thus can be used to adjust methylated transcript abundance with basal gene 

expression level. Therefore, MeRIP-seq-based m6A detection can be considered as a peak 

calling problem, since the read counts of those m6A sites in the IP samples are enriched 

compared to those in the control samples. Although the MeRIP-seq experiment measures the 

transcriptome-wide landscape of mRNA m6A methylome, it is usually with few replicates. 

In addition, similar to RNA-seq, MeRIP-seq data usually involve non-negative counts with 

drastic variation, resulting from transcriptional expression of different genes and isoforms. 

Finally, strong spatial dependency exists among the read counts of the neighboring sites 

along mRNA transcripts. All of these pose challenges to MeRIP-seq data analysis, and need 

to be carefully considered in order to accurately identify the m6A methylation sites.

Currently, several algorithms have been developed to identify the m6A sites from MeRIP-seq 

data. For example, exomePeak [16] models the read counts using a Poisson distribution and 

Zhang et al. Page 2

Quant Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conducts a C-test [17] based on the hypothesis that the mean of IP reads at methylated sites 

is greater than those in the input samples. HEPeak [18] also assumes a Poisson distribution 

for read count, while introducing a hidden Markov model (HMM) to model the spatial 

dependency among the reads from neighboring sites. Recently, MeTPeak [19] fits a beta-

binomial model to account for highly fluctuating read enrichments across MeRIP-seq 

replicates. Although each method has its own advantages, the high proportion of zero counts 

observed in the MeRIP-seq data significantly weakens the stability and performance of the 

existing methods. In this study, we propose a novel Bayesian method to predict m6A sites 

for the MeRIP-seq data. Our model employs a zero-inflated negative binomial model to 

capture the zero-inflation and over-dispersion observed in sequencing data. It incorporates 

the spatial dependency of neighboring read enrichments using an HMM model. 

Furthermore, the Bayesian inference allows our model to borrow strength in parameter 

estimation, which greatly improves the model stability when dealing with MeRIP-seq data 

with a small number of replicates. Markov chain Monte Carlo (MCMC) sampling 

techniques are used to sample the posterior distributions of the model parameters.

The rest of this paper is arranged as follows. In the Section of Hierarchical Model in 

Methods, we introduce the Bayesian hierarchical modeling framework. In the Section of 

Details of the MCMC Algorithm in Methods, we present the MCMC algorithm and discuss 

the resulting posterior inference. In the Section of Simulation in Results, we assess 

performance of the proposed model on simulated data and carry out comparisons with 

exomePeak and MeTPeak (HEPeak is no longer accessible). In the Section of Real MeRIP-

seq data in Results, we investigate the results of data analysis from a case study.

METHODS

Hierarchical model

Given a MeRIP-seq dataset observed on a set of n samples, we first divide the concatenated 

exome of mRNA (i.e., the RefSeq gene) of interest into W mutually adjacent bins. Let Y be 

an n-by-W matrix of read counts defined on the exons of this particular mRNA, with entry 

yi, w ∈ ℕ, i = 1, …, n, w = 1, …,W indicating the number of reads in bin w for sample i. The 

MeRIP-seq outputs pairs of IP and control samples. We use a binary vector c = (c1, …,cn)T 

to allocate the two different groups of samples, with ci = 1 if sample i is subject to IP, and ci 

= 0 otherwise.

Modelling counts by a zero-inflated negative binomial model—As most 

sequencing data are zero-inflated and over-dispersed, we start by modeling the read counts 

by a zero-inflated negative binomial (ZINB) model. Specifically, for the number of reads in 

bin w for sample i, we write a mixture model, where one of the kernels is constrained to be 

degenerate at zero, thereby allowing for zero-inflation:

p yi, w π, λi, w, ϕw = πI yi, w = 0 + (1 − π)NB yi, w; λi, w, ϕw . (1)

In model (1), the weight of extra zero counts, i.e., π, is a positive real number less than 1, 

and NB(y; λ,ϕ)denotes a negative binomial distribution for the random variable y, with 

expectation λ and dispersion 1/ϕ. With this parameterization, the variance of the negative 

