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Abstract

The age-associated decline in muscle mass has become synonymous with physical frailty among 

the elderly due to its major contribution in reduced muscle function. Alterations in protein and 

redox homeostasis along with chronic inflammation, denervation and hormonal dysregulation are 

all hallmarks of muscle wasting and lead to clinical sarcopenia in older adults. Reduction in 

skeletal muscle mass has been observed and reported in the scientific literature for nearly two 

centuries; however, identification and careful examination of molecular mediators of age-related 

muscle atrophy have only been possible for roughly three decades. Here we review molecular 

targets of recent interest in age-related muscle atrophy and briefly discuss emerging small 

molecule therapeutic treatments for muscle wasting in sarcopenic susceptible populations.
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Introduction

One of the first interpretations in recorded history of frailty in older adults was made around 

~400 B.C. by Hippocrates whose notions on aging reflect the current accepted concept of 

aging as increased frailty [1, 2]. Hippocrates viewed aging as a late stage of life in which 

there is an increased susceptibility to disease [1]. Around the fifth decade, humans will begin 

to lose on average ~1% of lean mass per year resulting in a 30-50% reduction in muscle 

mass by 80 years of age [3–7]. This age-related decline in muscle mass and associated 

muscle weakness, referred to as sarcopenia [8–10], has been clinically classified by several 

geriatrics organizations as two standard deviations below the mean for healthy young adults 

20-30 years of age [11–14]. Based on the clinical definition, roughly 11-50% of adults 80 

years of age and older are considered sarcopenic, although adults that are at least 50 years 

old typically exhibit age-related muscle atrophy of some degree [6, 14].
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Promoting the maintenance of skeletal muscle in the elderly is vital to delay physical frailty 

as well as to preserve amino acid reservoirs in the body to reduce morbidity and mortality 

[15–19]. In the early twentieth century there was a gap in knowledge between the 

identification of muscle wasting in aging and the mechanisms involved. An early theory 

disproven by the Harvard Fatigue Laboratory in 1946 was that a loss of water content was 

the major contributor to the shrinking of muscle tissue [20]. More recent advances in cell 

physiology and molecular biology allowed the identification of numerous cellular signaling 

pathways and biological functions that are altered in association with age-associated muscle 

deterioration and influenced by a myriad of molecular mediators (Table 1) [21–27]. The 

mediators that have been most widely investigated in regards to muscle wasting during aging 

over the past few decades can be categorized in a few key areas: proteostasis, inflammation, 

denervation, redox homeostasis, and hormonal regulation. This review will focus on novel 

molecular mediators of age-related muscle atrophy within these areas that have been 

reported in the past decade and emerging drug treatments for sarcopenia.

Proteostasis and Age-related Muscle Atrophy

The maintenance of protein turnover through mediators of protein synthesis and degradation 

has been well documented for healthy aging and preservation of skeletal muscle tissue 

during aging in C. elegans, drosophila, and mammals [28–31]. Skeletal muscle comprises 

~60% of proteins in the body [32]. Thus, the regulation of the Akt/mTOR pathway has been 

a major focus for maintaining skeletal muscle health [33, 34]. In the past few decades, 

exercise and calorie restriction interventions targeting protein homeostasis have produced 

improved lifespan and healthspan through maintaining muscle mass [35–38] demonstrating 

the importance of protein synthetic signaling in skeletal muscle during aging [33, 34]. 

Examples confirming the importance of mTOR in muscle maintenance have used a 

transgenic mouse model where the TOR agonist complex protein, TSC, is knocked out in the 

muscle leading to constitutive activation of mTORC1 [39, 40]. These mice display 

accelerated neuromuscular aging and autophagy dysfunction as early as 9 months of age and 

will typically perish within 12 months [39, 40].

Previous research investigating protein signaling upstream of Akt (e.g. IGF-1) has indicated 

that maintaining insulin signaling is necessary to preserve skeletal muscle mass in older 

individuals [41, 42]. As a specific illustration, induction of the upstream target of Akt, PI3k 

subunit p110α, has been reported to lead to increased muscle atrophy during aging [43]. M-

p110αKO mice displayed decreased PI3k activity and Akt phosphorylation which led to 

muscle atrophy in most hind limb muscles by 24 months of age [43]. The intracellular 

enzyme, PI3k, is critical in the insulin signaling pathway and its relevance to the dietary 

restriction pathway may suggest its role to maintain proteostasis in older adults [44, 45].

The latest reports of molecular mediators of proteostasis as potential contributors to age-

associated skeletal muscle atrophy show less reliance on regulating mTORC1 and more 

dependence on other mechanisms. For example, Activating Transcription Factor 4 (ATF4) 

has recently been identified as a molecular target for muscle wasting in aging [46], although 

its regulation within protein synthetic signaling has not been fully elucidated [46–48]. 

