3204 - The Journal of Neuroscience, April 7, 2021 - 41(14):3204-3221

Behavioral/Cognitive

Increased Hippocampal Excitability and Altered Learning
Dynamics Mediate Cognitive Mapping Deficits in Human
Aging
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Learning the spatial layout of a novel environment is associated with dynamic activity changes in the hippocampus and in
medial parietal areas. With advancing age, the ability to learn spatial environments deteriorates substantially but the underly-
ing neural mechanisms are not well understood. Here, we report findings from a behavioral and a fMRI experiment where
healthy human older and younger adults of either sex performed a spatial learning task in a photorealistic virtual environ-
ment (VE). We modeled individual learning states using a Bayesian state-space model and found that activity in retrosplenial
cortex (RSC)/parieto-occipital sulcus (POS) and anterior hippocampus did not change systematically as a function learning in
older compared with younger adults across repeated episodes in the environment. Moreover, effective connectivity analyses
revealed that the age-related learning deficits were linked to an increase in hippocampal excitability. Together, these results
provide novel insights into how human aging affects computations in the brain’s navigation system, highlighting the critical

role of the hippocampus.
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Key structures of the brain’s navigation circuit are particularly vulnerable to the deleterious consequences of aging, and
declines in spatial navigation are among the earliest indicators for a progression from healthy aging to neurodegenerative dis-
eases. Our study is among the first to provide a mechanistic account about how physiological changes in the aging brain affect
the formation of spatial knowledge. We show that neural activity in the aging hippocampus and medial parietal areas is
decoupled from individual learning states across repeated episodes in a novel spatial environment. Importantly, we find that
increased excitability of the anterior hippocampus might constitute a potential neural mechanism for cognitive mapping defi-
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Introduction
Exploring our surroundings has always been one of the hall-
marks of human identity. To do so, we need to rapidly generate
spatial representations and flexibly retrieve them later. With
advancing age, however, these abilities deteriorate considerably
(Lester et al., 2017). Older adults are slower in learning novel
environments and have problems to use this information later
(Taria et al., 2009). Moreover, learning landmark locations during
exploratory navigation is more difficult for them (Yamamoto
and DeGirolamo, 2012), whereas their spatial memory is rela-
tively preserved for familiar environments (Rosenbaum et al.,
2012). As a consequence, they may avoid unfamiliar places and
become overwhelmed when confronted with changes in their
environment.

Although core regions of the brain’s navigation circuit in the
medial temporal lobe are among the first to be affected during
the progression from healthy aging to Alzheimer’s disease (AD;
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Braak and Del Tredici, 2015), the neural mechanisms for age-
related deficits in spatial learning are still poorly understood,
even in healthy older adults. Studies in rodents and non-human
primates showed that place cells in the CA3 subfield of the hip-
pocampus exhibit higher firing rates in aged animals during nav-
igation, and they fail to encode new information when rats
encounter novel environments (Wilson et al., 2005; Thomé et al.,
2016). Moreover, firing patterns of aged CA1 place cells are often
unstable across repeated visits to the same environment (Barnes
et al,, 1997). In humans, in contrast, there is evidence for an age-
related hypoactivation in the hippocampus and in medial parietal
areas during spatial navigation (Moffat et al., 2006; Konishi et al.,
2013).

However, whether activity changes in the aging brain are in-
dicative of a compensatory mechanism or a correlate of aberrant
processing is a long-standing issue in cognitive neuroscience
research on aging (Grady, 2012; Morcom and Henson, 2018).
Evidence from studies investigating age-related impairments in
separating sensory input from mnemonic representations (i.e.,
pattern separation) suggests that hyperactivity in the dentate
gyrus and CA3 may underlie memory deficits in healthy aging
(Yassa et al., 2011; Reagh et al., 2018). Hippocampal hyperactiv-
ity has been further linked to preclinical markers for AD (Leal et
al., 2017).

Age-related differences in neural activity may further depend
on the point in time when activity is measured during task per-
formance. Studies in younger adults showed that the engagement
of the retrosplenial cortex (RSC) and the parieto-occipital sulcus
(POS) together with the hippocampus changes over the course of
learning (Wolbers and Biichel, 2005; Auger et al., 2015; Brodt et
al., 2016; Patai et al., 2019). For example, Wolbers and Biichel
(2005) showed that activity in the RSC/POS tracked the learning
of relative landmark locations during spatial navigation and
increased across learning sessions, whereas hippocampal activity
reflected the amount of learning in a given session and decreased
over time. Given the time course of its involvement during spa-
tial learning, the RSC has been implicated in the retrieval of hip-
pocampal-dependent memories. It receives inputs from CA1 and
the subiculum (Kobayashi and Amaral, 2003; Bzdok et al., 2015)
and is known to be involved in the integration of different spatial
reference frames as well as in updating spatial representations
(Epstein, 2008; Miller et al., 2014). The hippocampus, in turn,
particularly its anterior portion, is known for its role in generat-
ing (spatial) representations (Zeidman and Maguire, 2016).
Moreover, place-cell like activity in the RSC of mice relies on
intact input from the hippocampus to support memory retrieval
(Mao et al., 2018).

Here, we report findings from two experiments where we (1)
characterized age-related problems in learning a novel environ-
ment; and (2) investigated the underlying neural mechanisms
using fMRIL. We focused on activity changes in the RSC/POS and
the hippocampus and changes in effective connectivity within
and between the two regions. This allowed us to test whether
age-related problems in retrieving newly learnt information
during spatial navigation is linked to a malfunctioning of the
integration of hippocampal input within RSC/POS and/or a
corrupted hippocampal signal.

Material and Methods

Participants

In the behavioral experiment, 17 younger (nine female, mean
age: 24.0 = 1.66, age range: 21-28) and 17 older adults took part
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(eight female, mean age: 66.4 = 2.69, age range: 61-72). All of
them were right-handed (LQ: 91.9 * 11.0; Oldfield, 1971) and
the older adults showed no signs of major cognitive impairment
with scores higher than 23 in the Montreal Cognitive Assessment
(MoCA score: 26.9 * 2.18; Nasreddine et al., 2005; Luis et al.,
2009).

To determine the required sample size for the fMRI experi-
ment, we ran a power analysis with the effect size that was
obtained in the behavioral experiment for the interaction between
age group and learning blocks (nf, = 0.188), using G*Power 3.1
(a =0.05, 1-B = 0.95, two groups, eight repeated measurements;
Faul et al., 2007). The power analysis further considered the most
conservative correction for non-sphericity with 1/number of
measurements — 1. This analysis indicated a requirement of 28
participants in total. We decided to double this number and
recruited a total of 64 participants (27 younger adults, 37 older
adults). Three participants (one younger and two older adults)
were excluded from further analyses because they were identified
as outliers in the fMRI data quality checks. In addition, one
younger and three older adults were excluded because of problems
in following task instructions and/or cybersickness. The final
fMRI sample consisted of 25 younger (13 female, mean age:
23.4 *2.18, age range: 20-26) and 32 older adults (17 female,
mean age: 67.3 = 4.80, age range: 58-75). They were all right-
handed (LQ: 90.4 = 12.1; Oldfield, 1971) and the older adults did
not show signs of major cognitive impairment (MoCA score:
27.6 £ 1.93, range: 25-31; Nasreddine et al., 2005).

Across experiments, participants had normal or corrected-to-
normal vision and none of them reported a history of psychiatric
or neurologic diseases or use of medication that might affect task
performance or MRI scanning. In addition, most of the partici-
pants already participated in previous virtual reality (VR) experi-
ments and, hence, were familiar with navigating in these kinds of
setups. Participants provided informed consent and were paid
for their participation in accordance with the local ethics
committee.

Virtual environment (VE)

Using 3ds Max (Autodesk), a novel VE was developed, which
resembled a typical German historic city center consisting of
town houses, shops and restaurants. The VE had a square-like
spatial layout with four interconnected four-way intersections
(Fig. 1B). At two intersections, a church and a town hall were
placed at the end of one of the outgoing streets, whereas a 2D
wall displaying a photograph texture of a street continuation bor-
dered the remaining street ends. The VE was based on a 3D
model of the old city center of Tiibingen. All of the participants
confirmed to have never visited Tiibingen before the time of
testing.

Experimental design and procedure

Vizard 5.0 (World Viz) was used to animate the experiments,
which both started with a familiarization phase during which the
participants encountered the VE for the first time. Their task
during this phase was to collect tokens that were placed at the
street ends by actively traveling the VE, using the four arrow
keys of a standard computer keyboard. This phase ended once
every token was collected, ensuring that they had visited every
street at least once. It followed a short practice of the pointing
task (eight trials) that was used to measure navigational retrieval
in the experiments. In this way, the VE and the task were intro-
duced in a step-wise manner to reduce the impact of different
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degrees of experience in handling VR set- A
ups on task performance (Diersch and
Wolbers, 2019).