Zhang et al. Page 3

Quant Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binomial distribution can be written as λ + λ2/ϕ, thereby allowing for over-dispersion. Note 

that increasing ϕ towards infinity leads the negative binomial to a Poisson distribution with 

both mean and variance equal to λ. Alternatively, we can write model (1) as 

p yi, w | ηi, w, λi, w, ϕw = I yi, w = 0 ηi, wNB yi, w; λi, w, ϕw
1 − ηi, w, by introducing a binary 

latent variable ηi,w|π ~ Bern(π), such that if ηi,w = 1, then yi,w = 0, whereas if ηi,w = 0, then 

yi,w ~ NB(λi,w, ϕw). The Bernoulli prior assumption can be further relaxed by formulating a 

Be(aπ, bπ) hyperprior on π, which leads to a beta-Bernoulli prior for ηi,w with expectation 

aπ/(aπ + bπ). A vague prior can be elicited by setting aπ = bπ = 1, which leads to a uniform 

distribution on π. Lastly, we specify the prior distribution for ϕw as ϕw ~ Ga(aϕ, bϕ). One 

standard way of setting a weakly informative gamma prior is to choose small values for the 

two hyperparameters, such as aϕ = bϕ = 0.001 [20].

Modelling negative binomial mean by a random effect model—Sequencing data is 

also characterized by high variability in the number of reads between different groups, and 

even across the samples within the same group. To accommodate this setting, we 

parameterize the mean parameter of the negative binomial distribution as the multiplicative 

effect of three random effects for the control and IP samples, respectively,

λi, w =
sigwd0, w  if ci = 0
sigwd1, w  if ci = 1 . (2)

We interpret si as the size factor for sample i, reflecting the fact that different samples may 

have been sequenced to different depths, and gw as the scaling factor for bin w, capturing 

feature-specific (i.e., bin-specific) levels across all samples. Once the global effects si and gw 

have been taken into account, the parameters d0,w and d1,w are defined as the relative 

occurrence rate for the counts in bin w in the control and IP samples, respectively. Note that 

the Poisson and negative binomial versions of model (1) embedded with (2) have been 

explicitly used to identify differentially expressed genes between different biological 

conditions for RNA-seq data [21–27].

The parameterization of the negative binomial mean λi,w, as shown in (2), results in an 

identifiability problem among the three random effects. To avoid this issue, we estimate the 

size factors si and the scaling factor gw by means of plug-in estimators based on the 

observed data. For example, in the context of RNA-seq data analyses, a number of methods 

[21,26,28] fix s i
total  = ∑j = 1

p xi, j/∑i = 1
n ∑j = 1

p xi, j, so that ∑i = 1
n si = 1, where xi,j is the 

number of reads mapping to gene j in observation i. Similarly, Anders et al. [23] propose 

s i
median  = mi/∑i = 1

n ∑j = 1
p xi, j where 

mi = median(xi, 1/ ∏i′ = 1
n xi′, jI xi′, j ≠ 0 1/n, …, xi, p/ ∏i′ = 1

n xi′, jI xi′, j ≠ 0 1/n) is the median 

of the distribution of the ratios of the counts for observation i to their geometric mean. As a 

further example, Bullard et al. [22] propose taking Si
quantile  = qi/∑i = 1

n qi, with qi the 75th 

percentile of the counts (xi,1, …,xi,p) for observation i. Many of the examples further fix 

gi = ∑i = 1
n xi, j [26]. Our estimates on si and gw are similar in spirit. Note that si should be 
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computed based on the counts of the whole MeRIP-seq dataset, not just from one single 

RefSeq gene. For gw, we estimate gw = ∑i = 1
n yi, w.

The use of the plug-in estimates of these two parameters is convenient, but it has noticeable 

drawbacks, especially for conducting full Bayesian inference. The plug-in estimators can be 

regarded as maximum likelihood estimators in multiple stage approaches and somewhat akin 

to empirical Bayes methods, thus relying on implicit assumptions of exchangeability of the 

observations, which may not be always justified in practice and can introduce bias in the 

estimation of posterior uncertainties [29,30]. To address the identifiability issue between si 

and gw, Li et al. [31] developed a novel non-parametric Bayes prior model with soft 

constraints on their expected values to normalize the size and scaling factors simultaneously. 