Support for the importance of ATF4 in regulating muscle mass during aging is provided by 
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the observations of Ebert and colleagues that treatment with either ursolic acid or 

tomatidine, small molecules known to reduce age-related deficits in skeletal muscle mass. 

After 2 months of treatment with ursolic acid or tomatidine, a strong inverse relationship 

was found between ATF4-dependent mRNAs and either ursolic acid- or tomatidine-sensitive 

mRNAs, demonstrating a potential link between ATF4 and age-associated muscle atrophy. 

Moreover, 22-month-old muscle-specific Atf4 knockout mice had 8% larger skeletal muscle 

mass than wild-type controls, suggesting that ATF4 has a direct role in muscle wasting 

during aging [46].

Regulators of wingless type (WNT) signaling appear to play a role in maintaining muscle 

mass in aging muscle as well. Dkk3 is a secreted glycoprotein in skeletal muscle and non-

canonical WNT signaling antagonist that induces muscle atrophy when upregulated [49–54]. 

Furthermore, Dkk3 level is increased in blood of older adults and is upregulated in senescent 

prostate epithelial cells [55, 56]. Conversely, Yin and colleagues found that Dkk3 is a key 

activator of Fbxo32 and Trim63 through recruitment of β-catenin, and Dkk3 is upregulated 

in muscles of 20-month old mice [56]. Moreover, reduction of Dkk3 through intramuscular 

injection of shRNA against Dkk3 restored skeletal muscle mass in aged mice [56].

The fibroblast growth factor FGF21 is a hormone secreted by fibroblasts and others cell 

types within skeletal muscle and is an important regulator of whole body metabolism [57–

59]. FGF21 increases systemically with age in humans, and Tezze and colleagues found that 

muscle specific knockout of the autophagy gene, Opa1, increased levels of FGF21 and 

reduced muscle mass in slow, fast and mixed fiber type hind limb muscles of mice [57]. 

While Opa1 deficiency in muscle reduced muscle mass and increased FGF21, deletion of 

both Opa1 and FGF21 in mice partially restored skeletal muscle mass suggesting that 

FGF21 compensates for Opa1 and may be a key regulator of age-associated muscle wasting 

[57]. There are numerous other regulators of FGF21 involved with metabolism and energy 

homeostasis suggesting that FGF21 may play a central role in muscle maintenance in aging 

[57–59]. Altogether, evidence support that components of proteostasis including key 

signaling molecules in protein synthesis and autophagy are essential for the regulation of 

skeletal muscle maintenance in older adults.

Inflammation Induced Muscle Atrophy in Older Adults

The immune system plays a vital role in the protection against pathogens, in tissue and organ 

repair and remodeling, and in the maintenance of skeletal muscle tissue [60–63]. It has been 

reported that senescence of the immune system can be detected in middle aged mice (10-15 

months old), earlier than many other organ systems [64, 65]. Specifically, substantial 

senescent changes in immune function precede skeletal muscle atrophy, which is not 

observed in C57BL/6 mice until they reach at least 18 months of age [22, 40, 41, 66–70]. 

These observations hint that proper regulation of the immune system may be necessary to 

maintain skeletal muscle mass. Due to physiological senescence within the immune system, 

older adults exhibit chronic low-grade systemic inflammation (Inflammaging) [26, 71–73]. 

Increased levels of pro-inflammatory cytokines (e.g. TNF, IL-6, CRP, etc.) are associated 

with declines in muscle mass and numerous studies have implied that excess pro-
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inflammatory cytokines systemically negatively impact skeletal muscle [60, 71, 73]. Hence, 

the systemic environment can contribute to age-related atrophy.

Several novel immune mediators are currently being investigated for their role in age-

associated skeletal muscle atrophy. TWEAK or TNF-related weak inducer of apoptosis was 

first characterized in 1997 and has been reported to be secreted by immune cells and lowly 

expressed in skeletal muscle [74–76]. TWEAK can signal through TNF receptor 1 (TNFR1) 

but has higher affinity to interact with fibroblast growth factor inducible molecule 14 (Fn14) 

[77, 78]. The Fn14 receptor has been reported to be upregulated in aged mice, which also 

exhibit a ~20% reduction in muscle fiber CSAs in comparison to young mice [76, 79]. 

Consistent with the association between Fn14 and muscle fiber atrophy, genetic knockout of 

Fn14 rescued TA muscle fiber CSA and enhanced levels of contractile proteins compared to 

wild-type littermates [79]. Kumar’s laboratory also found the downstream target of Fn14, 

NF-κB, had reduced activity in aged skeletal muscle tissue of Fn14-KO mice and suggested 

that the TWEAK-Fn14 pathway regulates multiple muscle atrophy pathways within aging 

skeletal muscle [79].