In the behavioral experiment, eight
learning blocks were implemented during
which eight retrieval phases alternated
with seven encoding phases. One naviga-
tional retrieval phase consisted of 12
pointing trials. A pointing trial started
with participants being passively trans-
ported toward one of the intersections
starting from one of the four streets lead-
ing toward that intersection (Fig. 1C; see
Movie 2 for an example trial). Duration
of this travel phase was fixed to 4 s corre-
sponding to 20 virtual meters. The move-
ment stopped at the center of the
intersection, a red crosshair appeared in
the middle of the screen, and participants
were asked to point in the direction of
one of the two target landmarks. Pointing
was performed by moving the crosshair
to the left or right with the arrow keys of
the keyboard. Once they believed to have
reached the correct position, they con-
firmed their response by pressing the
space bar. Participants were asked to
respond as fast and accurately as possible
with a time-out of 12 s (corresponding to
1% 360° turns in the VE). The ITI (inter-
trial interval), showing a fixation cross,
was fixed to 1.5 s. Throughout each trial,
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Spatial leamning task. A, Procedure of the fMRI experiment. After a familiarization phase outside of the scanner, eight

the background was obscured by fog to
prevent participants from seeing the
street ends or target landmarks during
pointing. The first seven retrieval phases
were followed by an encoding phase
during which participants were pas-

retrieval phases, each comprising eight navigational retrieval trials and four control trials, alternated with seven encoding phases dur-
ing scanning. In the behavioral experiment, the structure was the same except that 12 navigational retrieval trials per learning block
were completed while the control trials were omitted. B, Layout of the VE. The VE resembled a typical German historic city center
and consisted of four interconnected intersections (11—14) that could be reached from four directions (D1-D4). At two intersections,
a town hall (T1) and a church (T2) were placed at the end of one of the outgoing streets that served as target landmarks in the
navigational retrieval trials. Yellow arrows exemplify one encoding tour that started from one of the target landmarks in clockwise

or counterclockwise direction (a short segment of one tour is shown in Movie 1). , Structure of one example navigational retrieval
trial to measure spatial leaming. After fixation, participants were passively transported toward one of four intersections in the VE
starting from one of the four streets leading toward that intersection (see Movie 2). Movement stopped at the center of the intersec-
tion, a red crosshair appeared, and participants were asked to move the crosshair in the direction of the respective target landmark.
During the entire duration of the trial, a picture cue of the target landmark was displayed at the bottom of the screen, and the
background was obscured by fog to prevent seeing the target landmarks. In the fMRI experiment, an additional jittered interval of
1's (still phase) was added after the travel phase/before the crosshair appeared on screen.

sively transported around the whole
VE (without fog), starting from one of
the two target landmarks in clockwise
or counterclockwise order, counterbal-
anced across the experiment (see
Movie 1 for a short segment of one
tour). During encoding, participants
were instructed to pay close attention
to the spatial layout of the VE and the
location of the target landmarks. Passive transportation instead of
self-controlled traveling was chosen to ensure that every par-
ticipant experienced the VE for the same amount of time
(duration: 2.88min per tour). In total, participants per-
formed 96 navigational retrieval trials (four intersections x
four directions x two target landmarks x three repetitions)
in a pseudo-randomized order, with the restriction that each
intersection/target landmark combination was encountered
starting from two of the four possible directions in the first half
of the experiment. In the second half of the experiment, divided
by a self-timed break, the respective other two directions were
used, counterbalanced across participants. This allowed us to
examine how experiencing familiar locations from a novel
viewpoint affects pointing performance.

Movie 1.  Exemplary segment of one of the tours through the VE in the encoding phases
of the two experiments. [View online]
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Movie 2.
[View online]

Example for a pointing trial in the retrieval phases of the two experiments.

The fMRI experiment also consisted of eight learning blocks
during which eight retrieval phases alternated with seven encod-
ing phases (see Fig. 1A for the structure of the fMRI experiment).
fMRI scanning started after a familiarization phase outside of the
scanner with the same structure as in the behavioral experiment
and a short practice phase during structural imaging. One re-
trieval phase consisted of eight navigational retrieval trials,
which were followed by four control trials. These control trials
also started with a 4-s travel phase toward an intersection, fol-
lowed by a pointing phase with a crosshair on screen. Here,
cued by a corresponding picture, however, participants were
instructed to indicate which of the four corner buildings at the
intersection had changed its color and was shaded in blue.
Their responses in the control task were classified as correct if
they were within +25° from the middle of the respective build-
ing, approximately corresponding to its outline. Participants
moved the crosshair with their index and middle finger for left
and right turns and confirmed their responses with their right
thumb on a five-key Lumitouch response box. Again, partici-
pants were asked to respond as fast and accurately as possible
with a time-out of 12 s. The ITIs had a variable duration of 1-5
s with a mean of 3 s. During retrieval trials, an additional jit-
tered interval of 0.5-1.5 s in duration with a mean of 1 s was
included after the travel phase/before the crosshair appeared.
The structure of the respective encoding tours was the same as
in the behavioral experiment (passive traveling with a constant
duration of 2.88 min per tour). In total, participants performed
64 navigational retrieval trials (four intersections x four direc-
tions X two target landmarks X two repetitions) without the
change of directions from the first to the second half of the
experiment as in the behavioral experiment. The change in
directions was omitted in the fMRI environment to eliminate
the potential influence of approaching the intersections from
novel viewpoints and to accommodate a reduced number of tri-
als because of the inclusion of the control task. In total, partici-
pants performed 32 control trials (four intersections x four
directions x two repetitions). fMRI scanning consisted of three
runs that were divided by short breaks with 24 navigational re-
trieval trials, 12 control trials and two encoding tours in the
first run; 24 navigational retrieval trials, 12 control trials and
three encoding tours in the second run; and 16 navigational re-
trieval trials, eight control trials, and two encoding tours in the
third run.

Bayesian modeling of performance data
In both experiments, subject-specific improvements in naviga-
tional performance were estimated by using a Bayesian
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Figure 2. Bayesian state-space model to estimate the subject-specific hidden leaming
state per learning block (see Extended Data Figure 2-1 for the model code). Results of the
posterior predictive checks of the model for representative individuals from each learning
subgroup in the fMRI experiment and a histogram of the individuals’ LOO differences for the
comparison of the Bayesian state-space model to an alternative model that estimated the
individuals' learning state trial-wise is depicted in Extended Data Figure 2-2.

Priors

Y, ~ HalfNormal (log(y,),0.3)
Y, ~ HalfNormal (u,_,,0.2)
Ny, ~ HalfNormal (/,,6)

implementation of a state-space model that is similar to a local
level model where the trial outcomes, y, correspond to the
observed level, and the state level represents the hidden learning
state, u (Fig. 2; Commandeur and Koopman, 2007). The hidden
learning state, u, is following a random walk such that the actual
block learning state depends on the learning state from the previ-
ous block. Similar state-space models (Smith et al., 2007) have
been used in previous studies to estimate spatial learning
(Wolbers and Biichel, 2005; Auger et al.,, 2015). However, these
studies modeled binary data on a trial-by-trial basis, whereas the
present study used continuous performance outcomes and
focused on estimating spatial learning block-wise instead of trial-
wise. To model the learning state block-wise, an intermediate
level accounts for the effects of the responses, 7, and shrinks the
effects of individual trials within a block toward the block-wise
learning state. In this way, the model accounts for the fact that
we can only measure behavioral performance but not the effect
of learning or navigational improvement, which we expected to
change from one encoding phase to the next but not necessarily
from trial to trial. Introducing this intermediate level additionally
allowed us to incorporate potential missing trials into the
response effects, 7. In case of missing trials, we estimated 1 ~
HalfNormal (log(y,),1), i.e., using the log of the block mean as
location parameter. The model was implemented using the
Python interface to Stan, PyStan (Carpenter et al., 2017; Stan
Development Team, 2017; see Extended Data Fig. 2-1 for the
Stan code). To account for the substantial between-subject and
within-subject variability of the data, weakly informative priors
were chosen to provide vague guidance for effective sampling.
The model was fit for each participant using four chains each
with 4000 iterations, of which 2000 correspond to the warm up
period, totaling 8000 postwarm-up draws. After inference, con-
vergence of the chains was checked by means of the effective
sample size and the potential scale reduction factor (Rhat), con-
firming that our chains mixed well (Gelman and Shirley, 2011).
To determine the fit of our model to the data, we performed a
posterior predictive check that compares the observed data with
simulated data using samples from the posterior distribution. In
Extended Data Fig. 2-2A-E, the posterior predictive samples dis-
tribution y,e, is plotted together with the observed data y for
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representative individuals from different learning subgroups in
the fMRI experiment (see below, Performance clustering) show-
ing that our model was adequate to capture the observed data.
We further compared our model to an alternative, simpler model
where 17 was removed (i.e., learning was estimated trial-wise
instead of block-wise). Using a leave-one-out (LOO) cross-vali-
dation (Vehtari et al., 2017), point-wise out-of-sample prediction
accuracies were estimated for both models. Comparing them
confirmed that the model incorporating the intermediate layer
accounting for the response effects, 7, provided better fit to the
data, as evidenced by positive LOO differences across the whole
sample (sample mean = 1209, SEM = 242; see Extended Data Fig.
2-2F for a histogram showing the individual LOO difference
values).

fMRI acquisition parameters

Scanning was performed on a 3T Magnetom Prisma scanner
(Siemens Healthcare) with a 20-channel head coil. High-resolu-
tion TI-weighted anatomic images were acquired using a
MPRAGE sequence (1-mm isotropic resolution; TE=2,82ms;
TR=2500ms; flip angle=7°). In three functional runs, whole-
brain T2#-weighted echo planar images with BOLD contrast
were acquired in interleaved bottom-up order (36 slices, 3-mm
isotropic resolution; TE =30ms; TR =2000 ms; FoV =216 mm;
72 x 72 image matrix; flip angle = 90°).

