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C H E M I S T R Y

Extraction of organic chemistry grammar 
from unsupervised learning of chemical reactions
Philippe Schwaller1,2*, Benjamin Hoover3, Jean-Louis Reymond2,  
Hendrik Strobelt3, Teodoro Laino1

Humans use different domain languages to represent, explore, and communicate scientific concepts. During the 
last few hundred years, chemists compiled the language of chemical synthesis inferring a series of “reaction rules” 
from knowing how atoms rearrange during a chemical transformation, a process called atom-mapping. Atom-
mapping is a laborious experimental task and, when tackled with computational methods, requires continuous 
annotation of chemical reactions and the extension of logically consistent directives. Here, we demonstrate that 
Transformer Neural Networks learn atom-mapping information between products and reactants without super-
vision or human labeling. Using the Transformer attention weights, we build a chemically agnostic, attention-
guided reaction mapper and extract coherent chemical grammar from unannotated sets of reactions. Our method 
shows remarkable performance in terms of accuracy and speed, even for strongly imbalanced and chemically 
complex reactions with nontrivial atom-mapping. It provides the missing link between data-driven and rule-
based approaches for numerous chemical reaction tasks.

INTRODUCTION
Humans leverage domain-specific languages to communicate and 
record a variety of concepts. Every language contains structural pat-
terns that can be formalized as a grammar, i.e., a set of rules that 
describe how words can be combined to form sentences. Through 
the use of these rules, it is possible to create an infinite number of 
comprehensible clauses (knowledge) using a set of domain charac-
teristic elements (words) obeying domain-specific rules (grammar 
and syntax). When applied to scientific and technical domains, a 
language is often more a method of computation than a method of 
communication.

Organic chemistry rules, for instance, have been developed over 
two centuries, in which experimental observations were translated 
into a specific language where molecular structures are words and 
reaction templates the grammar. These grammar rules illustrate the 
outcome of chemical reactions and are routinely taught using 
specific diagrammatic representation (Markush representations). 
More convenient representations like reaction SMILES (1) also ex-
ist for information technologies applied to synthesis planning and 
reaction prediction. In both Markush and SMILES representations, 
the grammar rules are present as latent knowledge in the historical 
corpus of raw reaction data.

The digitization of these rules proved to be a successful approach 
to design modern computer programs (2) aiding chemists in syn-
thetic laboratory tasks. Compiling reaction rules from domain data 
is tedious, requiring decades of labor hours and challenging to scale. 
The availability of an automatic and reliable method for annotating 
how atoms rearrange in chemical reactions, a process known as 
atom-mapping, could change profoundly the way organic chemistry 
is currently digitized. However, the process of atom-mapping is 
an NP-hard problem, dealt with computational technologies since 
1970s (3, 4). Most atom-mapping solutions are either structure 

based (5–10) or optimization based (11–15). The current state of 
the art is a combination of heuristics, a set of expert-curated rules 
that precompute candidates for complex reactions, and a graph-
theoretical algorithm to generate the final mapping as developed by 
Jaworski et al. (16). Nonetheless, brittle preprocessing steps, closed-
source code, computationally intensive strategies (more than 100 s 
for some reactions), and the need for expert-curated rules hinder its 
wider adoption. Most public reaction data come with rule-based 
Indigo atom-maps (17), which are taken as ground truth for subse-
quent work (18–23), irrespective of the explicit warnings about 
atom-maps quality issues (24).

Natural language processing (NLP) models (25) are among the 
few neural network architectures showing a substantial impact on 
synthetic chemistry (26) and not relying on atom-mapping algo-
rithms. Their ability to encode latent knowledge from a training set 
of molecules and reactions represented as text [SMILES (1)] avoids 
the need to codify the chemical reaction grammar. Molecular 
Transformer models, a recent addition to the NLP family, are the 
state of the art for forward reaction prediction tasks, achieving an 
accuracy higher than 90% (27–30). Understanding the reasons for 
this performance requires the analysis of the neural network’s 
hidden weights, which introduces the inherent complexity of inter-
preting neural networks.