The anabolic muscle cytokine (myokine), IL-15, has been examined due to its direct 

association with declining mass with aging [80]. Calorie restricted diets that increase 

lifespan and preserve lean mass in elderly populations maintain IL-15 signaling in aged rats 

and subsequently reduce TNF-α secretion and NF-κB activity [81]. Thus, IL-15, an anti-

apoptotic cytokine, has been proposed to act through the downregulation of TNF-α and 

induction of phosphorylation of the IκB to inhibit apoptosis [81]. Overall, various soluble 

mediators of the immune system have the capability to trigger skeletal muscle atrophy in 

aging.

Denervation-Induced Atrophy in Aging

The neuromuscular junction (NMJ) is an excitatory cholinergic synapse that constitutes the 

primary site of signaling between the nervous system and skeletal muscle. The primary 

cellular components of the NMJ are the presynaptic motor neuron, the postsynaptic muscle 

fiber and Schwann cells that cap the NMJ. Since the NMJ is critical for muscle contraction, 

any degenerative changes at the NMJ have the potential to impair muscle function 

contributing to physical frailty. With aging, NMJ fragmentation occurs as indicated by thinly 

dispersed acetylcholine receptor (AChR) clusters at the synapse [82] and is thought to be a 

result of continuous remodeling of NMJs throughout the lifespan that is reduced in 

effectiveness with aging. In parallel, extensive branching of motor nerve terminals at the 

NMJ is seen with aging [83–85]. Whether spinal motor neurons themselves are lost with age 

or remain intact is a controversial topic in the field. Nevertheless, progressive denervation is 

seen in late life in both humans [86] and rodents [87–89] and is likely contributing to muscle 

weakness and muscle fiber loss. Schwann cells, which maintain NMJs via trophic and 

antioxidant support, have recently been reported to reduce in number at the NMJ with age 

[90], however, their impact on NMJs with age is the least studied of the three NMJ cell 

types.
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The most well studied and understood NMJ maintenance pathway is the Agrin-Lrp4-MuSK 

signaling pathway. Agrin, a proteoglycan that is secreted by motor neurons, acts by binding 

to its receptor low-density lipoprotein receptor-related protein (LRP4) located on muscle 

fibers, which then activates muscle specific kinase (MuSK). MuSK activation triggers a 

critical signal transduction cascade that leads to agrin-induced AChR clustering at the NMJ. 

Mice deficient for key proteins in this pathway (i.e. Agrin, Lrp4, and MuSK) are unable to 

assemble proper NMJs [91–93]. Recent studies in the literature have demonstrated the 

importance of the Agrin-Lrp4-MuSK signaling pathway in maintaining skeletal muscle 

mass. When conditionally knocking out agrin or LRP4, NMJ fragmentation similar to that 

seen in aging is observed [93, 94]. Furthermore, mice overexpressing neurotrypsin, which 

cleaves agrin, results in significant denervation and subsequent sarcopenic-like phenotype 

[95]. All components of the Agrin-LRP4-MuSK signaling pathway are critical for NMJ 

viability, however, only LRP4 protein levels are reduced in aged mice [96], suggesting that a 

deficiency in agrin signaling is not due to the nerve’s ability to synthesize agrin. In addition, 

reduced phosphorylation of LRP4 and MuSK was reported. Sarcoglycan α (SGα), a key 

component of the dystroglycoprotein complex and stabilizer of LRP4, was overexpressed in 

aged muscles and was found to be effective at preventing denervation, AChR fragmentation, 

and improve neuromuscular transmission in aged mice [96]. Hence, alterations to the Agrin-

LRP4-MuSK signaling pathway, which are observed in the later stages of life, appear to 

contribute to muscle wasting in older adults.

Redox Homeostasis and Muscle Wasting

Progressive declines with aging in muscle mass and strength along with mitochondrial 

dysfunction [97–99] are accompanied by significant alterations in redox status in skeletal 

muscle resulting in part from increased reactive oxygen species (ROS) generation [100]. 

Both muscle and nerve contain regulatory systems to maintain intracellular ROS levels 

below a physiological threshold that would lead to cellular oxidative stress or aberrant ROS 

induced signaling. Clearance of ROS is performed in part by regulatory enzymes such as 

catalase, glutathione peroxidases, and superoxide dismutases (SOD). Although disagreement 

remains regarding whether the activity of these enzymes increases or decreases with aging, 

there is strong evidence supporting increases in biomarkers for DNA and mitochondrial 

DNA damage, protein oxidation, and lipid oxidation in skeletal muscle with aging [101–

103]. Despite clear changes with aging in ROS generating and buffering systems, cause-

effect relationships between alterations in redox regulation and sarcopenia have not been 

established.