Behavioral and fMRI statistical analyses

Behavioral analyses

Absolute pointing errors (ie., the deviation of the subject’s
response from the direction toward the respective target land-
mark) served as performance measures in both experiments. In
the behavioral experiment, we additionally analyzed response
times given the change in directions from which the intersections
were approached after the first half of the experiment. Where
appropriate, ANOVAs were performed across learning blocks
with age-group (younger adults, older adults) as between-sub-
jects’ variable. In a control analysis, we checked for potential
biases in pointing behavior by applying circular statistics on the
signed pointing error data relative to each target landmark for
every intersection-direction combination, using the CircStat
toolbox in MATLAB (Berens, 2009). In general, a threshold of
p<<0.05 was considered significant (with correction for the
number of tests where applicable).

Logistic regression model

With respect to the behavioral experiment, we were interested in
whether two features that characterized age-related differences in
performance could be used to predict the age group of our par-
ticipants. The first feature was the mean amount of learning
across all learning blocks, which was calculated based on the dif-
ferences between individual learning state estimates, derived
from the Bayesian state-space model, from two consecutive
learning blocks. The estimates from the first learning block after
the familiarization phase, during which participants encoun-
tered the VE for the first time, were subtracted from chance
level performance (90°). In this way, learning-related improve-
ments in performance were considered that already took place
during the familiarization phase, resulting in pointing errors
well below chance level in the first learning block for some par-
ticipants. The second feature were the changes in response
times after the directions changed from which the intersections
were approached after the first half of the experiment. These
two features were normalized and then fed into a logistic
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regression model as implemented in Scikit-learn (Pedregosa et
al., 2011), with age group as target vector. The regularization
parameter was set using a 10-fold nested cross-validation, and
the performance of the model was assessed by computing the
average area under the curve (AUC) for all folds. In this way,
the probability of each individual belonging to the younger or
the older age group could be estimated. The resulting probabil-
ities are interpreted in terms of individual performance: those
participants with a higher probability of belonging to the
younger age group show better performance on the task while a
higher probability of being in the older age group relates to
poorer navigational performance.

Performance clustering

In the analysis of the behavioral data from the fMRI experiment,
we assessed whether subjects could be clustered into different
learning subgroups based on their performance. This allowed us
to investigate learning-related differences in neural activity at the
between-subjects level. For each participant, we created a distri-
bution based on the difference of the latent state distributions of
the last and first learning block to capture the overall amount of
learning across the experiment. The mean and the SD parame-
ters of this difference distribution were obtained by fitting it to a
normal distribution using SciPy (Jones et al., 2001). In this way,
the clustering provides a richer source of information to distin-
guish between different learning subgroups. For example, taking
only the steepness of the curve across learning blocks into
account, would not capture differences between very good learn-
ers, who learned most of the spatial layout already during famili-
arization, and very bad learners, with both groups exhibiting flat
learning curves. However, they may differ in the uncertainty of
their judgments, which is captured by the dispersion of the dif-
ference distribution. We used a K-means clustering algorithm as
implemented in Scikit-learn (Pedregosa et al., 2011) to identify
the centers of a predetermined number of clusters based on their
distances to the data points. To obtain the optimal number of
clusters to input into the K-means, we varied the number of pos-
sible clusters from three to seven and computed the mean
Silhouette Coefficient of all samples per cluster as a measure for
the distance between the resulting clusters with values ranging
from —1 to 1 (negative values would indicate wrong cluster
assignments and values near zero overlapping clusters). We
found five to be the best choice for the number of learning sub-
groups in our sample (respective silhouette scores per tested clus-
ter number: 3: 0.259, 4: 0.395, 5: 0.457, 6: 0.429, 7: 0.410). One
should note that the results of this data-driven approach to char-
acterize the heterogeneity within the two age groups are specific
to our sample and cannot be generalized to the whole popula-
tion. Different samples of younger and older adults might result
in different learning clusters because of different performance
levels.

fMRI image quality control and preprocessing

The imaging data were first transformed into the Brain Imaging
Data Structure (BIDS) format (Gorgolewski et al., 2016). MRIQC
(version 0.9.3; Esteban et al., 2017) was used for checking the qual-
ity of the MRI data. MRIQC utilizes tools from different software
packages such as FSL or Advanced Normalization Tools (ANTSs)
to extract image quality metrics (IQMs) and generates visual
reports at the individual and group level. This allows the evalua-
tion of different characteristics of the structural and functional
MRIs, for example, SNR/tSNR, sharpness, and presence of arti-
facts. Data from one younger adult and two older adults were
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consequently excluded from further analyses because of strong
task-related movement and/or artifacts in several functional runs
resulting in low-quality IQMs (e.g., high ghost-to-signal ratio, low
tSNR). Next, motion correction, slice timing, co-registration, and
normalization of the images was performed using fMRIprep ver-
sion 1.0.0-rc5 (Esteban et al., 2019) that also draws on different
software packages to provide the optimal implementation for dif-
ferent stages of preprocessing. For example, normalization to MNI
space was performed using ANTs as a state-of-the-art medical
image registration and segmentation toolkit. Finally, the data were
smoothed with a 6 mm full-width at half maximum isotropic
Gaussian kernel using SPM 12 (Wellcome Department of Imaging
Neuroscience, London, United Kingdom).

Region of interest (ROI) definition

Based on results from previous studies (Wolbers and Biichel,
2005; Auger et al., 2015; Mao et al,, 2018), we defined two ROIs,
namely, the RSC/POS and the hippocampus. The single ROIs
were created based on each participant’s T1 structural scan using
a semiautomated anatomic reconstruction and labeling proce-
dure as implemented in FreeSurfer v6.0.0 (http://surfer.nmr.
mgh.harvard.edu; Dale et al., 1999; Fischl et al.,, 1999). In each
hemisphere, labels corresponding to the posterior-ventral part
of the cingulate gyrus (area 10) and the POS (area 65) from the
Destrieux Atlas and the hippocampus from the subcortical seg-
mentation were extracted (Fischl et al., 2002; Destrieux et al.,
2010). The two cortical labels were combined into one RSC/
POS ROIL Each ROI was next transformed to MNI space.
Hemispheres were combined to one bilateral ROI, thresholded
at 0.5, and finally resampled to correspond to the resolution of
our functional images. The ROIs were subsequently used in the
univariate analysis and for the volumes of interest (VOIs)
extraction in the effective connectivity analysis. In our defini-
tion of the hippocampus ROI, we did not separate between an-
terior and posterior hippocampus because previous fMRI
studies have not reported a clear dissociation along the hippo-
campal long axis during navigation in healthy aging. Hence,
strong a priori hypotheses about a potential anterior-posterior
dissociation seemed unwarranted. Distinctions between ante-
rior or posterior hippocampus in the results presentation refer
to the location of the clusters we obtained in our analyses with
foci at or anterior to y = —21 mm in MNI space being regarded
as belonging to the anterior hippocampus (Poppenk et al,
2013).

fMRI univariate analysis

At the single-subject level, a general linear model (GLM) was
specified with six regressors of interest for each learning block
using a high-pass filter of 100 Hz. For the navigational as well as
control retrieval trials, we created regressors for the 4 s travel
phase and the pointing phase. For the encoding phases, regres-
sors modeled periods when participants were located within 20
m of the intersection centers (corresponding to the area covered
during the retrieval travel phases) as well as outside of these
areas. Finally, the time of the button press was modeled as
regressor of no interest. All regressors were convolved with the
standard canonical hemodynamic response function (HRF) in
SPM12. In addition, we included motion parameters, the
frame-wise displacement (FD) and aCompCor values (Behzadi
et al., 2007), as obtained from fMRIprep preprocessing, in the
GLM to control for physiological and movement confounds. In
aCompCor, significant principal components are derived from
noise ROIs in which the time series data are unlikely to be
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modulated by neural activity. In this way, potential confound-
ing effects of physiological fluctuations that may differ between
age groups, such as cardiac pulsations and respiration-induced
modulations, are removed from the fMRI time series.