Here, we report the evidence that Transformer encoder models 
(31, 32) learn atom-mapping as a key signal when trained on un-
mapped reactions on the self-supervised task of predicting the ran-
domly masked parts in a reaction sequence, a process depicted in 
Fig. 1A. Transformer architectures can learn the underlying atom-
mapping of chemical reactions, without any human labeling or 
supervision, solely from a large training set of reaction SMILES 
tokenized by atoms (28, 33). After establishing an attention-guided 
atom-mapper and introducing a neighbor attention multiplier, we 
were able to achieve 99.4% correct full atom-mappings on a test set 
of 49k strongly unbalanced patent reactions (34) with high-quality 
atom-maps (35).

The advantage of this approach is its unsupervised nature. In 
contrast to supervised approaches, here, the atom-mapping signal 
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Fig. 1. Overview. (A) Process that led to the discovery of the atom-mapping signal and ultimately to the development of RXNMapper. (B) Directly affected chemical 
reaction prediction tasks. (C) Importance of atom-mapping in affected downstream applications.
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is learned during training as a consistent pattern hidden in the 
reaction datasets, without ever seeing any example of atom-mapped 
reactions. As a consequence, the quality of this approach is not 
limited by the quality of labeled data generated by an existing anno-
tation tool. Moreover, the unsupervised nature allows scaling the 
extraction of chemical reaction grammar without the need of in-
creasing human resources.

Numerous deep learning methods developed for organic chem-
istry, like forward and backward reaction prediction, will benefit 
from better atom-mapping (Fig. 1B). Examples range from tem-
plate-based approaches that use atom-mapping to automatically 
extract the templates from chemical reaction datasets (18, 36–38), 
to graph-based approaches, predicting bond changes or graph edits, 
that require atom-mapped reactions to extract the labels used for 
training the models (19, 21). Even the predictions of atom-mapping–
independent and template-free SMILES-2-SMILES approaches (28, 33) 
may benefit from better atom-mapping, thus becoming more trans-
parent and interpretable. In SMILES-2-SMILES approaches, the models 
generate the product structures sequentially atom-by-atom given the 
precursors or vice versa, generate the precursors given the product, 
without any support from atom-mapping information. After add-
ing the atom-mapping in a postprocessing step, predictions can be 
linked back to training reactions with the same reaction template. 
The atom-maps also enable the use of quantum mechanical simulations 
to compute reaction energies and the mechanism without human 
intervention by providing the corresponding atom pairs between 
precursors and products.

Moreover, our contributions will lead to improvements in the 
downstream applications that depend on better atom-mapping and 
chemical reaction rules (Fig. 1C): retrosynthesis planning methods 
(36, 38, 39), chemical reactivity predictions using graph neural 
network algorithms (21), reactant-reagent role assignments (34), 
interpretation of predictions (28), and knowledge extraction from 
reaction databases (40).

The attention-guided reaction mapper (henceforth referred to as 
RXNMapper) can handle stereochemistry and unbalanced reac-
tions and is, in terms of speed and accuracy, the state-of-the-art 
open-source tool for atom-mapping, providing an effective alterna-
tive to the time-intensive human extraction of chemical reaction 
rules. We release RXNMapper together with the atom-mapped 
public reaction dataset of Lowe (24) and a set of retrosynthetic rules 
(18, 36–38) extracted from it. The observed atom-mapping perform
ance indicates that a consistent set of atom-mapping grammar rules 
exists as latent information in large datasets of chemical reactions, 
providing the link between data-driven/template-free and rule-
based systems.

