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Popular models of decision-making propose that noisy sensory evidence accumulates until reaching a bound. Behavioral evi-
dence as well as trial-averaged ramping of neuronal activity in sensorimotor regions of the brain support this idea. However,
averaging activity across trials can mask other processes, such as rapid shifts in decision commitment, calling into question
the hypothesis that evidence accumulation is encoded by delay period activity of individual neurons. We mined two sets of
data from experiments in four monkeys in which we recorded from superior colliculus neurons during two different deci-
sion-making tasks and a delayed saccade task. We applied second-order statistical measures and spike train simulations to
determine whether spiking statistics were similar or different in the different tasks and monkeys, despite similar trial-aver-
aged activity across tasks and monkeys. During a motion direction discrimination task, single-trial delay period activity
behaved statistically consistent with accumulation. During an orientation detection task, the activity behaved superficially like
accumulation, but statistically consistent with stepping. Simulations confirmed both findings. Importantly, during a simple
saccade task, with similar trial-averaged activity, neither process explained spiking activity, ruling out interpretations based
on differences in attention, reward, or motor planning. These results highlight the need for exploring single-trial spiking dy-
namics to understand cognitive processing and raise the interesting hypothesis that the superior colliculus participates in dif-
ferent aspects of decision-making depending on task differences.
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Significance Statement

How are decisions based on sensory information transformed into actions? We report that single-trial neuronal activity dy-
namics in the superior colliculus of monkeys show differences in decision-making tasks depending on task idiosyncrasies and
requirements and despite similar trial-averaged ramping activity. These results highlight the importance of exploring single-
trial spiking dynamics to understand cognitive processing and raise the interesting hypothesis that the superior colliculus par-
ticipates in different aspects of decision-making depending on task requirements.

Introduction
Influential models of perceptual decision-making propose that
samples of noisy sensory evidence are accumulated over time
until a threshold is reached. Once the threshold is crossed, a deci-
sion is made (Ratcliff and McKoon, 2008). Behavioral studies
support sequential sampling models of decision-making (Ratcliff
and Rouder, 1998; Ratcliff et al., 2003), and electrophysiological
recordings suggest that the trial-averaged ramping activity of
individual neurons in sensorimotor areas reflects the process of
evidence accumulation (Roitman and Shadlen, 2002; Mazurek et
al., 2003; Hanks et al., 2015; Brody and Hanks, 2016). Indeed,
trial-averaged ramping activity of neurons appears in the medial
intraparietal area (MIP) and lateral intraparietal area (LIP) of
cerebral cortex, areas 8 and 46 of the PFC, caudate nucleus, and
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the superior colliculus (SC) (Shadlen and Newsome, 1996, 2001;
Kim and Shadlen, 1999; Horwitz and Newsome, 2001; Roitman
and Shadlen, 2002; Ding and Gold, 2010, 2012; de Lafuente et al.,
2015; Ding, 2015; Brody and Hanks, 2016; Yartsev et al., 2018).
Whether accumulation is instantiated by single neurons or
across populations or whether trial-averaged activity reflects
accumulation or other cognitive processes, such as vacillations in
decision commitment or the urgency to decide, are ongoing foci
of research efforts (e.g., Harvey et al., 2012; Thura et al., 2012;
Latimer et al., 2015).

Recordings in monkey area LIP suggest that trial-averaged
neuronal activity appears superficially consistent with accumula-
tion but may mask other decision-making processes, such as
stepping from uncommitted to committed states (Latimer et al.,
2015). SC neurons show similar trial-averaged ramping during
decision-making tasks, superficially consistent with accumula-
tion (Horwitz and Newsome, 2001; Ratcliff et al., 2003, 2007;
Horwitz et al., 2004), but also in other tasks not requiring accu-
mulation, such as simple saccade tasks (Glimcher and Sparks,
1992; Munoz and Wurtz, 1995). Indeed, ramping activity during
saccade preparation gave the motor layer SC neurons their
names, buildup or prelude (Glimcher and Sparks, 1992; Munoz
andWurtz, 1995). In light of the LIP results (Latimer et al., 2015)
and other models proposing that processes other than accumula-
tion can explain ramping activity, such as urgency (Thura et al.,
2012), we hypothesized that averaging SC neuronal activity over
trials may mask different processing ongoing during different
tasks, despite similar trial-averaged ramping activity. To test the
hypothesis that trial-averaged ramping activity in the SC masks
varieties of processes, we mined two datasets collected from 4
monkeys, each pair performing a 2-choice random dot motion
(RDM) direction discrimination task or a Yes-No detection task
using Glass patterns and one pair performing a simple delayed
saccade task. We compared second-order statistics of spike trains
across tasks for both pairs of monkeys. We calculated the variance
of the conditional expectation (VarCE) of SC spike counts, the
autocorrelation of conditional expectation (CorCE) (Churchland
et al., 2011; de Lafuente et al., 2015), and the streak index (SI)
(Horwitz and Newsome, 2001; Bollimunta et al., 2012).
Importantly, the measures we used provide information about sin-
gle-trial processing. We also applied these measures to simu-
lated datasets from accumulation and stepping processes,
assessing similarity between simulations and actual data using
the R2