We focused on interaction effects between conditions of in-
terest and age group that are unlikely to be driven by group dif-
ferences in neurovascular coupling, unlike main effects of age
(Rugg and Morcom, 2005; see also Grinband et al., 2017). First,
we contrasted navigational retrieval trials to control trials to
identify general activation patterns in the RSC/POS and the hip-
pocampus during spatial navigation in our complex real-world
environment, similar to previous studies investigating age-group
differences in spatial navigation (Moffat et al., 2006). We addi-
tionally contrasted the travel phases toward the intersections
during navigational retrieval trials to the corresponding periods
when participants encountered the same areas during the encod-
ing tours. The within-subject effects of learning were assessed by
using the normalized differences between learning state estimates
(i.e., the outputs from the Bayesian state-space model) from con-
secutive learning blocks (i.e., amount of learning) as contrast
weights over the regressors modeling each travel phase during
navigational retrieval per learning block (compare Wolbers and
Biichel, 2005). At the group level, the resulting individual con-
trast images were entered into two-sample  tests to assess inter-
actions with age group. Finally, to check in which regions
activity changes across learning blocks are modulated by the
overall learning ability of the individual, we ran an additional
analysis in which learning subgroup was added as covariate in
the age-group comparisons at the second-level. All contrasts
were evaluated at p < 0.001 (uncorrected) and we report activa-
tions that survived the familywise error (FEW)-correction for
multiple comparisons using a threshold of p < 0.05 at the cluster
level.

In a control analysis, we checked whether learning-related
changes within the two ROIs could alternatively be driven by
spatial computations in which older and younger adults engage
in differently over the course of the experiment. We fitted a sepa-
rate finite impulse response (FIR) GLM for each participant with
the same regressors of interest as in our main GLM described
above. The FIR model was set up with eight time bins (2-s dura-
tion each, total time window: 16 s) as a basis function for the
HREF, and FIR time courses (percent signal change per time bin)
were extracted within both the hippocampus and the RSC/POS
ROIs for the regressors modeling the eight travel phases using
MarsBar (Brett et al., 2002). For each participant, we then deter-
mined the time bin when the HRF reached its peak, separately
for the beginning of learning (first four learning blocks) and the
end of learning (last four learning blocks). This approach allowed
us to test (1) whether the HRF reached its peak at different time
points in the first versus the second half of the experiment, and
(2) whether this time-to-peak differed between age groups.

Effective connectivity analysis

Effective connectivity within and between the hippocampus and
the POS was examined using the parametric empirical Bayesian
(PEB) approach in the context of dynamic causal modeling
(DCM) as implemented in SPM12 (Friston et al., 2016).

GLM and VOI selection. For the DCM analysis, we created a
GLM in which the time series from our three functional runs
were concatenated and added regressors that modeled the mean
signal for each run. The amount of learning per learning block
was included as parametric modulation of the regressor model-
ing the travel phase during navigational retrieval trials for each
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participant. All other regressors were the same as in the first
GLM although they were not modeled separately for each learn-
ing block. The sanity check of the concatenated GLM revealed
that activity in the right anterior hippocampus (27, —9, —15,
Z.=3.97; 27 voxels) decreased and activity in the left POS (—12,
—63, 31, Z =3.56; 42 voxels) increased with the amount of learn-
ing in younger adults (p < 0.05, FWE-corrected for the respec-
tive ROI). No additional activations emerged elsewhere in the
brain. When testing for interactions between learning-related ac-
tivity changes and age group within our ROIs, one cluster within
bilateral POS extending to RSC was revealed (15, —66, 44,
7=423; 12, =57, 4, Z=4.21; —6, —66, 24, Z=3.94; —15, —60,
28, Z=3.61; 369 voxels). Thus, activity in this region increased
with learning in younger adults but less so in older adults. The
slight differences of these results to the ones from the first GLM
are likely related to differences in the design of the two GLMs.
Whereas the first GLM was optimized to capture our experimen-
tal design as precisely as possible by modeling all regressors of in-
terest separately for each learning block, the concatenated GLM
was optimized for the DCM analysis that relies on single-run
time series.

BOLD time series were extracted for each individual using a
t-contrast over the regressors modeling the travel phase during
navigational retrieval and the amount of learning with a liberal
threshold of p < 0.1 (Note that this threshold was only used
for VOI selection, but not in the final DCM statistics). The
principal eigenvariate was extracted around the group peak
coordinates within the hippocampus and POS as obtained in
the univariate analysis of the concatenated GLM and was
allowed to vary as an 8-mm sphere centered on the subject-
specific maximum constrained by a 24 mm sphere centered
on the group maximum and the respective ROI mask. In this
way, variation between individuals in the exact location of
the effect was considered, given the high heterogeneity in
our sample and slightly different peak voxels in the two
GLMs. The extractions were corrected using an F-contrast
that retained the effects of interest (navigational as well as
control retrieval phases, encoding phases, button press)
while partitioning out task-unrelated variance caused by
head motion, for example. For participants for which no su-
pra-threshold voxels were identified (three younger adults
and one older adult), the threshold was lowered to p < 0.5 to
extract BOLD time series (compare Zeidman et al., 2019b).

First-level DCM specification. We specified a bilinear, one-
state DCM for each participant by setting the regressor modeling
the travel phase during navigational retrieval trials as driving
input entering the cortical network via the POS. The amount of
learning per learning block was included as modulatory input on
the bidirectional connections between hippocampus and POS.
All inputs were mean-centered so that the A-matrix of the DCM
represents the average connectivity across experimental condi-
tions. We used stochastic DCM that seeks to improve model esti-
mation by modeling random fluctuations and hidden neuronal
causes in the differential equations of the neuronal states (Li et
al., 2011; Daunizeau et al, 2012). In this way, the impact of
potential confounding effects of variations in BOLD response
caused by age is reduced. Bayesian group inversion was per-
formed, providing estimates of the connection strength parame-
ters that best explained the observed data per participant.
Critically, within DCM PEB, at each iteration of the within-sub-
ject inversion, the individual priors are updated using the group
average connection strengths as priors. Inspection of the single
DCMs after inversion confirmed that our full model provided
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good fit to the observed data with an average of 44.5 * 3.22%
variance explained.

Second-level PEB model. Next, we created a second level PEB
model over the parameters that included the group mean and
age group as covariates to identify differences between younger
and older adults. We further included learning subgroup and its
interaction with age group as covariates in the model. The inter-
action term was modeled as the two main effects of age and
learning group element-wise multiplied with the main effects
being mean-centered and coded in a way that low/negative val-
ues represent younger or better performing individuals. A search
over nested PEB models was performed by using Bayesian model
comparison (BMC) that explores a space of models under the
assumption that different combinations of the connections may
exist across participants (Zeidman et al., 2019a). To search over
hundreds of nested models incorporating different combinations
of connections and group differences, Bayesian model reduction
(BMR) was used that iteratively prunes parameters from the full
model until model-evidence decreases. To reduce dilution of evi-
dence, we separately checked for group differences in the A-ma-
trix (average connectivity across experimental conditions) and
the B-matrix (within-subject modulatory input of the amount of
learning per block). We further performed a LOO cross-valida-
tion to check whether the model parameter that differed between
older and younger adults could be used to predict the partici-
pants’ age group.

Data availability

Source data files for the main results figures and tables are stored
at https://osf.io/fjbxu/. We additionally provide a key resources
table listing all the software packages that were used in the cur-
rent study. The Stan code of the Bayesian state-space model can
be found in Extended Data Fig. 2-1.

Results

Findings are reported from two separate samples comprising
healthy younger and older adults who performed a spatial learn-
ing task either purely behaviorally (17 younger adults and 17
older adults) or in a combined fMRI-behavioral experiment (25
younger adults and 32 older adults). In both experiments, fol-
lowing an initial familiarization phase before testing/outside of
the scanner, eight learning blocks were implemented during
which eight retrieval phases alternated with seven encoding
phases. We used the angular deviation of the participants’
response from the respective target landmark (i.e., absolute
pointing errors) to measure performance improvements across
learning blocks. However, performance in these kinds of tasks
can be corrupted by various noise sources and, hence, might
not accurately reflect the actual learning state of the participant.
Therefore, subject-specific improvements in navigational per-
formance were estimated by using a Bayesian implementation
of a state-space model that disambiguated learning from ran-
dom trial-by-trial fluctuations in performance. We used the
outputs of the model in the analysis of the fMRI data to exam-
ine intraindividual and interindividual differences in learning.