RESULTS
Attention-guided chemical reaction mapping
Self-attention is the major component of algorithms called Trans-
formers that are setting records on NLP benchmarks, e.g., BERT 
(31) and ALBERT (32), and even creating breakthroughs in the 
chemical domain (28,  33,  41). Transformers use several self-
attention modules, called heads, across multiple layers to learn how to 
represent each token in an input—e.g., each atom and bond in a 
reaction SMILES—given the tokens around it. Each head learns to 
attend to the inputs independently. When applied to chemical reac-
tions, Transformers use attention to focus on atoms relevant to 

understand important molecular structures, describe the chemical 
transformation, and detect useful latent information. Fortunately, 
the internal attention mechanisms are intuitive to visualize and in-
terpret using interactive tools (42–44). Through visual analysis, we 
observed that some Transformer heads learn distinct chemical 
features. Specific heads learned how to connect product atoms to 
reactant atoms, the process defined above as atom-mapping. We 
call these Transformer heads atom-mapping heads.

Throughout this work, our Transformer architecture of choice is 
ALBERT (32). ALBERT’s primary advantage over its predecessor 
BERT (31) is that it shares network weights across layers during 
training. This both makes the model smaller and keeps the func-
tionality learned by a head the same across layers and consistent 
across inputs. Learned functions such as forward and backward 
scanning of the sequence, focusing on nonatomic tokens (ring 
openings/closures), and atom-mapping all perform similarly, irre-
spective of the input.

From raw attention to atom-mapping
To quantify our observations, we developed an attention-guided 
algorithm that converts the bidirectional attention signal of an 
atom-mapping head into a products-to-reactants atom-mapping. 
This specific mapping order ensures that each atom in the products 
corresponds to an atom in the reactants, which is important given 
that the most sizable open-source reaction datasets (24, 45) report 
only major products and show reactions that have fewer product 
atoms than reactant atoms.

The product atoms are mapped to reactant atoms one at a time, 
starting with product atoms that have the largest attention to an 
identical atom in the reactants. At each step, we introduce a neigh-
bor attention multiplier that increases the attention connection 
from adjacent atoms of the newly mapped product atom to adjacent 
atoms of the newly mapped reactant atom, boosting the likelihood 
of an atom having the same adjacent atoms in reactants and prod-
ucts. This process continues until all product atoms are mapped to 
corresponding reactant atoms. The constraint of mapping only to 
equivalent atoms led to negligible improvements in terms of atom-
mapping correctness, indicating that the model had already learned 
this rule in its atom-mapping function.

We selected the best performing model/layer/head combina-
tion after evaluation on a curated set of 1k patent reactions by 
Schneider et al. (34) originally mapped with the rule-based NameRXN 
tool (35). We used the remaining 49k reactions as a test set. We 
consider the atom-maps in NameRXN (35) to be of high quality 
because they are a side product of successfully matched reaction 
rules humanly designed. We used our best ALBERT model (12 layers 
and 8 heads) configuration (at layer 11, head 6, and multiplier 90) 
for RXNMapper.

Atom-mapping evaluation
The predominant use case for atom-mapping algorithms is to map 
heavily imbalanced reactions, such as those in patent reaction data-
sets (24, 45) or those predicted by data-driven reaction prediction 
models (28). After training RXNMapper on unmapped reactions 
(24), we investigated the chemical knowledge our model had ex-
tracted by comparing our predicted atom-maps to a set of 49k 
test reactions (34). The majority (96.8%) of the atom-mappings 
matched the reference, including methylene transfers, epoxida-
tions, and Diels-Alder reactions (Fig. 2). We manually annotated 
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the remaining discrepancies to find edge cases where RXNMapper 
seemingly failed. A more careful analysis showed that of the 1551 
nonmatching reactions, only 284 predictions were incorrect. In 415 
reactions, RXNmapper gave atom-maps equivalent to the original 
(e.g., tautomers), and in 436, the atom-maps were better than the 
reference. In 369 cases, the original reaction was questionable and 
likely wrongly extracted from patents. For 47 reactions, the key re-
agents to determine the reaction mechanisms were missing. After 

removing questionable reactions from the statistics and counting 
the equivalent mappings as correct, the overall correctness in-
creased to 99.4%.

Among the most frequent failures of RXNMapper, we find 
examples of wrong atom ordering in rings and azide compounds 
(Fig. 2B, d). In others, the model assigns wrong mappings to a single 
oxygen atom, like in reductions (Fig. 2B, e) or in Mitsunobu reac-
tions (Fig. 2B, f), where the phenolic oxygen should become part of 
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the product, but the model maps the primary or secondary alcohol 
instead.