Integrating this prior model with the proposed model in this paper could be one of our future 

directions.

Modelling relative occurrence rate by a hidden Markov model—IP samples and 

control samples can have vastly different total numbers of sequence reads. In general, when 

a bin is methylated, there are more reads in IP samples than in control samples (i.e., d1,w > 

d0,w); otherwise, there are more reads in control samples than in IP samples (i.e., d0,w > 

d1,w). To model this characteristic, we redefine the parameter space (d0,w, d1,w, w = 1, …,W) 

to (d0,w, δw, w = 1, …,W), where δw = d1,w/d0,w is the fold change in the relative occurrence 

rate in bin w between the IP and control samples. Thus, given the sample allocation vector c, 

we rewrite the likelihood for each count as,

p yi, w ηi, w, ϕw, d0, w, δw =
I yi, w = 0 ηi, wNB yi, w; s igw d0, w , ϕw

1 − ηi, w  if ci = 0

I yi, w = 0 ηi, wNB(yi, w; s igw d0, wδw), ϕw
1 − ηi, w  if ci = 1

. (3)

For each of the non-negative parameters d0,w, w = 1, …,W, we assume a gamma hyperprior, 

i.e., d0,w ~ Ga(ad, bd). The choice of ad = bd = 0.001 would lead to a non-informative 

distribution as its variance is 1000.

We use an HMM to model δw, w = 1, …,W, which accounts for the variation in the 

underlying occurrence rate between the methylated and unmethylated bins in the IP samples. 

The HMM model encourages adjacent bins to be affected by the same process (i.e., 

methylation/unmethylation). To do this, we first introduce a latent variable zw to denote the 

hidden methylation status for bin w, with zw = 2 indicating bin w is methylated and zw = 1 

otherwise. Conditional on the hidden state zw, we assume that δw is independent and 

identically normally distributed, defining the emission distribution of the HMM as 

δw | zw = q N μq, σq2 , q ∈ {1,2}. The parameters μq and σq2 represent the mean and variance of 

the fold changes in the relative occurrence rates for methylated/unmethylated bins. The 

spatial dependence between the states at adjacent bins is captured by a first order Markov 

model, which assumes that the probability of being a particular state at bin w + 1 depends 

only on the state at its antecedent bin w, i.e., p(zw|z1, …,zW) = p(zw|zw−1) = ψzw, zw−1, with 

ψ = [ψq′, q]2×2 forming the matrix of transition probabilities with strictly positive elements. 
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Note that in the proposed model, δw only switches according to the status of zw in the IP 

samples.

As for the prior specification of the HMM, we assume independent Dirichlet priors across 

the columns of the transition matrix ψ; that is, ψ·,q ~ Dir(a1, a2), q = 1,2. When both α1 and 

α2 are set to 1, the Dirichlet distribution is uniform over all points in its support. For the 

priors on μq, q = 1,2, we follow Guha et al. [32] and assume truncated normal distributions 

μq N mq, sq2 I(lowuq < uq,  upp uq), q = 1, 2, where lowη1 = 0, uppη2 = ∞, and uppη1 = lowη2 = 

1. This setting fully accounts for the fact that the read counts of methylated bins in the IP 

samples are more enriched than those in the control samples, and vice versa for the 

unmethylated bins. For σq2, q = 1,2 in the emission distribution, we impose inverse-gamma 

hyperpriors σq2 IG aσ, bσ , q = 1,2. We suggest to set aσ = 2 and bσ = 1 so as to obtain a flat 

inverse-gamma distribution.

Model fitting—Our model space consists of (π, H, f, d0, δ, z, μ, σ2, ψ). The parameters of 

interest are z = (z1,…,zw), which identify the methylated sites. We first design a Markov 

chain Monte Carlo (MCMC) algorithm based on Gibbs samplers and Metropolis-Hastings 

algorithms. Then, the resulting posterior inference for z is discussed.