Behavioral experiment

Lower performance and reduced learning in older adults

An ANOVA with learning block (1-8) as repeated measures
variable and age group (younger adults, older adults) as
between-subjects variable on the average absolute pointing errors
showed significant main effects of learning block, F(; 2,4y =19.5,
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(dashed line; highlighted in gray is the fourth and fifth learning block where the change in directions took place from which the intersections were approached). Error bars denote SEM. See
also Extended Data Figure 3-14,B for average pointing errors per learning block for each participant in each age group. €, Mean estimated performance improvement (hidden leaming state) of
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age group membership based on two behavioral performance features, i.e., the mean amount of learning across the experiment and the increase in response times after the first half of the

experiment. Shaded lines depict the probability of being dlassified as a younger adult.

p<0.001, 7;5 = 0.379, and age group, F(; 32 =852, p<0.001,
my = 0.727. This was modulated by a significant interaction
between the two factors, F(7 »4)=7.40, p < 0.001, né =0.188. At
the beginning, both age groups performed around chance level
(90°), although older adults had spent significantly more time
than younger adults (Mg = 534 * 161 8; Myoung = 218 = 41.4 5;
taes) = —7.63, p<0.001, d=2.69) in the initial familiarization
phase of the experiment, during which they encountered the VE
for the first time. Over the course of the experiment, however,
older adults showed lower performance and less improvement
compared with younger adults (Fig. 3A4). The change in direc-
tion from the first to the second half of the experiment did not
have a major effect on this pattern of results as implied by a
non-significant interaction between learning block and age
group when directly comparing the fourth and fifth learning
block, F(; 32 =1.96, p=0.171, 57 = 0.058. A separate ANOVA
within the older age group on pointing performance per learn-
ing block confirmed that older adults generally improved on the
task over time as evidenced by a significant main effect of learning,
Fy 2 =2.58, p=0.017, 7, = 0.139. According to the outputs of
the Bayesian state-space model (Fig. 3C; see Extended Data Fig. 3-
1A,B for average pointing errors per learning block for each

participant), most of the younger adults learned the spatial layout
of the VE very fast, reaching ceiling performance already after the
first few learning blocks. The older adults, in contrast, differed
more widely in their ability to learn.

To investigate potential biases in pointing behavior that might
differ between the age groups, such as an increased tendency to
point along streets, circular statistics were applied on the signed
pointing error data relative to each target landmark for every
intersection-direction combination. From the 32 age-group com-
parisons (four intersections x four directions x two target land-
marks), only seven reached significance as determined by a
Watson-Williams test, all p < 0.047. Older adults showed larger
deviation from the correct angle than younger adults in six of the
seven instances. The direction of the deviations in pointing (e.g.,
to the left or right relative to the target landmark), however, var-
ied, and none of the effects survived when correcting for multiple
comparisons.

Higher uncertainty when viewpoints are changing in older adults
An ANOVA with learning block (1-8) as repeated measures
variable and age group (younger adults, older adults) as
between-subjects variable on the response time data confirmed
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significant main effects of learning block, F(724=9.26, p<
0.001, 77 = 0.225, and age group, F(; 35 =10.5, p=0.003, 1, =
0.247. Compared with older adults, younger adults responded
quicker and showed a steeper decline in response times over
time as revealed by a significant interaction between learning
block and age group, Fi74 =429, p=0.001, n; = 0.118.
Notably, when comparing the fourth and fifth learning blocks, a
significant interaction between learning block and age group was
obtained, F(;37=9.34, p=0.004, 77; = 0.226. Older but not
younger adults showed a substantial increase in response times
in the fifth learning block when the intersections were encoun-
tered from novel directions (Fig. 3B). This result cannot be
explained by a confound between pointing performance and
required turning at the intersections because the required
amount of turning to perform accurately on the task varied from
trial to trial, depending on the specific intersection-direction-tar-
get landmark combination. Moreover, it was kept constant
across experiment halves and participants (average turning direc-
tion: 135°). When considering the fourth and fifth block only,
the correct turning angle did not differ between blocks, age
groups, or varied between age groups as a function of learning
block, all F<3.23, p>0.082, n; < 0.092. Thus, older adults’
representations of the spatial layout of the environment seem to
be more rigidly tied to the sensory input encountered at the be-
ginning of learning, leading to a temporary uncertainty when
viewpoints are suddenly changing.

Performance in older adults is partly influenced by their facing
direction

Age-related differences in pointing performance depending on
the nature of the trials during navigational retrieval (i.e., respec-
tive intersection-direction-target landmark combination) were
further analyzed by means of an ANOVA on the absolute point-
ing errors with intersection (I1-14), direction (D1-D4), and tar-
get landmark (town hall, church) as repeated measures variables
and age group (younger adults, older adults) as between-subjects
variable. A significant interaction between the four factors sug-
gested that the performance of the age groups was modulated by
the respective intersection-direction-target landmark combina-
tion encountered in the VE during retrieval, Fq,s5)=2.05,
p=0.034, 5. = 0.060. Therefore, follow-up ANOVAs were con-
ducted within the two age groups separately. In younger adults, a
significant main effect of intersection, F 45 = 6.18, p=0.005, 7;3
= 0.279 (Greenhouse-Geisser corrected), showed that perform-
ance was worse when they were located at I4 (M =48.6 = 21.9°)
as compared with I1 (M =25.0 * 19.7°) or I2 (M =30.6 = 25.7°),
all p<0.010 (Bonferroni-corrected). This was modulated by a
significant interaction between intersection and target landmark,
F348)=11.4, p <0.001, n; = 0.416. Pointing errors were smaller
in this age group when they pointed toward the town hall
(M=13.5 = 14.5°) as compared with the church (M=36.6 =
29.3°) at I1, which was the intersection adjacent to the town hall,
and vice versa at I3, which was the intersection adjacent to the
church (town hall: M =45.5 = 35.5°% church: M =25.8 = 26.9°),
all £>3.33, p<0.004, d > 0.807. The directions from which the
intersections were approached did not have an influence on per-
formance in this age group, all F<1.80, p >0.133, 7713 < 0.101.
In older adults, there was also an interaction between intersection
and target landmark, F;45)=3.38, p=0.026, 77; = 0.174. When
located at I3, pointing errors were smaller when the target land-
mark was the adjacent church (M =73.2 = 27.4°) as compared
with the town hall (M=942 * 19.9°), fue=2.73, p=0.015,
d=0.662. The corresponding comparison for 11 did not reach
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significance, t(16)=1.12, p=0.281, d=0.271. In addition, there was
a significant interaction between direction and target landmark,
F(3,48)=3.75, p=0.039, ”’7; = 0.190 (Greenhouse-Geisser
corrected). Post hoc t tests indicated that pointing toward
the town hall (M =80.3 * 18.1°) tended to be easier as com-
pared with pointing toward the church (M =94.5 * 27.1°)
for the older adults when they approached the intersections
from D4 (i.e., facing east), t(;6=1.96, p=0.068, d=0.475.
In contrast, pointing toward the church (M =69.9 * 19.6°)
tended to be easier than pointing toward the town hall
(M =87.0 = 23.3°) when they approached the intersections
from D2 (i.e., facing west), t(16=1.99, p=0.064, d=0.483.
This was modulated by an interaction between intersection,
direction, and target landmark, Fg 144)=2.25, p=0.022, 1;3 =
0.123. Separate follow-up ANOVAs for each intersection with
direction (D1-D4) and target landmark (town hall, church) as
repeated measures variables revealed for I2 a main effect of direc-
tion, F(34s)=5.25, p=0.003, 7;; = 0.247, indicating that pointing
generally seemed to be easier from D2 (i.e., facing west; M = 68.8
* 32.7°) as compared with D1 (M=94.0 = 24.5°) or D4
(M =958 * 37.1°), that is, when they were facing toward the
dead-ends at this intersection, all p <0.054 (Bonferroni-cor-
rected). At I3, a main effect of target landmark indicated that
pointing toward the adjacent church (M =73.2 * 27.4°) was
easier for the older adults than pointing toward the town hall
(M=94.2 = 20.0°), F(s 45)=7.47, p=0.015, 7 = 0.318. This
was modulated by an interaction between direction and target land-
mark, F;45 =444, p=0.008, n, = 0.217. Pointing toward the
church was easier when coming from D1 (i.e., facing south; town
hall: M=107.7 = 31.5% church: M =65.6 £ 36.0°) or D2 (i.e., facing
west; town hall: M=98.0 = 39.4°% church: M=52.6 = 40.8°), all
t>3.19, p <0.006, d > 0.773. Finally, at I4, there was also an inter-
action between direction and target landmark, F545= 3.74,
p=0.017, m; = 0.190. Performance was better when participants
pointed toward the church (M =75.9 * 30.8°) as compared with
the town hall (M =106.6 = 31.4°) when approaching the intersec-
tion from D2 (i.e., facing west), #;6) =2.59, p = 0.020, d = 0.629.

To summarize, the results of this analysis again demon-
strate better navigational encoding in younger adults and a
higher reliance on the specific sensory input in older adults.
The directions from which the older adults were approaching
the intersections partly seemed to have an impact on their
performance, although variability in performance was gener-
ally quite high.