We also observed counterexamples of Mitsunobu reactions 
(Fig. 2B, c) for which our model correctly mapped the reacting ox-
ygen, while the rule-based reference contained the wrong mapping 
as a result of the reaction not matching the Mitsunobu reaction rule. 
Although the overall quality of the reference atom-maps in the 49k 
test set (46) is high, we were able to identify few important advan-
tages of using RXNMapper instead of the rule-based mapped data-
set. RXNMapper correctly assigns the oxygen of the primary 
alcohols to be part of the major product for esterification reactions 
(Fig. 2B, a) like Fischer-Speier and Steglich esterifications as opposed 
to the annotated ground truth. It also correctly recognizes anhydrides 
(Fig. 2B, b) and peroxides as reactants in acylation and oxidation 
reactions where the ground truth favored formic acid and water.

RXNMapper not only excels on patent reactions but also per-
forms remarkably well on reactions involving rearrangements of 
the carbon skeleton where humans require an understanding of 
the reaction mechanism to correctly atom-map. Notable examples 
include an intramolecular Claisen rearrangement used to construct 

fused seven- to eight-membered ring in the synthesis of the natural 
product micrandilactone A (Fig. 3A) (47, 48) and the tandem Palladium-
catalyzed semipinacol rearrangement/direct arylation used for a 
stereoselective synthesis of benzodiquinanes from cyclobutanols 
(Fig. 3B) (49). In both cases, RXNMapper completes the correct 
atom-mapping despite the entirely rearranged carbon skeletons 
resulting in different ring sizes and connections. ReactionMap, 
Marvin, ChemDraw, and Indigo failed at this atom-mapping task. 
RXNMapper also succeeds in atom-mapping the ring rearrangement 
metathesis of a norbornene to form a bicyclic enone under catalysis 
by Grubbs-(I) catalyst (Fig. 3C) (50). In this case, ChemDraw success-
fully completes the mapping, while the other tools failed. Further-
more, RXNMapper performs well with multicomponent reactions 
such as the Ugi four-component condensation of isonitriles, alde-
hydes, amines, and carboxylic acids to form acylated aminoacid 
amides (Fig. 3D) (51). Here, RXNmapper maps all atoms correctly 
except for the carbonyl oxygen atom of the isonitrile-derived 
carboxamide. RXNMapper assigns this oxygen atom to the oxygen 
atom of the carbonyl group of the aldehyde reagent, although this 
atom actually comes from the hydroxyl group of the carboxylic 
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acid reagent. All other tools failed this atom-mapping task except 
for Mappet.

Similar to Jaworski et al. (16), we analyzed the atom-mapping 
in United States Patent and Trademark Office (USPTO) patent 
reactions according to the number of bond changes (Fig. 4A). 
RXNMapper performs better than Mappet (16) on all reactions ex-
cept for those involving only one bond change. With an average 
time to solution of 7.7 ms per reaction on graphics processing unit 
(GPU) accelerators and 36.4 ms per reaction on central processing 
unit (CPU), RXNMapper’s speed is similar to the Indigo toolkit 
(17) on balanced reactions and far exceeds Indigo on unbalanced 
ones (Fig. 4B). As a comparison, Mappet (16) takes more than 
10 s per reaction for 3.2% of their balanced test set reactions and 
for few of the reactions even more than 100 s per reaction. In addi-
tion, RXNMapper outputs a confidence score for the generated 
atom-maps. An analysis of the confidence scores and more detailed 
comparisons are available in the Supplementary Materials.