Details of the MCMC algorithm

We start by writing the likelihood of the model (3) for each read count yi,w given ci, as,

p yi, w ci, ηi, w, ϕw, d0, w, δw = I yi, w = 0 ηi, w

⋅ NB yi, w; sigw d0, wδwci , ϕw
1 − ηi, w .

Then, within each iteration, the MCMC updates can be summarized as:

• Update of π: We use a Gibbs sampling step to update π,

π |H Be aπ + ∑
i = 1

n
∑

w = 1

W
ηi, w, bπ + nW − ∑

i = 1

n
∑

w = 1

W
ηi, w

• Update of H: We update each ηi,w, i = 1, …,n, w = 1, …W that corresponds to 

yi,w = 0 by sampling from a probability mass distribution, which is proportional 

to

p ηi, w|yi, w = 0, π, ϕw, d0, w, δw
∝ p yi, w = 0|ci, ηi, w, ϕw, d0, w, δw Bern ηi, w; π

• Update of ϕ: We update each ϕw, w = 1, …,W, sequentially by using a random 

walk Metropolis-Hastings algorithm. We first propose a new ϕw*  from 

Ga(ϕw
2 /τϕ, ϕw/τϕ) and then accept the proposed value ϕw*  with probability min(1, 

mMH), where
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mMH=
∏i = 1

n p yi, w|ci, ηi, w, ϕw* , d0, w, δw Ga ϕw* ; aϕ, bϕ J ϕw; ϕw*

∏i = 1
n p yi, w|ci, ηi, w, ϕw, d0, w, δw Ga ϕw; aϕ, bϕ J ϕw* ; ϕw

.

Note that the last term, which is the proposal density ratio, equals 1 for this 

random walk Metropolis update.

• Update of d0: We update each d0,w, w = 1, …,W sequentially by using a random 

walk Metropolis-Hastings algorithm. We first propose a new d0, w*  from 

Ga(d0, w
2 /τϕ, d0, w/τd) and then accept the proposed value d0, w*  with probability 

min(1, mMH), where

mMH=
∏i = 1

n p yi, w ci, ηi, w, ϕw, d0, w* , δw Ga dw* ; aϕ, bϕ J dw; dw*

∏i = 1
n p yi, w ci, ηi, w, ϕw, d0, w, δw Ga dw; aϕ, bϕ J dw* ; dw

.

Note that the last term, which is the proposal density ratio, equals 1 for this 

random walk Metropolis update.

• Update of δ: We update each δw, w = 1, …,W sequentially by using a random 

walk Metropolis-Hastings algorithm. We first propose a new δw*  and from 

N δw, τδ
2 I δw* > 0  and then accept the proposed value δw*  with probability min(1, 

mMH), where

mMH =
∏ i:ci = 1 p yi, w ci, ηi, w, ϕw, d0, w, δw* N δw* ; μZw, δZw

2 J δw; δw*

∏ i:ci = 1 p yi, w ci, ηi, w, ϕw, d0, w, δw N δw; μZw, δZw
2 J δw* ; δw

.

Note that the last term, which is the proposal density ratio, equals 1 for this 

random walk Metropolis update.

• Update of z: We update each zw, w = 1, …,W sequentially by a stochastic 

version of the forward-backward algorithm. We first generate zW from 

p(zW = q |δW , μq, σq2, ψ) ∝ N δW , μq, σq2  at the beginning of the backward step. 

Then, the backward step is continued to compute and generate a draw for zw,w = 

W −1, …,1 from

p zw = q δw, μq, σq2, ψ ∝ N δw; μq, σq2 ψZw + 1, q .

This produces a sample from the joint distribution p(z|δ, μ, σ2, ψ).

• Update of μ:We update each μq, q = 1,2 separately via a Gibbs sampling step,
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μq |δ, z, σq2 N(
mq/sq2 + ∑w = 1

W δwI zw = q /σq2

1/sq2 + ∑w = 1
W I zw = q /σq2

, 1
1/sq2 + ∑w = 1

W I zw = q /σq2

)I lowμq < μq < uppμq .