Administration of exogenous antioxidants has yielded contradictory results in the field of 

exercise physiology and sarcopenia. Natural antioxidants function by inhibiting the 

oxidation of biomolecules. Vitamin C (ascorbic acid), for example, functions as an electron 

donor to lipid radicals to terminate lipid peroxidation [104]. In addition, vitamin C can 

interact with superoxide and hydroxyl-free radical and singlet oxygen. Vitamin C also has a 

role in regenerating vitamin E on cell membranes by reducing vitamin E radicals. Vitamin E 

is a fat-soluble antioxidant that is important for scavenging peroxide radicals [105] and 

vitamin E supplementation has been reported to be effective in lowering basal and post-

exercise levels of lipid peroxides in older men [106]. A more recent study using combined 
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supplementation of vitamin E and C showed reduced levels of oxidative stress (H2O2, total 

GSH, GSH/GSSG ratio, malondialdehyde and 8-OHdG) and increases in SOD1/2 and 

catalase activities in old rats, but no differences in muscle mass and maximal force 

production was seen [107].

Another non-specific antioxidant that has received much attention is N-Acetylcysteine 

(NAC), which functions by directly scavenging ROS and supplies cysteine for synthesis of 

glutathione. Glutathione is a substrate for glutathione peroxidase, an important enzyme 

required for removal of hydrogen peroxide [108]. Benefits of NAC have been reported in 

skeletal muscle [109, 110], however, it seems that these benefits are primarily observed in 

athletes that are capable of producing large amounts of ROS or in muscles that are in a pre-

fatigued state [111]. However, a meta-analysis on NAC supplementation for sport 

performance and risk of adverse effects found no significant benefit or risk of side effects 

with NAC use [112]. Recent reports have found a phenotype improvement in mdx mice with 

treatment with Tempol, a superoxide dismutase mimetic [113, 114]. The investigators found 

improvements in force generating capacity and metabolic enzyme activity (citrate synthase 

and lactate dehydrogenase) in diaphragm muscles from mdx mice [114]. Hermes et al. also 

found improvements in grip strength as well as reduced markers of inflammation in 

dystrophic diaphragm and bicep brachii muscles in mdx mice treated with Tempol. Although 

promising, the safety and efficacy of Tempol needs further investigation in other conditions 

of frailty such as sarcopenia. In addition, other investigators have found no significant 

benefits with antioxidant vitamin supplementation on muscle function during aging [115–

117]. The discrepancies between findings across studies could be owed to differences in 

dosage, administration timing, outcome measures, and muscles studied. Targeting specific 

antioxidant pathways may also provide greater therapeutic benefits than the administration 

of general antioxidants and may also explain the great variability of study results on 

antioxidant supplementation.

Despite contradictory data surrounding the utility of antioxidant supplementation, numerous 

studies using transgenic manipulations have shown that accumulation of ROS (and other free 

radicals) produce a pronounced neuromuscular degenerative phenotype in rodent models. 

Our group and collaborators have shown that mice deficient for CuZnSOD (SOD1) have 

high levels of oxidative damage, generate less muscle force, experience mitochondrial 

function deficits and show neuromuscular junction abnormalities and muscle fiber loss [98, 

99]. Interestingly, the neurodegenerative phenotype is fully rescued in mice that express 

Sod1 solely in neurons, suggesting an important interaction between motor neurons and 

muscle fibers [22, 118, 119].

A recent report from Hsieh and colleagues (2019), found that non-selenocysteine-containing 

phospholipid hydroperoxide glutathione peroxidase (GPx7), an oxidative stress sensor, 

inhibits O-GlcNAcylation to protect motor neurons from ROS accumulation with aging. The 

study found that an increase in ROS in motor neurons with aging leads to increased activity 

of GPx7 and subsequent inhibition of O-GlcNAcase (OGA), an enzyme responsible for the 

removal O-GlcNAc. O-GlycNAcylation is a posttranslational modification important in the 

stress response that confers cellular stress protection against ROS accumulation. O-GlcNAc 

levels are reduced in spinal cords of ALS mouse models [120, 121]. Mice deficient for GPx7 
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contain reduced O-GlcNAcylation and higher levels of ROS compared to wild type mice, 

and show spinal motor neuron death, paralysis, and muscle denervation [122]; however, 

pharmacological inhibition of OGA with Thiamet-G (TMG) increased O-GlycNAcylation 

and survival of spinal motor neurons during aging. Although this study offers an intriguing 

new pathway that has potential for pharmacological intervention, further studies are needed 

to understand the role of GPx7 in a more geriatric cohort of mice and to determine the 

efficacy of TMG in later timepoints of age. In summary, proper function of antioxidant 

enzymes SOD1, SOD2, and GPx7 are crucial to prevent oxidative stress-induced age-related 

skeletal muscle atrophy.

Pharmacological Sarcopenia Therapeutics

Over the past 20 years, much more attention has been focused on the treatment and even the 

prevention or delay of sarcopenia in older adults. In 2000, there were only two interventional 

studies for sarcopenia aimed at the amelioration of both muscle wasting and muscle 

weakness and now over 300 interventions have been completed or are ongoing through 

clinical trials for the treatment of sarcopenia (Figure 1). These interventional studies have 

utilized various approaches to combat age-related muscle wasting including nutraceuticals, 

meal modification, exercise intervention, and mechanical devices. In addition, roughly 30 

small molecules or drugs have gone through clinical trials in past 20 years (Figure 2). 