CorCE and the deviance information criterion (DIC)
(Latimer et al., 2015) and the Watanabe Akaike information
criterion (WAIC) (Zoltowski et al., 2019).

The analyses of spiking dynamics revealed that the activity of
SC neurons of monkeys performing the RDM task was statistically
consistent with accumulation rather than stepping. In monkeys
performing the Glass pattern detection task, despite similar trial-
averaged ramping activity in all 4 monkeys and across both tasks,
the spiking dynamics aligned with accumulation, but were statisti-
cally consistent with stepping. Neuronal activity was statistically
consistent with neither process in the delayed saccade task. The
results provide evidence that similar trial-averaged ramping activ-
ity in SC may reflect different underlying cognitive processes and
raise the interesting hypothesis that the SC participates in different
aspects of decision-making depending on task differences.

Materials and Methods
Animals and surgery
Four male rhesus monkeys (Monkeys P, H, S, and B) weighing 9-13kg
were prepared for behavioral training and assessment, electrophysiological

recordings, and measurement of eye position. A headpost was implanted
to stabilize the head and an MRI-compatible recording chamber (Crist
Instruments) was placed to access the SC (AP �3, ML 0, angled posteri-
orly at 38°). Three monkeys (Monkeys B, H, and S) were implanted
with eye loops (Judge et al., 1980) to measure eye position using the
magnetic induction technique (Fuchs and Robinson, 1966). For
Monkey P, eye position was monitored with an iView camera
(Sensomotoric Instruments). All surgical procedures were performed
under general anesthesia using aseptic procedures. Anesthesia was
induced with ketamine and midazolam (5.0 and 0.2mg/kg, i.m.), and
atropine (0.04mg/kg, i.m.) was provided to reduce salivation.
Monkeys were intubated and maintained under general anesthesia
with isoflurane. One hour before the procedure, animals received
buprenorphine (0.01mg/kg, i.m.) and the antibiotic Excede (20mg/
kg, i.m.; 7 d slow release) followed by meloxicam (0.3mg/kg, i.m.) at
the conclusion of the procedure. Meloxicam (0.2mg/kg, i.m.) and
buprenorphine (0.01mg/kg, i.m.) were administered for 3 d after sur-
gery for analgesia. All experimental protocols were approved by the
UCLA Chancellor’s animal research committee and complied with
and generally exceeded standards set by the Public Health Service pol-
icy on the humane care and use of laboratory animals.

Eye movement recording procedures
We used a QNX-based real-time experimental data acquisition system
(“Rex”) (Hays et al., 1982) and a Windows-based visual stimulus genera-
tion system (“Vex”; Laboratory of Sensorimotor Research, National Eye
Institute) to create the behavioral paradigm, display the visual stimulus,
and acquire eye position. Voltage signals proportional to horizontal and
vertical components of eye position were filtered (8 pole Bessel –3 dB,
180Hz), digitized at 16-bit resolution, and sampled at 1 kHz (National
Instruments; PCI-6036E). Eye-tracking camera-acquired eye position
signals were filtered digitally using a built-in bilateral filter. We used an
automated procedure to define saccadic eye movements using eye veloc-
ity (20°/s) and acceleration criteria (5000°/s2), respectively. The adequacy
of the algorithm was verified and adjusted as necessary on a trial � trial
basis by the experimenter.