Individual learning state and response time increase after
direction change predict age group

We next used a logistic regression model to check whether age-
group can be determined based on two features that characterized
age-related performance differences in our task. The mean
amount of learning across the whole experiment (i.e., difference
between individual learning state estimates from consecutive
learning blocks) and the change in response times from the fourth
to the fifth learning block served as input features. The model per-
formed very well to estimate the probability of being classified as a
younger adult with an average AUC of 0.99 = 0.02%. Thus, those
participants with a higher probability of belonging to the younger
age group show better performance on the task while a higher
probability of being in the older age group relates to poorer navi-
gational performance, i.e., a lower mean amount of learning
across blocks and a higher increase in response times when pre-
viously learned locations are encountered from novel viewpoints
(Fig. 3D).
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Performance data in the fMRI experiment. A, Average absolute pointing errors across the eight leamning blocks in older (solid line) and younger adults (dashed line). Error bars

denote SEM. See also Extended Data Figure 3-1C,D for average pointing errors per learning block for each participant in each age group. B, Mean estimated performance improvement (hidden
learning state) of each participant in the older (orange) and younger (gray) age group, including the SD of the posterior distributions (shaded area) across learning blocks. €, Learning subgroups
as identified by a K-means clustering algorithm based on the individuals' overall amount of leaming and its SD, as determined by the difference of the latent state distributions of the last and
first leaming block. See Extended Data Figure 4-1 for difference distributions, leaming state estimates, and performance data per learning block for representative individuals from each learning
subgroup and Extended Data Figure 4-2 for the results of the same clustering analysis within the sample of the behavioral experiment.

fMRI experiment

After preprocessing of the fMRI data using fmriprep (Esteban et
al., 2019) and SPM12, we performed a univariate regression anal-
ysis to identify age-related differences in neural activity in
the RSC/POS and the hippocampus during different phases of
the experiment. We further examined the effects of learning
at the within-subject and between-subject level. Finally, we
examined age-related and learning-related differences in effec-
tive connectivity within and between the two regions.

Learning ability varies within the older age group

As in the behavioral experiment, older compared with younger
adults spent considerably more time in the initial familiariza-
tion phase of the experiment outside of the scanner (Mg =
466 = 133 5; Myoung = 258 = 57.5 s tiay3) = —7.91, p<0.001,
d=2.03. Moreover, we found significant main effects for learn-
ing block, F(7 355y = 32.3, p <0.001, 7;13 = 0.370, and age group,
F(1,55 =167, p<0.001, 7, = 0.752, together with a significant
interaction between the two factors for the average absolute
pointing errors, F7 335y =11.0, p < 0.001, 773 =0.166. This indi-
cates that younger compared with older adults again showed

better performance on the task and stronger improvement
across learning blocks (Fig. 4A). Older adults, however, did
show learning at the group level as confirmed by a separate
ANOVA within this age group, Fi17=3.58, p=0.001, 7
0.103. Accuracy for the control trials was at ceiling across the whole
sample (mean proportion of correct responses=0.97 = 0.05). In
contrast to the behavioral experiment, the change in directions
from the first to the second half of the experiment was omitted here
because of the reduced number of trials per learning block. Thus,
we did not expect changes in response times from the first to the
second half of the experiment.

Individual learning state estimates as obtained from the state-
space model again showed that participants varied substantially
in their ability to learn the spatial layout of the VE (Fig. 4B; see
also Extended Data Fig. 3-1C,D for average pointing errors per
learning block for each participant). To determine how neural
activation patterns were modulated by the individuals’ overall
amount of learning across the experiment, we used a K-means
clustering algorithm to identify learning subgroups based on the
difference between the latent state distributions of the last and
first learning block. The estimated optimal number of clusters in
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Table 1. Spatial coordinates of the local maxima in the hippocampus and RSC/POS ROIs in the fMRI analyses on age-related differences in neural activation pat-

terns (p < 0.05, FWE-corrected)

MNI coordinate

Brain region Cluster size X y z Z-score
Increased activity in older compared with younger adults during navigation vs control
L POS 83 -3 —60 34 4.56
L RSC —6 —57 21 432
L Hippocampus 72 =21 —18 —12 4.76
—30 —15 —22 40
Reduced activity in older compared with younger adults during navigation vs control
R POS 22 12 —69 54 4.00
18 —69 57 3.94
15 —75 51 3.25
R POS 55 27 —60 24 3.96
Increased activity in older compared with younger adults during retrieval vs encoding
R POS 27 12 —51 34 4.03
L Hippocampus 33 -30 —15 —15 4.08
R Hippocampus 20 24 —12 —12 3.97
Age-group differences in learning-related activity decreases
R Hippocampus 20 24 —18 —15 4.55
Age-group differences in learning-related activity increases
L POS 462 -9 —66 24 593
—24 —72 47 5.37
L RSC —18 —57 1 414
—6 —63 n 3.98
R POS 148 24 —69 47 495
21 —72 54 473
R RSC 205 9 —57 4 4.82
9 —63 21 4.59

See Extended Data Table 1-1 for significantly activated clusters elsewhere in the brain.

our sample turned out to be five (Fig. 4C). A group of top learn-
ers (n=9), consisting of seven younger adults and two older
adults, already learned the layout of the VE after the familiariza-
tion phase resulting in a small difference in learning between the
first and the last learning block. The second cluster exclusively
consisted of younger adults, categorized as good learners
(n=14). They typically reached ceiling performance during the
first half of the experiment with a low variance in their difference
distribution. A group of intermediate learners (n=9), consisting
of a three younger and six older adults, were still improving in the
second half of the experiment and consequently exhibited the larg-
est difference in their hidden learning state from the beginning to
the end of the experiment and a relatively high variance.
Individuals belonging to the fourth cluster were categorized as
weak learners (n=12) who showed only a small improvement
across the whole experiment and a high variability. This cluster
consisted of older adults only. Finally, 12 older adults and one
younger adult did not show considerable improvement across the
learning blocks and were consequently categorized as non-learners
(n=13) in the context of our experiment. Difference distributions
for representative individuals from each learning subgroup, together
with learning estimates and behavioral data per learning block, can
be found in Extended Data Fig. 4-1. Although these results are spe-
cific to our sample, the same clustering analysis within the behav-
ioral experiment yielded comparable results in terms of the number
of learning subgroups, underscoring the validity of its results in the
context of our task (see Extended Data Fig. 4-2).

These between-subject differences in learning demon-
strate that our task was neither too easy nor too difficult for
one of the age groups per se. In addition, the learning sub-
groups within each age group were comparable with respect
to the factors age, sex or signs of major cognitive impairment
(Extended Data Fig. 4-3).

Age-related hyperactivation in the hippocampus and RSC/POS
during navigational retrieval

First, to identify overall age-related differences in activation pat-
terns within the RSC/POS and the hippocampus, regardless of
learning, we contrasted navigational retrieval trials to control tri-
als. Activity in medial parts of the RSC/POS was increased in
older compared with younger adults for this comparison. This
age-related activity increase was also observed in the left anterior
hippocampus (Table 1, increased activity in older compared with
younger adults during navigation vs control). An age-related ac-
tivity reduction was found in a small cluster in the superior right
POS and also in a more lateral cluster in the right POS (Table 1,
reduced activity in older compared with younger adults during
navigation vs control). Second, we tested for interactions
between age group and activation differences during navigational
retrieval versus encoding to check whether these two phases of
the experiment were differently affected by age. In one cluster of
the right POS as well as two clusters in the right and left anterior
hippocampus, activity was increased in older adults compared
with younger adults during navigational retrieval versus encod-
ing (Table 1, increased activity in older compared with younger
adults during retrieval vs encoding). There were no clusters
within our ROIs where activity was reduced in older adults.
Activations outside of our ROIs for these two comparisons and
the corresponding results for the whole sample can be found in
Extended Data Table 1-1.

Learning-related activity changes in anterior hippocampus and
RSC/POS are less pronounced in older adults

By using the amount of learning per block as contrast weights in
our GLM, we assessed learning-related age-group differences in
the time course of hippocampal and RSC/POS involvement dur-
ing navigational retrieval. First, we found that activity in the
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Interaction effects between age group and the amount of leaming per block during navigational retrieval. Age-related differences in (A) hippocampal activity decreases and (B)

RSC/POS activity increases across the experiment. Activations are displayed on the 2009 nonlinear asymmetric MNI template that was used for normalization (p << 0.05, FWE-corrected for the
respective ROI). Plots depict average parameter estimates of the respective peak voxels per learning block in selected clusters for each age group. Error bars indicate the across-subject standard
error of the mean. See Table 1 for the spatial coordinates of the local maxima in the hippocampus and RSC/POS ROIs and Extended Data Table 1-1 for significantly activated clusters elsewhere

in the brain.

anterior portion of the right hippocampus decreased in younger
but less so in older adults as a function of learning (Table 1, age-
group differences in learning-related activity decreases; Fig. 5A).
This suggests that hippocampal activity reflected the amount of
spatial knowledge that was acquired after each encoding tour in
the younger age group. In older adults, in contrast, hippocampal
activation did not change systematically across learning blocks.
Second, we also found several clusters within the RSC/POS ROI
where activity increased over the course of the experiment more
in younger than in older adults (Table 1, age-group differences
in learning-related activity increases; Fig. 5B). This concerned
the whole extent of the left POS from its superior parts to the left
RSC, a cluster in the right RSC/POS, and a more lateral cluster in
the right POS. Activity in these clusters paralleled changes in per-
formance across learning blocks in the younger age group. Older
adults’ individual learning curves, in contrast, were again
decoupled from activity changes in these regions. Activations
outside of our ROIs for these comparisons and the correspond-
ing results for the whole sample can be found in Extended Data
Table 1-1.