Although pharmaceutical companies have investigated sarcopenia in clinical trials for 15 

years, there have been substantial delays between the current research on novel targets of 

age-related atrophy and clinical trials for FDA approval, partially due to the fairly recent 

recognition of sarcopenia as an independent disease state in 2016 [123–125]. An example of 

this gap between basic research and translation to treatments for sarcopenia is the 

investigation of anabolic hormones and age associated muscle wasting. Growth hormone and 

testosterone were among the first researched targets in sarcopenia in the 1990’s and were the 

dominant drug intervention for clinical trials in the early 2000’s [126–130]. However, the 

majority of clinical trials investigating testosterone/androgen treatment failed to demonstrate 

clinically significant improvements in muscle mass or strengh, which shifted the focus to 

other targets to treat muscle wasting in aging.

In the late 2000’s more promising drugs with fewer known side-effects targeting modulation 

of proteostasis and glucose metabolism (metformin, empagliflozin, pioglitazone), redox 

homeostasis (allopurinol), inflammation (ibuprofen) and other biological functions (BIO 

101, potassium citrate) were introduced into clinical trials for sarcopenia[131–141]. Not to 

mention, multiple major pharmaceutical companies raced to bring the first small molecules 

to market that modify myostatin signaling and selective androgen receptor modulators to 

preserve muscle mass in sarcopenic patients (see review [125]).

Metabolic Therapeutics

Ghrelin is one satiety hormone that was selected by an investigator as a potential therapeutic 

for frailty due to its ability to stimulate growth hormone and improve appetite in older adults 

[142]. In phase 2 trials 16 subjects 70 years and older were given 7.5 mcg/kg of Ghrelin 

once a day subcutaneously for 12 weeks in addition to participation in resistance training 
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(NCT01898611). The results obtained by Dual Energy X-ray Absorptiometry (DEXA) 

showed no differences in the changes in lean body mass between the placebo and Ghrelin 

treatment groups that participated in strength training.

Multiple drugs that have been used to treat type 2 diabetes have also been examined as 

potential treatments for sarcopenia. Metformin (Glucophage) is one promising drug with an 

expired patent that has been used extensively to lower blood sugar in type 2 diabetes 

mellitus [143, 144]. More recently, metformin has been examined for its role in longevity 

and muscle maintenance in C. elegans, fruit flies, and mice [145–147]. Metformin is an 

activator of AMPK and indirect mTOR antagonist that could be beneficial for both 

healthspan and lifespan in humans [147, 148]. Metformin went through phase 1/phase 2 

clinical trials in 2014 to assess skeletal muscle mass, muscle function, and muscle 

characteristics over a 3-year period in adults 65 years of age and older (NCT01804049). 

Although there are no results reported, it has been suggested in the literature that metformin 

can delay muscle atrophy and improve muscle maintenance in aging mammals [149].

One ambitious phase 4 clinical trial performed by researchers at the Sticht Center on Aging 

attempted to improve body composition of older adults through the combination of 

Pioglitazone with hypocaloric diet and/or resistance exercise training. The major objective of 

these studies were to reduce fat free mass in older adults while preserving lean body mass 

(NCT00315146). Pioglitazone is a type 2 diabetes drug known to lower blood glucose levels 

that was selected based on its function as a PPAR-γ agonist that improves glucose and lipid 

metabolism in muscle. In these studies, 40 women and 48 men between 65-79 years of age 

with a BMI of at least 25 kg/m2 were randomly selected for a placebo or Pioglitazone with 

all groups being placed on a hypocaloric diet (calorie deficit of 500 kcal/day) and some 

groups participating in resistance exercise [138, 139]. The trials were partially successful 

because even though older adults on Pioglitazone and hypocaloric diet had reductions in fat 

and lean body mass, when resistance training was added to the intervention there was a 

reduction in the loss of skeletal muscle mass [138, 139].

An anti-hyperglycemic medication used for type 2 diabetes patients, Empagliflozin, is 

currently in phase 4 trials to determine whether this small molecule can delay the 

progression of age-related skeletal muscle atrophy [137]. Over 120 participants will be 

randomly selected to participate in 10 weeks of circuit resistance training (CRT), a 

Vegetarian-Mediterranean diet, or given a daily treatment of 10 mg Empagliflozin 

(NCT03560375). All three groups will follow-up with an additional 10 weeks of CRT along 

with their previous diet intervention. Changes in lean body mass will be measured using a 

body composition analyzer and completed results should be reported after November 2020.