Behavioral tasks
RDM task. The trial began when Monkeys H and P fixated a red dot

at the center of the monitor (see Fig. 1A). Once the monkeys acquired
fixation on the centrally located spot, two isoluminant white (13 cd/m2)
choice targets appeared. One choice target appeared in the center of the
response field (RF), and the other was placed symmetrically in the oppo-
site hemifield; 500ms after the targets appeared, a random dot moving
stimulus (motion speed= 5°/s; dot lifetime= 16 ms; diameter = 3°;
luminance = 13 cd/m2; dot size = 0.05°; total density = 50 dots/deg2)
appeared at the center of the screen for 200ms, followed by a delay pe-
riod in which the cue was absent, of 500-700 ms randomized with a
mean of 595ms (the exact timing was drawn randomly from an expo-
nential distribution to avoid prediction; l = 0.15). The fixation dot dis-
appeared next, and the monkeys made a saccade to the choice target
located in the hemifield corresponding to the direction of motion to
report their choice. The direction of motion was randomized on each
trial. Monkeys made saccades to the choice target in the right hemifield
if they saw rightward motion and made a saccade to the choice target in
the left hemifield for leftward motion. If fixation was broken before the
fixation spot disappeared, the trial aborted. Eye position was monitored
and was required to remain within a 2°� 2° electronic window. We var-
ied the strength of the sensory information for the decision with four
randomly interleaved coherences (0%, 6%, 10%, and 20%) for Monkey P
and (0%, 10%, 20%, and 50%) for Monkey H. The coherences differed
because of Monkey P’s exceptional discrimination performance.
Monkeys received a sip of juice or water for correct decisions and no
fluid and a 2000ms time-out for incorrect decisions. Since there is no
correct decision for the 0% coherence trials in the RDM task, monkeys
received reward on 50% of these trials randomly. This condition was
randomly interleaved with a second condition in which a sure bet choice
was provided and used to assess decision confidence. We only used the
data from the first condition without the sure bet choice option for the
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analysis presented in this manuscript. Confidence data are reported by
Odegaard et al. (2018) and Grimaldi et al. (2018).

Yes-No Glass pattern task. A trial began when Monkeys S and B
looked at a white dot appearing at the center of the monitor (see Fig. 1A,
bottom). After a brief delay of;500 ms, randomized from the same ex-
ponential distribution incorporated in the RDM task to prevent predic-
tion, a red and green isoluminant (13.0 cd/m2) choice target appeared:
one was placed in the center of the RF and the other was placed in the
opposite hemifield at a 90° angle relative to the fixation point and the
RF. Which choice target appeared in the RF (Yes or No) was randomly
interleaved on a trial � trial basis to dissociate the choice report from

the direction of the eye movement (Ferrera et al., 2009; Bennur and
Gold, 2011). After a second randomized delay (600-1050 ms), a dynamic
Glass pattern stimulus (Glass, 1969; Nankoo et al., 2012), consisting of
vertically oriented dot pairs (diameter = 6°, 26 cd/m2; dot size = 0.10°; dot
separation= 0.1820; total density = 5 dots/deg2), appeared at the center
of the monitor together with the white fixation point and remained on
the screen for a random duration between 800 and 1500 ms (Cue 1
Delay) at which point it disappeared, instructing the monkeys to report
their choice with an eye movement. The Glass pattern stimulus can be
thought of as the form equivalent of the RDM stimulus (Smith et al.,
2002, 2007). Eye position accuracy was monitored and required to