• Update of σ2: We update each σq2, q = 1,2 separately via a Gibbs sampling step,

σq2 |δ, z, μq IG(aσ + ∑
w = 1

W
I zw = q /2, bσ + ∑

w = 1

W
δw − μq

2I zw = q /2) .

• Update of ψ: We use a Gibbs sampling step to update each column of the matrix 

ψ·,q, q = 1,2,

ψ ⋅ , q Dir(a1 + ∑
w = 2

W
I zw − 1 = 1, zw = q , a2 + ∑

w = 2

W
I zw − 1 = 2, zw = q ) .

Posterior estimation on the methylation site indicator—For posterior inference, 

our primary interest lies in the identification of the methylation sites, via the vector z. One 

way to summarize the posterior distribution of particular parameters is via the maximum-a-
posteriori (MAP) estimates obtained as

zMAP = argmax1 ⩽ b ⩽ B ∏
w = 1

W
ψzw

(b), zw − 1
(b) N δw

(b); μzw
(b)

(b) , σzw
(b)

(b)2 ,

with b = 1, …,B indexing the MCMC iterations, after burn-in. Estimation can also be done 

by thresholding the estimated marginal posterior probabilities of inclusion (PPI) of single 

bin, obtained as the proportion of MCMC iterations, after burn-in, in which the 

corresponding zw is equal to 2. That is,

PPIwz =
∑b = 1

B zw
(b) = 2 ⋅
B .

In choosing the threshold to obtain zi
PPI = 1 + I PPIwz ⩾ c , the value of c = 0.5 results in a 

median model. Alternatively, we can follow the Ref. [33], which guarantees the expected 

Bayesian false discovery rate (BFDR) to be smaller than a pre-specified threshold.

RESULTS

Simulation

In this study, simulated data with known ground truth were used to validate the performance 

of the proposed model. The read counts for the control and IP samples were generated using 

a strategy similar to the HEPeak model by Cui et al. [18]. We considered multiple scenarios, 

of which counts were from four different kernels: Poisson, zero-inflated Poisson (ZIP), 
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negative binomial (NB), and zero-inflated negative binomial (ZINB). The percentage of 

extra zeros, i.e., π, was set to 0.5 for the ZIP and ZINB kernels. Note that for the real data 

analyzed in the paper, about one-third of counts were zeros. Each scenario included 100 

datasets, each of which had 4 control and 4 IP samples, i.e., n = 8, with the number of bins 

drawn from a uniform distribution, i.e., W ~ Unif(100,500). Reads of each bin in the control 

samples were allowed to vary according to the corresponding kernel, where we chose the 

mean parameter λw
control  Unif(5, 20) and assumed it remained constant for both methylated 

and unmethylated bins. The means of reads of the methylated and unmethylated bins in the 

IP samples were set to λw
IP | zi = 2 = kλw

control  and λw
IP zi = 1 Unif 0, λw

control , respectively. 

Here, k can be seen as the fold change in relative occurrence rates in methylated bins 

between the IP and control samples. The larger the value of k, the more enriched the read 

counts of methylated bins in the IP samples than in the control samples. Two different 

settings of k were considered, k = 1.5 and 3. Combined with the four kernels, there were 4 × 

2 = 8 scenarios in total. The hidden methylation statuses were generated from HMM models 

with the transition matrix ψ = 0.9 0.3
0.1 0.7  at a random initial state. This matrix was based on the 

estimations using the real data analyzed in Ref. [18].

We implemented our method with different plug-in size factors s i
total, s, s i

median, s, and 

s i
quantile, s, and called them BaySeqPeak-T, -M, and -Q, respectively. We used the following 

“non-informative” settings for the priors and hyperpriors. We set the hyperparameters that 

control the excess of zeros to Be(aπ = 1, bπ = 1). As for the gamma prior on the over-

dispersion parameters ϕw, w = 1, …,W and the reference relative occurrence rate d0,w, w = 

1, …,W, we set aϕ = bϕ = aϕ = bd = 0.001, which led to vague gamma priors. For the HMM 

model, we considered two cases: (i) each column of the transition matrix ψ was 

independently distributed according to Dir(1,1) and (ii) each column was identical, i.e., a1q = 

a2q, q = 1,2, which corresponds to a special case of a Markov chain, called a Bernoulli 

scheme. The second case assumes that there was no spatial dependency between adjacent 

bins and the resulting model was named BaySeqPeak-I, where I stands for independence. 