Other Therapeutics

Therapeutics in several other categories have gone through clinical trials in the past decade 

and some of these drugs may contribute to treating sarcopenia in the near future. For 

example, the non-steroidal anti-inflammatory drug (NSAID) Ibuprofen was examined 

because chronic low grade inflammation and muscle atrophy are associated with aging [26, 

72, 73, 150]. In this 9-month study, post-menopausal women were either given a placebo or 

400 mg of Ibuprofen after resistance exercise 3 days a week (NCT01886196). The clinical 
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trial was unsuccessful in showing that either ibuprofen or ibuprofen with the addition of 

resistance exercise training could improve lean body mass in aging [141]. Resistance 

training alone however, maintained skeletal muscle mass in older women thus suggesting 

that NSAIDs may not be beneficial in sarcopenic adults.

Allopurinol is another drug that has gone through clinical trials and may partially remedy 

age-related skeletal muscle atrophy in humans [151]. Allopurinol has been used in the past 

to treat gout and kidney stones and has completed phase 4 trials for sarcopenia [152, 153]. 

Allopurinol activates the antioxidant enzyme xanthine oxidase to salvage redox homeostasis 

in older adults and thus is proposed to have potential to rescue lean body mass in the elderly 

[151]. Limited reports by investigators from the University of Dundee have shown that 5 

months of treatment with allopurinol improves muscle energetics (NCT01550107). Whether 

oral ingestion of allopurinol can aid in muscle maintenance longitudinally, has yet to be 

examined.

Potassium citrate is a urinary alkalinizing medication that has been explored in clinical trials 

to determine if the substance can be repurposed to treat sarcopenia. The premise for the 

usage of this substance is that potassium citrate will neutralize the excess acid production 

that is observed in individuals that consume a Western diet, thus improving skeletal muscle 

mass in older adults (NCT00509405). Phase 3 trials were completed in over 200 participants 

in ages 65-80 years old with 2 years of treatment; however, results were never reported for 

this clinical trial.

Sarconeos (BIOL101) is a novel small molecule that is currently going through phase 2 

trials. It is suggested that BIOL activates the MAS receptor (angiotensin agonist G protein-

coupled transmembrane receptor) in muscle cells potentially through the drug’s active 

ingredient, 20-hydroxyecdysone [130]. Over 200 subjects 65 years of age and older are 

being administered either a placebo or BIOL orally to determine the efficacy of the 6-month 

treatment (NCT03452488). Clinical trials for this study should wrap up by the end of 2020. 

Overall, small molecules display promise to offset, delay, or at the very least reduce the 

decline of muscle mass that is attributed with aging. Moreover, there are new delivery 

systems for sarcopenic drugs (e.g. chewing gum [US20140294915A1]. whey protein 

micelles [EP2768322A1]) and numerous novels targets yet to be explored by pharmaceutical 

companies (Table 3), which leaves the area of sarcopenic treatment full of opportunity to 

improve the quality of life in the elderly community.

Perspectives & Conclusion

Herein we have discussed the primary pathways and biological functions implicated in age-

related skeletal muscle atrophy stemming from both longevity and muscle biology research. 

Moreover, these pathways likely interplay with multiple processes to delay or offset skeletal 

muscle atrophy in aging as well as intersect with each other. Novel mediators that influence 

proteostasis, including pi 10α PI3K, UCP1, and heat shock proteins (HSPs) have 

demonstrated dual benefits in several organisms for enhancement of lifespan and healthspan 

[28, 30, 31, 154, 155] and should be further investigated for their role in age-associated 

muscle atrophy and treatment of sarcopenia in humans.
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The role of inflammation in relation to muscle wasting and aging is being re-evaluated 

highlighting the source and location of immune cells in response to the microenvironment. 

Historically, gerontology studies were focused predominately on low-grade, chronic, 

systemic inflammation in aging, in the absence of overt infection (termed inflammaging) 

[26, 71, 156]. More recent investigations of the contribution of inflammation to aging 

skeletal muscle have shifted focus towards inflammatory mediators released by the 

myofibers themselves with alterations in so called “myokines” tending to favor muscle 

deterioration with aging [59, 157– 159]. Nonetheless, general inflammaging and studies of 

myokines do not consider cytokines secreted by other cell types localized in skeletal muscle 

tissue. These additional sources of soluble immune mediators should not be overlooked 

because altered secretion of cytokines from macrophages, fibroblasts, and fibro/adipogenic 

progenitors within skeletal muscle have potential to negatively impact skeletal muscle 

maintenance during aging [160, 161].

Prevention of NMJ decline and preservation of synaptic transmission with age may provide 

therapeutic benefits. Although no current drug exists that specifically targets neuromuscular 

degeneration, life-long high intensity exercise has been shown to be an effective at 

preventing motor unit loss in humans [162]. In addition, caloric restriction, considered the 

most effective non-genetic intervention of aging and life-span extension, is effective at 

preserving NMJs and reducing muscle fiber turnover in the tibialis anterior muscle in aged 

mice [163]. These studies suggest that critical preservation pathways exist that facilitate 

NMJ maintenance in aged animals and could potentially be enhanced for therapeutic utility.