It is possible that the decreasing BOLD responses in the hip-
pocampus and the increasing responses in RSC/POS, which we
observed in younger adults, could have been driven by younger
adults becoming quicker with self-localization, allowing them to
compute the direction toward the target landmark at progres-
sively earlier time points. Under this scenario, one would predict
a temporal shift of the BOLD response, in particular for the RSC
(assuming a role of the RSC/POS in deriving directional

relationships between one’s position and landmarks). To directly
test this hypothesis, we performed a control analysis using a FIR
model of the hemodynamic response but did not find any indica-
tions that the time bin of the peak of the HRF changed between
the first and the second half of the experiment, neither in the hip-
pocampus nor in the RSC/POS ROL In the hippocampus, the
median time bin was 3.75 (IQR=1.25) in the first and 4.25
(IQR=1.50) in the second half of the experiment in younger
adults (out of eight time bins that were modeled with a 2-s dura-
tion each). In older adults, the median in the first half was 4.50
(IQR=1.44) and 4.50 (IQR=0.75) in the second half. A two-
sample Wilcoxon test confirmed that these differences were not
significant in any of the experiment halves (all p>0.106,
Bonferroni corrected, all effect sizes r < 0.262). Similar results
were obtained in the RSC/POS ROI with a median of 4.75
(IQR=1.00) in the first and 4.50 (IQR =1.00) in the second half
within the younger age group and 4.50 (IQR=1.19) in the first
and 4.75 (IQR=1.25) in the second half within the older age
group (all p>1.00, Bonferroni corrected, all effect sizes
r<0.049). This suggests that the differential hippocampal and
RSC/POS dynamics in the two age groups are unlikely to be
driven by changes in the onset/duration of the spatial computa-
tions conducted in the two regions.

Learning-related activity changes across blocks are modulated by
interindividual differences in learning within older adults

Behavioral performance of older adults varied substantially, with
some of them showing hidden learning states similar to younger
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adults while others showed very little performance
improvements. Therefore, we next included the
individual’s learning subgroup as covariate in the
second-level analysis to examine in which regions
learning-related activity changes across blocks dif-
fered as a function of the overall learning ability of
the individual. In younger adults, no activations
emerged within our ROIs or elsewhere in the brain.
In older adults, however, we found that activity
changes in several regions across the entire brain,
including visual cortices, the cerebellum, temporal
and frontal cortices, as well as the parahippocam-
pal cortex (PHC) extending to the anterior hippo-
campus, were more strongly related to the
individual learning curves in better performing groups (i.e.,
decreased across learning blocks; Fig. 6; Extended Data Fig. 6-1).
The learning curves of those older adults who were less able to
learn the layout of the environment, in contrast, were decoupled
from activity changes in these regions. No activations survived
our correction for multiple comparisons within our ROIs or
across the whole-brain when testing for the interactions between
age group and learning subgroup.

Age-related reduction in the inhibitory self-connection of the an-
terior hippocampus

To check whether age-related problems in spatial learning are
related to changes in the intrinsic excitability of the anterior hip-
pocampus and the RSC/POS or in the coupling between the two
regions, we used DCM PEB (Friston et al., 2016). DCM has been
successfully used to determine effective connectivity changes in
the hippocampus and related regions during memory processing
(Gluth et al., 2015). Moreover, DCM PEB offers several advan-
tages over classical DCM variants in terms of model selection
and second-level group comparisons. First, instead of specifying
several models at the first level and comparing their evidence, a
full model is estimated for each participant incorporating all pa-
rameters of interest, and BMR is performed to obtain posterior
estimates of nested models in which parameters that do not con-
tribute to the model evidence are pruned. Second, first-level
DCMs are equipped with empirical priors that shrink parameter
estimates toward a group mean. In this way, each subject’s con-
tribution to the group PEB result is weighted by their precision.
Third, applying classical inference methods to examine whether
certain parameters differ between groups after model inversion
ignores within-subject uncertainty (i.e., variance of the posterior
distributions). This is circumvented in PEB by using the full pos-
terior density over the parameters from each participant's DCM
to draw inferences about group level effects.

For each participant, we first specified and estimated a DCM
between the anterior hippocampus and the POS using peak coor-
dinates from the corresponding univariate analysis. Navigational
retrieval phases were modeled as driving input into the network
via the POS. The amount of learning per block was modeled as
modulatory input on the bidirectional connections between the
two regions (Fig. 7A). In the second-level PEB model, we included
age group, learning subgroup, and their interaction as covariates
to determine their relative influence on the connection strengths.
Figure 7, left panels, shows the group mean of the average connec-
tion strength before (Fig. 7B) and after BMR (Fig. 7D), indicating
that all four parameters were necessary to explain our data.

With respect to age group differences in connectivity, only
one parameter survived BMR (Fig. 7B,D, second panels).
Specifically, older compared with younger adults had a reduced

Diersch etal. @ Cognitive Mapping Deficits in Human Aging

Figure 6. Differential activity changes in relation to the amount of learning per block between learning sub-
groups in the older age group. Activations are displayed on the 2009 nonlinear asymmetric MNI template that
was used for normalization (p << 0.05, FWE-corrected). See Extended Data Figure 6-1 for the spatial coordinates
of the local maxima.

inhibitory self-connection strength in the anterior hippocampus,
i.e., a relative disinhibition in this region. Note that for self-con-
nections in the DCM framework, parameters are expressed as
log scaling parameters and that the regressor representing age
group was coded in a way that the resulting parameter is the
amount that needs to be added to the group mean to obtain the
older adults’ connection strength (the group mean is obtained by
calculating —0.5 Hz * exp(—0.33698) = —0.357 Hz and for older
adults —0.5Hz * exp(—0.33698 + —0.039719) = —0.3431 Hz).
Thus, our model provides evidence that the aging hippocampus
seems to be more readily excited by afferent activity from other
regions during spatial learning. The interaction between age
group and learning subgroup in this model parameter also sur-
vived BMR (Fig. 7B,D, right panels), indicating that the hippo-
campal self-connection strength was more strongly modulated
by the overall learning ability of the individual in the older age
group. Inspection of Figure 7D, forth panel, indicates that the
age-related disinhibition in this region was attenuated in better
performing individuals (see also Fig. 7C for posterior probabil-
ities of each parameter). We did not find any modulatory effects
of the (within-subject) amount of learning per block.

We further performed a LOO cross-validation using the
model parameter denoting the self-connection strength in the
anterior hippocampus to test whether this effect would be large
enough to predict the participants” age group. In this analysis, all
but one subject were used to estimate the model parameter,
which was then used to evaluate the posterior belief of the model
parameter in a left-out (test) subject. The predicted and actual
between-subject effect for each test subject was then compared
with derive an independent out-of-sample correlation, which
was 0.29 in the current sample (p=0.01434; Fig. 7E). Thus, the
estimated intrinsic connection strength in the anterior hippo-
campus during spatial learning was large enough to predict the
age group of a new subject above chance level.

Summary of the key findings

At the behavioral level, we found in two separate experiments
that performance improvements were considerably reduced in
healthy older compared with younger adults, when they were
asked to retrieve the spatial layout of an initially unfamiliar envi-
ronment. Older adults further showed a higher uncertainty when
familiar locations were experienced from novel viewpoints dur-
ing learning, as evidenced by a temporary increase in response
times. At the neural level, activity in the anterior hippocampus
and RSC/POS changed dynamically as a function of learning in
younger adults, whereas this was not the case in older adults.
Importantly, a DCM PEB analysis revealed that the inhibitory
self-connection of the anterior hippocampus was reduced in
older adults and was modulated by the overall learning ability of
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Figure 7. Results of the DCM PEB analysis. A, First-level DCM specification to determine average connectivity within and between anterior hippocampus and POS. Navigational retrieval
phases were modeled as driving input entering the cortical network via the POS, and the amount of leaming per block was included as modulatory input on the bidirectional connections
between the regions. Estimated parameters (1: self-connection POS, 2: POS—hippocampus connection, 3: hippocampus—P0S connection, 4: self-connection hippocampus) before (B) and after
(D) BMR for each covariate (age group, learning group, interaction between age group, and learning group) in the second-level PEB model. Gray bars represent parameter means and pink lines
their 95% confidence intervals. The parameters for self-connections (parameters 1 and 4) are expressed as log scaling parameters that can be converted to Hz using x_Hz = —0.5 * exp(x)
whereby x is the log scaling parameter and —0.5 Hz the prior. €, Posterior probabilities per parameter for each second-level covariate after BMR. E, Predicted age group of each participant as
derived from a LOO cross-validation scheme based on the estimated self-connection strength in the anterior hippocampus.

the individual as evidenced by an interaction between age group
and learning subgroup (see Fig. 8 for a graphical summary of the

results).