Figure 1. SC neurons show ramping activity in the RDM and Glass pattern perceptual decision-making tasks. A, Schematic of the spatial and temporal arrangement of both the RDM and
Glass pattern tasks. Boxes represent the screen, and the temporal order of the task events is from left to right. Top panels, Red circle represents the fixation spot. Black circles represent the
choice targets in the RDM task. Bottom panels, White circle represents the fixation spot. Red and green circles represent the choice targets in the Glass pattern task. Box around the fixation
spot and choice target represents the accuracy window for the monkeys’ eye position. The motion or Glass pattern cue appeared at the center of the screen overlapping with the fixation spot.
Half oval represents a schematic of the RF of a recorded SC neuron. Black arrow indicates the required saccade, in this example, rightward. B, d9 for Monkey P (cyan) and Monkey H (yellow)
performing the RDM task plotted against motion coherence (%) (n= 22 sessions). Stimulus strengths across monkeys are not pooled together. C, Normalized discharge rate collapsed over all
coherences is plotted against time for n= 49 intermediate layer neurons of the SC recorded in the RDM discrimination task. Solid black lines indicate the averaged SDF (a = 20ms) for trials in
which monkeys reported decisions toward the RF (Tin). Black dashed lines indicate trials in which the monkeys reported decisions away from the RF (Tout). The two sets of traces are aligned on
the onset of the motion cue (cue onset) and the choice report (saccade), indicated by the upward arrowhead and dashed vertical lines. D, d9 for Monkey S (yellow) and Monkey B (cyan) per-
forming the Glass pattern task plotted against Glass pattern coherence (%) (n= 93 sessions). Error bars indicate SEM and may be obscured by the symbols. E, Same as in C, but for the 72 neu-
rons recorded in the Glass pattern detection task.
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remain within a 2° � 2° electronic window around the fixation point
and the correct choice target. On half the trials, the Glass pattern coher-
ence was 0% (No). Of the remaining half, the coherence of the Glass pat-
tern varied randomly on each trial with equal probability from
coherences among 26%, 39%, 52%, or 100% (Yes). The monkeys indi-
cated their Yes or No decisions by making a saccade to the green Yes
choice target if it perceived orientation in the Glass pattern or the red
No target if it did not and the red and green choice target switched
between the two locations randomly on each trial. Monkeys remained
fixating at the choice target for ;300 ms to receive a sip of juice as a
reward if correct or no reward and a 2400ms time-out if incorrect.
These trials preceded a block of trials in which the presence or absence
of an orientation signal appeared was varied probabilistically. Then a
third block of trials repeated the first block of trials in which the presence
or absence of orientation in the Glass pattern stimulus occurred equally.
Only the first block of baseline trials was used for analysis in this report.
The data analyzed here come from experiments reported previously
(Crapse et al., 2018). The Glass pattern task and the RDM task were sim-
ilar in that both stimuli produced noisy evidence across frames but that
the tasks differed on other points. First, the viewing duration in the
RDM task was briefer than in the Glass pattern task. Second, there was
no stimulus absent delay period in the Glass task as there was in the
RDM task. Third, the choice targets were white or differently colored,
and were aligned with the direction of motion in the RDM tasks and
were decoupled from the choice in the Glass pattern task. Fourth, the
RDM task required motion direction discrimination, whereas the Glass
pattern task required orientation detection.

Delayed saccade task. The trial started when a red dot appeared at
the center of the monitor. When the monkey fixated the red dot, a single
target appeared randomly throughout the visual field for RF mapping,
or as part of the comparison with the decision tasks, either in the RF or
in the hemifield opposite the RF. Following a 200ms delay, the red fixa-
tion spot disappeared, signaling the monkey to make a saccade to the
target. Monkeys received a sip of juice or water if the saccade landed
within a 2°� 2° electronic window around the target. The data from the
delayed saccade task come from Monkeys H and P, which also per-
formed the RDM task.

Electrophysiological procedures
For the RDM task, we recorded single neurons and multineuron activity
throughout the layers of the SC, in 2 monkeys (Monkeys P and H), with
a 16-channel platinum/iridium V Probe coated with polyimide (Plexon),
with contact impedances of 275 (6 50) kV. For the Glass pattern task,
we recorded neurons in the intermediate layers of the SC from 2 mon-
keys (Monkeys S and B), with tungsten electrodes (Frederick Haer,
;1.3-2 MOhmmeasured at 1 kHz). All electrodes were inserted through
a guide tube positioned by a grid system (Crist et al., 1988) and were
moved in-depth by an electronic microdrive system controlled by a
graphical user interface on a PC running Windows (Nan Instruments).
Action potential waveforms were bandpass filtered (250Hz to 5 kHz;
4 pole Butterworth; 300Hz to 5.5 kHz; 6 pole Butterworth), and ampli-
fied using the Blackrock NSP hardware system controlled by the
Cerebus software suite (Blackrock Microsystems). Neurons were isolated
online using time and amplitude windowing criteria, and times of occur-
rence of action potentials were digitized at 16 bit resolution and sampled
at 1 kHz and saved to disk. Neuronal waveform data were digitized at
16 bit resolution and sampled at 30 kHz and saved to disk. Neuronal
sorting was performed and/or confirmed with offline waveform inspec-
tion and principal component analysis using the Plexon Offline Sorter
software x64 version 3.