Furthermore, determining the important ROS mediated pathways that lead to muscle 

denervation and fiber loss will likely produce novel therapeutics. While the field has mainly 

focused on oxidative damage (i.e. DNA, lipid, protein oxidation) future studies are needed to 

understand the dual roles of ROS; cell signaling and redox homeostasis. Since sarcopenia is 

accompanied by multifactorial changes in both muscle and nerve it is likely that both tissue-

specific ROS mediated signaling and redox homeostatic changes are involved and therefore 

simultaneously targeting specific mediators in the antioxidant network will provide the most 

effective therapeutic potential.

Although rodent and cell culture models have been predominately used to identify novel 

molecules as targets for age-related skeletal muscle atrophy, the contributions of human 

studies to the identification of key mediators of muscle wasting should not be overlooked. 

Molecular analysis of tissues from older adults are indeed necessary to confirm whether 

certain proteins are involved in muscle wasting in humans and to what degree specific 

mediators and signaling pathways influence skeletal muscle maintenance. Research studies 

using human tissues from older adults also give insight for future directions that need to be 

further explored and characterized in rodent models (e.g. myokines, metabolome) [164, 

165]. As an example, in the early 2000’s Welle and colleagues revealed that over 1100 genes 

in older women and over 700 genes in older men have differential gene expression in 

comparison to their younger counterparts, and a gene involved with DNA repair, Gadd45a 

may be involved in muscle wasting in humans [166, 167]. Since then more compelling 

evidence has shown a direct link of Gadd45a and muscle atrophy [47, 168], but whether 

there is direct contribution to sarcopenic muscle atrophy remains unknown.
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Finally, because the Food & Drug Administration only oversees the approval of drugs that 

treat a disease state, clinical trials of pharmaceutical approaches for the prevention of 

sarcopenia are hampered somewhat. Continued expansion of the list of potential targets 

emerging from basic research along with recent consensus on the classification and 

diagnosis of sarcopenia will enhance the development of pharmaceuticals approaches to 

treat age-related skeletal muscle atrophy and physical frailty in elderly populations [123, 

124].
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Figure 1. 
Flow chart of sarcopenia clinical trial studies since October 2019. Data received from 

clinicaltrials.gov. Roughly three quarters of clinical trials have an interventional approach to 

investigate treatments for sarcopenia. The interventional approaches to retain lean body mass 

in older adults have been focused more on lifestyle changes (dietary, exercise) and less on 

patented technologies (drugs, devices).
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Figure 2. 
Timeline of interventional clinical trial sarcopenia studies. Sarcopenia studies have gradually 

increased within the first decade of interventional trials and have abruptly grown within the 

last decade. Although, production of interventional studies from both the industry and 

institutions have progressively increased in the past couple decades, drug interventions have 

remained stable even after the classification of sarcopenia as a disease state in 2016.
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Table 1.

Previous identified molecular targets of muscle wasting in aged mammals

Classification Molecular Targets Age-related Atrophy Year Identification Reference(s)

Anabolic Hormones

Testosterone 1992 [128]

DHEA 1995 [169]

Growth Hormone 1998 [170, 171]

IGF-1 1998 [172]

Proteostasis

mTOR signaling 2004 [173]

Caspases 2004 [174]

FoxO* 2004* [175]

Immune System
TNF-α 2005 [176, 177]

IL-6* 1997* [178, 179]

Denervation-Induced Atrophy AchR 1984 [85]

Redox Homeostasis SOD1 2006 [180]

*
denotes targets or dates of only age-associated data in regards to muscle atrophy.

Abbreviations: AchR, acetylcholine receptor; DHEA, dehydroepiandrosterone; FoxO, forkhead family of transcription factors; IGF-1, insulin-like 
growth factor-1; IL-6, interleukin-6; mTOR, mammalian target of rapamycin; MuSK, muscle-specific kinase; SOD1, superoxide dismutase 1; TNF-
α, tumor necrosis factor alpha.
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Table 2.

Summary of novel targets of age-related skeletal muscle atrophy (2009-2019)

Classification Molecular Targets Atrophy-related Mediated 
Targets

Age-related Atrophy Year 
Identification Reference(s)

Proteostasis

TSC Fox03, mTORC1 2014 [39]

dkk3 Fox03-p-catenin, WNT signaling 2018 [56]

ATF4 4E-BP1? 2015 [46]

FGF21 FoxOs 2017 [57]

p110α PI3K mTORCl 2019 [43]

Immune System

TWEAK-Fn14 NF-κB 2014 [79]

IL-15 NF-κB, IL-15Ra, TNF-R1 2009 [81]

IL-10* Unknown 2016 [181]

Denervation-Induced Atrophy

Sarcoglycan α LRP4, MuSK 2018 [96]

LRP4 MuSK 2014 [93]

Agrin LRP4 2012 [94]

Redox Homeostasis GPx7 OGA 2019 [122]

*
denotes target with no evidence from muscle weight data.