The advantages of RXNMapper compared to the open-source 
Indigo (17) and the closed-source Mappet (16) are summarized in 
Table 1. RXNMapper is noticeably faster than other tools, handles 
strongly unbalanced reactions, performs well even on complex 
reactions, and is open-source. It can also be used for compiling 
retrosynthetic rules, which are of crucial importance for several re-
action and retrosynthesis prediction schemes. For instance, in the 
Chematica project (2), numerous Ph.D. students and Postdocs across 
15 years continuously worked to extract reactions from literature 
and convert them into retrosynthetic rules. With unsupervised schemes 
such as RXNMapper, the extraction of retrosynthetic rules can be 
completed in a matter of weeks, with little human intervention. We 
demonstrate such an extraction by atom-mapping the entire USPTO 
datasets and by extracting the retrosynthetic rules using the ap-
proach described by Thakkar et al. (38). We make available the 
corresponding atom-mappings of the USPTO dataset and the 21k 
most frequently extracted retrosynthetic rules along with the most 
commonly used reagents, the corresponding patent numbers, and 

the first year of appearance. The application of unsupervised schemes 
demonstrates the feasibility of running a completely unassisted con-
struction of retrosynthetic rules in just a few days—three orders of 
magnitude faster than previous human curation protocols. The use 
of unsupervised schemes will facilitate the compilation of previously 
unidentified retrosynthetic rules in existing rule-based systems.

DISCUSSION
We have shown that the application of unsupervised, attention-
based language models to a corpus of organic chemistry reactions 
provides a way to extract the organic chemistry grammar without 
human intervention. We unboxed the neural network architecture 
to extract the rules governing atom rearrangements between prod-
ucts and reactants/reagents. Using this information, we developed 

Table 1. Comparison of different atom-mapping tools. Comparing 
RXNMapper to Indigo (17) and Mappet (16). 

RXNMapper Indigo (17) Mappet (16)

Average time 
(short) 6.4 ms 17.0 ms Slower than 
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an attention-guided reaction mapper that exhibits remarkable 
performance in both speed and accuracy across many different re-
action classes. We showed how to create a state-of-the-art atom-
mapping tool within 2 days of training without the need for tedious 
and potentially biased human encoding or curation. Because the 
entire approach is completely unsupervised, the use of specific reaction 
datasets can improve the atom-mapping performance on corner cases. 
The resulting atom-mapping tool is significantly faster and more 
effective than existing tools, especially for strongly imbalanced reac-
tions. Last, our work provides evidence that unannotated collections of 
chemical reactions contain all the relevant information necessary to 
construct a coherent set of atom-mapping rules. Numerous applica-
tions built on atom-mapping will immediately benefit from our 
findings (21, 36, 38), and others will become more interpretable 
exploiting the potential of unsupervised atom-mappings (28, 33).

The use of symbolic representations and the means to learn 
autonomously from rich chemical data led to the design of valuable 
assistants in chemical synthesis (26). A strengthened trust between human 
and interpretable data-driven assistants will spark the next revolutions 
in chemistry, where domain patterns and knowledge can be easily ex-
tracted and explained from the inner architectures of trained models.

MATERIALS AND METHODS
Transformers
Transformers are a class of deep neural network architectures that 
relies on multiple and sequential applications of self-attention lay-
ers (27). These layers are composed of one or more heads, each of 
which learns a square attention matrix A∈RN  × N of weights that 
connect each token’s embedding Yi in an input sequence Y of length 
N to every other token’s embedding Yj. Thus, each element Aij is the 
attention weight connecting Yi to Yj. This formulation makes the 
attention weights in the Transformer architecture amenable to vi-
sualizations as the curves connecting an input sequence to itself, 
where a thicker, darker line indicates a higher attention value.

The calculation of the attention matrix of each head can be easi-
ly interpreted as a probabilistic hashmap or lookup table over all 
other elements Yj. Each head in a self-attention layer will first con-
vert the vector representation of every token Yi into a key, query, 
and value vector using the following operations

	​​ K​ i​​ = ​ W​ k​​ ​Y​ i​​  ​Q​ i​​ = ​ W​ q​​ ​Y​ i​​  ​V​ i​​  = ​ W​ v​​ ​Y​ i​​​	 (1)

where Wk ∈Rdk × de, Wq ∈Rdk × de, and Wv ∈Rdv × de are learnable 
parameters. Ai, or the vector of attention out of token Yi, is then a 
discrete probability distribution over the other input tokens, and it 
is calculated by taking a dot product over that token’s query vector 
and every other token’s key vector followed by a softmax to convert 
the information into probabilities

	​​ ​A​ i​​  =  softmax ​(​​ ​ ​Q​ i​​(​W​ k​​ ​Y​​ ⊤​) ─ 
​√ 
_

 ​d​ k​​ ​
 ​​ )​​​​	 (2)

Note that one can define input sequence Y as an N × de matrix 
and matrix Wk as a dk × de matrix, where de is the embedding di-
mension of each token and dk is the embedding dimension shared 
by the query and the key.