Finally, for those reads in the methylated bins, we set μ2 N m2 = 0, s2
2 = 10 I μ2 > 1  and 

σ2
2 IG(2, 1) while for those reads in the unmethylated bins, we set 

μ1 N m1 = 0, s1
2 = 10 I 0 < μ1 < 1  and σ2

2 IG(2, 1). For each simulated dataset, we ran four 

independent MCMC chains with 10W iterations, discarding the first 50% sweeps as burn-in. 

Results we report below were obtained by pooling together the MCMC outputs from the 

four chains. All experiments were implemented in R with an Rcpp package to accelerate 

computation on a Mac PC with 2.60 GHz CPU and 16 GB memory. In our implementation, 

one MCMC chain ran about 1 second for data with dimensions n = 8 and W = 100.

To quantify the accuracy of the identification of methylation sites (via the parameters z) by 

the proposed model, we calculated the receiver operating characteristic (ROC) curves, and 

the areas under the curves (AUCs) as the performance metrics. They consider both the true 

and false positive rates at various threshold settings. The true positive rate is also known as 

sensitivity, which is defined as the number of true methylated bins that are correctly 

Zhang et al. Page 9

Quant Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimated. The false positive rate is equal to 1 minus specificity, which is defined as the true 

unmethylated bins that are correctly estimated. AUC provides a summary of the overall 

performance across different threshold values. We compared the performance of our 

proposed method with exomePeak and MeTPeak. Note that they produce threshold P-values 

to control for the false discovery rate (FDR), while our model-based method controls for 

FDR by generating marginal posterior probabilities of inclusion.

One example of our simulated dataset, which was generated from ZINB kernel and with fold 

change k = 3, is displayed in Figure 1A. It clearly shows the presence of overdispersion as 

well as excess zeros. Figure 1B plots the marginal posterior probabilities of inclusion of 

single bins belonging to methylated regions, inferred by the proposed model with total size 

factor estimates. The red dots indicate the true methylated bins. A threshold of c = 0.5 

results in a median model that included 28 methylated bins, 26 of which were correctly 

estimated. Our inference only missed four true methylated bins. We also give the true and 

the estimated methylated bins by exomePeak, MeTPeak, and BaySeqPeak with different 

settings at the top. As we can see, the proposed model outperformed the competing methods 

in this example. Unlike other approaches that provide the confidence level via P-values, the 

posterior distribution of marginal probabilities facilitates the inference and adds a level of 

interpretation available only through a Bayesian approach. Figure 2A displays the trace plots 

of the number of methylated bins ∑w = 1
W I zw = 2  of four independent MCMC chains, 

which clearly shows that each chain converged and stabilized around the true value 30 in a 

very short run. We also plotted the trace plots of the transition probabilities A for the first 

chain in Figure 2B. Furthermore, we used Gelman and Rubin’s convergence diagnostics [34] 

to inspect for signs of convergence of the individual parameters such as A. The statistics 

were ranging from 1.034 and 1.127, suggesting that the MCMC chains were run for a 

sufficient number of iterations. We plotted the ROC curves for our method with three 

different size factor estimates, for different values of the threshold on PPIs, and compared 

those to the ROC curves obtained with exomePeak and MeTPeak, for different values of the 

threshold on P-values. The ROC curves, averaged over 100 datasets, are shown in Figure 3. 

The boxplots of AUCs for the 100 simulated datasets for different methods are summarized 

in Figure 4. Our observations are four-fold. First, our method that makes use of the 

dependency of consecutive bins achieved the best accuracy under all scenarios. Second, 

when the signal strength was strong enough (i.e., less variability and zeros), the statistical 

performances showed no significant differences from each other. However, the increase of 

variance and number of zeros led to greater disparity between the competing method and 

ours. Third, the proposed model was considerably insensitive to the choice of the three size 

factor estimates. Fourth, if the hidden methylated states followed a Bernoulli scheme, which 

ignored the dependency of reads, the model performed poorly, especially when the signal 

strength was weak, e.g., those scenarios with k = 1.5.