Abbreviations: ATF4, activating transcription factor 4; dkk3, dickkopf 3; FoxO, forkhead family of transcription factors; FGF21, fibroblast growth 
factor 21; GPx7, non-selenocysteine-containing phospholipid hydroperoxide glutathione peroxidase; IL, interleukin; mTORC1, mammalian target 
of rapamycin complex 1; LRP4, low-density lipoprotein receptor-related protein 4; MuSK, muscle-specific kinase; NF-κB, necrosis factor kappa-
light-chain-enhancer of activated B cells; OGA, o-GlcNAcylation; TNF-R1, tumor necrosis factor receptor 1; TWEAK, TNF-related weak inducer 
of apoptosis; WNT, wingless-INT.
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Table 3.

Selected sarcopenia drugs in clinical trials

Drug Name Drug Target Phase Status Date Result
Sponsor Company/
Institution NCT ID

Anabolic Hormone

Testosterone 
Undecanoate AR N/A Ongoing Jul-19

Institute of Liver and 
Biliary Sciences NCT03995251

Topical Testosterone AR Phase 2 Completed Sep-02 ↑ LBM
National Institute on 
Aging (NIA) NCT00183040

Testosterone Gel AR Phase 4 Completed Oct-04
Manchester University 
NHS Foundation NCT00190060

Testosterone Gel 1% AR Phase 3 Ongoing Sep-17
Washington University 
School of Medicine NCT02938923

MK-0773 AR Phase 2 Completed Oct-07 ↑ LBM
Merck Sharp & Dohme 
Corp. NCT00529659

Enobosarm AR Phase 2 Completed Sep-18
GTx (Merged with 
Oncternal Therapeutics) NCT03241342

Recombinant HGH GHR Phase 2 Completed Sep-02 *↑ LBM
National Institute on 
Aging (NIA) NCT00183040

Anamorelin HCL GHS-R Phase 1 Ongoing Aug-19 Tufts University NCT04021706

MK-677 GHS-R Phase 1,2 Completed Jul-98 ↑ LBM University of Virginia NCT00474279

DHEA
NMDA, GABA, 
σ1-R Phase 3 Completed Apr-01

Washington University 
School of Medicine NCT00205686

Oxytocin nasal spray Oxytocin-R Phase 1,2 Ongoing Sep-17
University of Texas 
Health Science Center NCT03119610

Metabolic

Ghrelin GHS-R Phase 2 Completed Jul-13
University of 
Pennsylvania NCT01898611

Metformin PKB Phase 1,2 Completed Apr-14
VA Office of Research 
and Development NCT01804049

Empagliflozin SGLT2 Phase 4 Ongoing May-18
Tel-Aviv Sourasky 
Medical Center NCT03560375

Pioglitazone PPAR-y Phase 4 Completed Apr-06 ↓ LBM
Wake Forest University 
Health Sciences NCT00315146

Anti-inflammatory

Ibuprofen (NSAIDs) Prostaglandins N/A Completed Apr-13 No diff
University of 
Saskatchewan NCT01886196

Redox Homeostasis

Allopurinol Xanthine Oxidase Phase 4 Completed Feb-15 University of Dundee NCT01550107

Other

BIO101 MAS-R Phase 2 Onqoinq May-18 Biophytis NCT03452488

Bimaqrumab ActRII Phase 2 Completed Jul-15 = LBM Novartis NCT02468674

Landoqrozumab Myo statin Phase 2 Completed May-12 ↑ LBM Eli Lilly NCT01604408

Trevoqrumab Myo statin Phase 2 Completed Nov-13 ↑ LBM Reqeneron NCT01963598

Garetosmab ActivinRIlA Phase 1 Completed Apr-13 Reqeneron NCT02943239

Potassium citrate Acidic Compounds Phase 3 Completed Jul-07
Kantonsspital Baseband 
Bruderholz NCT00509405
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Sarcopenia clinical trial studies that have at least one lean body mass outcome measure in older adults were included.

*
Increase in lean body mass was observed in combination to topical testosterone.

Date (Study start date). Abbreviations: AR, androgen receptor; DHEA, dehydroepiandrosterone; GABA, gamma aminobutyric acid; GHR growth 
hormone receptor; GHS, growth hormone secretagogue; LBM, lean body mass; N/A, not available; NMDA, N-methyl-D-aspartate; NSAIDs, 
nonsteroidal anti-inflammatory drugs; PKB, protein kinase B; PPAR-γ, peroxisome proliferator-activated receptor gamma; -R, receptor; SGLT2 
sodium glucose co-transporter 2.
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