Each head must learn a unique function to accomplish the 
masked language modeling task, and some of these functions are 
inherently interpretable to the domain of the data. For example, in 

NLP, it has been shown that certain heads learn dependency and 
part of speech relationships between words (52, 53). Using visual 
tools can make exploring these learned functions easier (42).

Model details
For our experiments, we used PyTorch (v1.3.1) (54) and hugging-
face transformers (v2.5.0) (55). The ALBERT model was trained for 
48 hours on a single Nvidia P100 GPU with the hyperparameters 
stated in the Supplementary Materials. Schwaller et al. (28) devel-
oped the tokenization regex used to tokenize the SMILES. We ex-
pect further performance improvements when using more extensive 
datasets (e.g., commercially available ones). The RXNMapper mod-
el uses 12 layers, 8 heads, a hidden size of 256, an embedding size of 
128, and an intermediate size of 512. In contrast to ALBERT base 
(32) with 12M parameters, our model is small and contains only 
770k trainable parameters.

Data
The work by Lowe (24) provides the datasets used for training, 
composed of chemical reactions extracted from both grants and 
patent applications. We removed the original atom-mapping from 
this dataset, canonicalized the reactions with RDKit (56), and re-
moved any duplicate reactions. The dataset includes reactions with 
fragment information twice, once with and once without fragment 
bonds, as defined in the work of Schwaller et  al. (33). The final 
training set for the masked language modeling task contained a to-
tal of 2.8M reactions. For the evaluation and the model selection, we 
sampled 996 random reactions from the dataset of Schneider et al. (34).

To test our models, we first used the remaining 49k reactions 
from the Schneider 50k patents dataset (34). We do not distinguish 
between reactants and reagents in the inputs of our models. We also 
used the human-curated test sets that were introduced by Jaworski et al. 
(16) to compare our approach to previous methods. Table 2 shows 
an overview of the test sets. Note that patent reactions differ from 
the reactions in Jaworski et al. (16) because the latter removes most 
reactants and reagents in an attempt to balance the reactions.

Table 2. Test datasets. Datasets used for the comparison with other 
tools. 

Number of 
reactions

Average 
number of 

reactant 
atoms

Average 
number of 

product atoms

Test set

Simple reactions 
(16) 100 27.1 27.1

Typical reactions 
(16) 100 19.9 19.6

Complex 
reactions (16) 201 25.7 24.8

USPTO bond 
changes (16) 281 26.0 23.7

Schneider 50k 
test (34) 49,000 43.3 26.1
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Attention-guided atom-mapping algorithm
The attention-guided algorithm relies on the construction of the 
attention matrix for a selected layer and head, where we sum the 
product-to-reactant and the corresponding reactant-to-product 
atom attentions. Algorithm 1 provides the exact atom-mapping 
algorithm. By default, after matching a product-reactant pair, the 
attentions to those atoms are zeroed. Optionally, atoms in product 
and reactants can have multiple corresponding atoms. We always 
mask out attention to atoms of different types.

Atom-mapping curation
Chemically equivalent atoms exist in many chemical reactions. 
Most of the chemically equivalent atoms could be matched after 
canonicalizing the atom-mapped reaction using RDKit (56, 57). Ex-
ceptions were atoms of the same type connected to another atom 
with different bond types, which would form a resonance structure 
with delocalized electrons. We manually curated these exceptions 
and added them as alternative maps in the USPTO bond changes 
test set (16).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/15/eabe4166/DC1
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