Real MeRIP-seq data

To further evaluate the performance of our method in a real biological scenario, we applied 

both the proposed algorithm and exomePeak to a MeRIP-seq dataset from a study 

investigating the role of demethylase obesity-associated protein (FTO) in mouse midbrain 

[35]. MeRIP-seq data was generated in both wild type (WT) and FTO knock-out (FTO-KO) 
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mice, with each condition having 3 IP replicates and 3 input replicates, respectively. The 

data was downloaded from the Gene Expression Omnibus (GEO) repository [36] (Accession 

number: GSE47217) and processed following the protocol by Jia et al. [37]. The mouse 

transcriptome (UCSC mm10) was scanned using 200 bp window with sliding step 30 bp 

(default setting of exomePeak), and reads of each sample in each window were counted. For 

exomePeak, a C test was performed in each window independently to test the significance of 

enrichment of reads in IP samples versus input samples. Windows with FDR less than 0.05 

were reported as methylated bins. For our methods, a Bayesian hierarchical model either 

with or without HMM integration was fitted for each transcript, respectively, in order to 

estimate the posterior probability of inclusion (ppi) of each window within each region. 

Windows with ppi greater than 0.5 were reported as methylated bins. Finally, the adjacent 

methylated bins were joined to form a methylation site in the transcriptome.

The mouse mm10 reference transcriptome was divided into a total of 2916,847 bins (gene 

with all 0 counts were filtered out). exomePeak reported 853,151 bins as significant in WT 

condition datasets, while our BaySeqPeak-T and -I reported 664,513 and 512,754 bins 

(Figure 5A). The overall agreement between the results of our methods and exomePeak 

indicates that all methods performed reasonably well. However, BaySeqPeak-T reported a 

smaller number of significant bins, and BaySeqPeak-I reported even less (also observed in 

the FTO-KO condition). This may due to the failure to detect methylated bins with weak 

signals that are adjacent to significant regions when HMM is not applied. This trend is also 

represented at the transcript level. BaySeqPeak-T and -I identified 55,199 and 44,210 

methylation sites in WT condition, and 65,110 and 55,829 methylation sites in FTO-KO 

condition, while exomePeak identified 66,696 and 66,388 methylation sites in two 

conditions. More methylation sites being found in FTO-KO condition than WT condition by 

our methods (Figure 5B) is consistent with the fact that FTO is a demethylase, knocking out 

of which should increase the m6A peaks. However, the result of exomePeak was 

contradictory. To investigate the reason why our method detected fewer peaks than 

exomePeak, we visualize the identified peaks in the IGV browser. Figure 6 shows one 

example of detected methylation sites in Wdr81 gene. The figure indicates that there are 4 

peaks by comparing IP samples with input samples, and our method correctly detected all 4 

peaks. Though exomePeak also reported the corresponding methylated region, it reported 3 

additional peaks, which are likely false positive discoveries from the figure. Furthermore, it 

only claimed the middle 2 peaks to be a single methylated site, but the detailed peak 

information was lost, and such case happened often. To get a sense of the overall 

performance methods, we compared the distribution of log fold change of identified 

methylation sites (dividing total read counts in IP samples by total read counts in input 

sample) by each method in Figure 7. The figure shows that the methylation sites identified 

by BaySeqPeak have larger average fold change than exomePeak, and BaySeqPeak-I has 

slightly larger average fold change than BaySeqPeak-T, which indicates that the exomePeak 

may include a lot of false positive discoveries, while BaySeqPeak-I may miss some potential 

peaks without using spatial information. Overall, our method is more reliable in identifying 

methylation sites and more capable of detecting peaks in higher resolution, compared with 

the exomePeak method.
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CONCLLUSION

In this paper, a hierarchical Bayesian model is proposed to detect methylation peaks in 