Discussion
In two experiments, we show that healthy older adults, on average,
have substantial problems in learning to orient themselves in a

novel, city-like VE, in line with previous findings (laria et al.,
2009; Yamamoto and DeGirolamo, 2012). At neural levels, we
could replicate earlier findings showing that activity in RSC/POS
increased while activity in the anterior hippocampus decreased as
a function of learning in younger adults (Wolbers and Biichel,
2005; Auger et al., 2015; Brodt et al., 2016), which shows that our
task is suitable to measure spatial learning, while using a complex
photorealistic VE. In older adults, activity in these two regions
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was decoupled from the amount of learning and did not change
systematically across repeated episodes in the environment.
Importantly, we provide the first evidence that an increased excit-
ability of the anterior hippocampus might constitute a potential
neural mechanism for cognitive mapping deficits in older adults.
In the behavioral experiment, we additionally found that
older adults had problems when locations are encountered from
novel directions during learning. This might be related to age-
related deficits in distinguishing novel from familiar input (Yassa
etal, 2011; Vieweg et al., 2015) and to impairments in allocentric
processing, because Wiener et al. (2013) observed age-related
performance declines when locations were approached from
novel directions during route learning. Given that viewpoint
transformations in spatial memory involve hippocampal compu-
tations (King et al., 2002), the behavioral results already point to
impaired information processing within the aging hippocampus
that affects navigational learning. This extends findings showing
that a reduced sensitivity to changes in the environment might be
linked to age-related impairments in object-location binding and
spatial perspective taking (Muffato et al., 2019; Segen et al., 2021).
In the fMRI experiment, performance relied on the knowl-
edge about the relation between the participant’s own position
and the position of the target landmarks, while the change in
viewpoints was omitted. What neural mechanisms can account
for the cognitive mapping deficits in older adults? The learning-
related activity decrease in the anterior hippocampus of younger
adults was absent in older adults, leading to an overall hippocam-
pal hyperactivity. Similar effects have been observed in studies
investigating age-related deficits in pattern separation (Yassa et
al., 2011; Reagh et al., 2018), as well as in rodent and non-human
primate studies on age-related changes in spatial navigation
(Wilson et al., 2005; Thomé et al., 2016). By examining effective
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connectivity, we were able to show, for the first time, that an age-
related reduction in the inhibitory self-connection strength
of the anterior hippocampus might constitute the underlying
neural mechanism for the elevated signal in this region. Within
the context of DCM, self-connection parameters capture, at a
macroscopic level, condition specific changes in the excitatory-
inhibitory balance (Friston et al., 2019). Because effective con-
nectivity as inferred using DCM for fMRI is typically polysynap-
tic, we cannot determine which class of cells or synapses underlie
these effects. In memory-impaired monkeys, increased firing
rates in CA3 place cells have been linked to a reduced number of
GABAergic inhibitory interneurons (Thomé et al, 2016).
Whether this is similarly the case in humans and how this is
related to AD pathogenesis are important questions for future
research (Bi et al., 2020).

The age effect on the hippocampal self-connection strength
was modulated by the learning ability of the individual, suggest-
ing that an increased hippocampal excitability might impair the
formation of spatial knowledge. Specifically, aberrant activity in
the hippocampus could have affected the spatial resolution of the
emerging cognitive maps in older adults, in line with findings
showing that (1) hippocampal lesion patients and healthy older
adults are impaired in forming high-resolution spatial represen-
tations when navigating novel environments (Kolarik et al.,
2016, 2018; Nilakantan et al., 2018); and (2) that reducing hippo-
campal hyperactivity with an anti-epileptic drug that targets exci-
tatory neurotransmission improves memory performance in
amnestic patients (Bakker et al., 2015; see also Koh et al., 2013;
Robitsek et al., 2015 for related findings in rodents). Critically, in
the context of our task, imprecise cognitive maps will not only
affect self-localization but also the ability to compute allocentric
vectors to the target landmarks. The latter process has also been
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linked to computations in subregions of the MTL (Chadwick et
al., 2015; Shine et al., 2019; see also Wang et al., 2018; Hoydal et
al., 2019).

In addition to hippocampal hyperactivation, older adults also
exhibited a lack of learning-related dynamics in RSC/POS.
Medial parietal cortex undergoes significant changes during
aging, including increased atrophy and enhanced tau deposition
(Jockwitz et al., 2017; Harrison et al., 2019). Moreover, the
increased excitability of the aging hippocampus may impact on
information processing in RSC/POS, given the close reciprocal
interactions between both regions. For example, Mao et al.
(2018) found that bilateral hippocampal lesions suppress the
gradual emergence of a spatial code in the RSC. In the present
study, given that RSC/POS is assumed to support the anchoring
of cognitive maps to external landmarks (Epstein et al., 2017), a
deficient anchoring may compromise older adults’ ability to
precisely recover their facing direction and to orient their cog-
nitive maps when approaching the intersections. Together
with the imprecision in the cognitive maps, both deficits are
likely to contribute to the compromised pointing performance
in older adults.

Moreover, this anchoring process should occur in parallel to
self-localization in our task, because as soon as an intersection
was visible during navigational retrieval, participants could use
the local buildings and/or the geometric layout to recover both
their position and their facing direction. This could explain why,
particularly in younger adults, the latency of the BOLD response
in RSC/POS did not change over the course of the experiment,
because the process of reorientation could start immediately at
the beginning of a trial.

Our univariate results differ from Moffat et al. (2006) who
measured brain activity during encoding of a virtual maze and
reported an age-related hypoactivation in the RSC and the hip-
pocampus. This discrepancy might be related to the time point
when activity was measured, because if younger adults were still
acquiring knowledge about the VE, our findings would also pre-
dict stronger hippocampal effects compared with older adults.
More generally, this discrepancy highlights the need to track the
learning status of an individual when interpreting differences in
(hippocampal) BOLD responses between groups. In addition, it
is important to note that we focused on hemodynamic changes
during retrieval in our study. Thus, overall task demands could
be another factor that might have contributed to our findings,
because we also observed an age-related activity increase in RSC/
POS and hippocampus when contrasting retrieval to encoding.

Performance in our task was highly variable. While some
older adults learned the layout of the environment as quickly as
younger adults, others showed continuous learning, learned very
slowly, or were not able to retrieve relevant information to per-
form the task. During MRI scanning, the amount of exposure in
the VE was kept constant for all participants. This allowed us to
replicate earlier findings in younger adults and to use this as a
baseline against which we could compare the results of the older
adults. Therefore, we cannot determine whether low-performing
older adults would just need more time for learning. However, it
seems unlikely that all of them would have reached the same per-
formance level as younger adults if provided with more time in
the VE, because older adults already spent considerably more
time in the initial familiarization phase of the experiments. Using
machine learning methods on MRI data of hundreds of older
adults, Eavani et al. (2018) described multiple phenotypes of
brain agers that are characterized by specific functional and
structural changes. The authors described one phenotype that
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displays atrophy in the hippocampus, decreased coherence in
posterior medial parietal cortex, and an increased connectivity in
the MTL. Thus, older adults who show an increased excitability
of the anterior hippocampus might be particularly impaired in
memorizing novel spatial environments.

Finally, by forming subgroups of learners based on their esti-
mated learning states and by including this information in the
fMRI analysis, we found that activity changes in several brain
regions were decoupled from the individual learning curves in
those older adults who had more problems to learn. Although
these results should be interpreted with caution given the small
sample sizes of our groups, they provide further indications that
hyperactivity in the aging brain does not seem to support task
performance (Morcom and Henson, 2018). We did not find any
indications that the learning differences within older adults were
related to their age, sex, or their cognitive screening scores. Thus,
future studies should apply additional measures, for example,
preclinical markers for AD, to further characterize age-related
deficits in spatial learning and, specifically, why these abilities are
preserved in some older adults.

Taken together, increased excitability of the anterior hippo-
campus, together with aberrant RSC/POS functioning, provides
a novel explanation why older adults experience problems with
forming accurate spatial representations of a novel environment.
In addition, our findings add to a growing body of evidence asso-
ciating hyperactivity in the hippocampus to memory impair-
ments in aging.
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