MeRIP-seq data. By deploying a zero-inflated negative binomial model, our algorithm 

tackles the zero-inflated and over-dispersed count problem of MeRIP-seq data, which had 

not been properly solved before. A hidden Markov model (HMM) is also incorporated to 

model the nearby methylation status dependency. A Markov chain Monte Carlo (MCMC) 

method was used to draw samples from the posterior distribution and infer the model 

parameters. The proposed method outperformed the previous package exomePeak under all 

simulation settings that suffered a high rate of false discovery. A real case study revealed our 

method to have enough sensitivity to detect the majority of peaks found by exomePeak along 

with higher specificity against low count data, and to be able to capture the fine structures of 

peaks that are spatially approximate to each other. Moreover, the proposed method can be 

easily extended to accommodate study designs that compare multiple factors under an 

ANOVA setting.
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Author summary:

Methylated RNA immunoprecipatation combined with RNA sequencing (MeRIP-seq), 

which can be viewed as a marriage of two well-studied techniques: ChIP-seq and RNA-

seq, is changing the landscape of RNA epigenomics study at a higher resolution. We 

propose a Bayesian statistical model to identify the transcriptome methylation sites using 

MeRIP-seq data. Our approach includes several innovative characteristics by taking into 

account: (i) the high proportion of zeros in the data due to the insufficient sequencing 

depth; (ii) the spatial dependence of neighboring read enrichment. Compared to the 

existing methods, it is shown that our prediction is more consistent with the biological 

knowledge, and has better accuracy and spatial resolution.
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Figure 1. Examples of the model input and output.
(A) One simulated data generated from the ZINB kernel and with the fold change k = 3. 

Non-zero counts in the control samples are marked in black circle (o), while non-zero counts 

in the IP samples are marked in red cross (x). The number of extra zeros for each bin and 

each sample group is given at the top. (B) The marginal posterior probabilities of inclusion 

p(zw = 2|·) inferred by BaySeqPeak-T with the plug-in size factors s i
total, s. The red dots 

indicate the true methylated bins. The true and estimated z by MeTPeak, exomePeak (at a 

5% significance level cutoff), and BaySeqPeak (with c = 0.5 cutoff) are shown in the top, 

where the red regions indicate methylated bins.
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Figure 2. Examples of the MCMC outputs.

(A) The trace plots of the number of methylated bins ∑w = 1
W I zi = 2  of four independent 

chains obtained by BaySeqPeak with the plug-in size factors s i
total, s. (B) The trace plots of 

the transition probabilities a11, a21, a12, and a22 of Chain 1.
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Figure 3. ROC curves produced by different methods.
(A–H) The average receiver operating characteristic (ROC) curves for different values of the 

threshold on PPIs (our method) and on P-values (competing methods) for different 

scenarios. BaySeqPeak-T, -M, -Q stand for our method with different plug-in size factors 

s i
total, s, s i

median, s, and s i
quantile, s, respectively. BaySeqPeak-I stands for our method with the 

plug-in size factors s i
total, s, and the Bernoulli scheme, a special HMM where no spatial 

dependency is assumed between adjacent bins.
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Figure 4. AUCs produced by different methods.
(A–H) The boxplot of areas under the curves (AUCs) over 100 datasets for different 

scenarios, corresponding to Figure 3 (A–H).

Zhang et al. Page 19

Quant Biol. Author manuscript; available in PMC 2021 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. A comparison of the real data results obtained by our method and exomePeak.
(A) Venn diagram of total detected methylated windows by BaySeqPeak-T, -I along with 

exomePeak in WT datasets. The sizes of the circles are proportional to the number of 

methylated bins found by each method. (B) Total detected methylation sites (adjacent 

methylated windows are clustered to one methylated site) in WT and FTO knock out 

datasets by our methods and exomePeak.
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Figure 6. An exemplary methylation region detected by both exomePeak and BaySeqPeak-T 
shown in the IGV browser.
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Figure 7. Distribution of log2 fold change in read counts of detected methylated sites by 
BaySeqPeak-T, -I and exomePeak.
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