For both tasks, RFs of SC neurons were mapped online. Mapping
was done by moving a spot around the monitor and having monkeys
make delayed saccades to the different spots while we listened for maxi-
mal discharge rate. We considered the center of the RF of a neuron to be
the location at which a saccade was associated with maximal audible dis-
charge. We confirmed the center of the RF by plotting the discharge rate
as a heat map in Cartesian coordinates online for visual inspection. Only
neurons with RF eccentricities between 7° and 20° were studied in both
tasks to ensure no overlap of the RF with the RDM or Glass pattern cue.

Data analysis
All data used for this report were collected as part of other experiments
(Crapse et al., 2018; Grimaldi et al., 2018; Odegaard et al., 2018). All sta-
tistical analyses were performed using MATLAB (The MathWorks). For
both the RDM and the Glass pattern task data, only neurons that exhib-
ited significant task modulation after the cue appeared and during the
delay period were used for all analyses. To select neurons in the RDM
task, we compared the average activity 200-600ms after motion onset to
a 200ms epoch of baseline activity beginning 200ms before motion
onset and considered neurons as task-modulated if the activity in these
two periods was significantly different (t test, p, 0.05). For the Glass
pattern task, we compared the average activity 300-500ms after Glass
pattern onset to a 100ms baseline epoch before Glass pattern onset and
considered neurons as task-modulated if the activity in these two periods
was significantly different (t test, p, 0.05). We selected neurons for
which we had clearly isolated waveforms. This resulted in 18 neurons
from Monkey H and 31 neurons from Monkey P in the RDM task (total
n=49) and 36 neurons from Monkey S and 36 neurons from Monkey B
in the Glass pattern task (total n= 72). To display the spike density func-
tions (SDFs), we convolved the times of occurrence of action potentials
with a Gaussian (s ) of 20ms.

Generation of simulated datasets
We simulated idealized spike trains for two models: a model of accu-
mulation and a model of a single rapid state transition within a trial
(stepping). The rates were used to calculate a simulated CorCE and f
estimate to compare the SC data with rates generated by an accumu-
lating or stepping process. We extracted the model parameters based
on the methodology of Latimer et al. (2015) by applying the Markov
chain Monte Carlo method to sample the posterior distribution of
model parameters, given the observed spike trains (for more details,
see Latimer et al., 2015). Parameter estimation was completed sepa-
rately for each coherence using both Tin and Tout trial conditions.
Four sets of parameters were estimated, one for each coherence.
Simulations only use the corresponding parameter estimates when
making comparisons to empirical data (i.e., 0% coherence RDM em-
pirical data compared with simulations using 0% coherence RDM
parameter estimates). Comparisons between simulated (using param-
eter estimates) and empirical spike trains across different coherences
did not occur. The posterior means were used as an estimate of the
model parameters. To simulate the Poisson spike trains for an accu-
mulating neuron, we used the following model from Latimer et al.
(2015) using parameter estimates:

xj;1 ¼ x0 1 e j;0 (1)

xj;t11 ¼ xj;t 1 b j1e j;t (2)

e j;t ;Nð0;v 2Þ (3)

t j ¼ inf xj;t � 1
1

: if there exists xj;1:Tj � 1
: otherwise

�
(4)

yj;t t, t j ;Poissonðlogð11 expðgxtÞÞDtÞ
�� (5)

yj;t t � t j ; Poissonðlogð11 expðgÞDtÞ
�� (6)

where x is the drift diffusion process that determines the spike rate for
trial j. b is the drift term and v2 is the diffusion term. g is the bound
height. We only consider trials in which the diffusion particle has
reached either decision bound (Tin and Tout correct and error choices).
Simulations sampled from b , v2, g , and x0 parameter distributions (see
Fig. 2B,F). To simulate the Poisson spike trains for a stepping model, we
used the following function also from Latimer et al. (2015):
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zj ;NegativeBinomialðpc jð Þ; rÞ (7)

P dj ¼ 1
� � ¼ f cðjÞ (8)

P dj ¼ 2
� � ¼ 1� f cðjÞ (9)

yj;t t � zj;Poissonða0jDtÞ
�� (10)

yj;t t. zj;PoissonðadjDtÞ
�� (11)

where z is the time of the step. Negative binomial distribu-
tions were defined using the parameters, r and p; where r
is the number of times an outcome occurs given an event
and 1 – p is the chance that an outcome occurs given the
event, such that the distribution reflects the likelihood of
events necessary to obtain r outcomes. d, is the direction
of the step. It is possible for the model to assume a step
time outside the selected decision epoch. Under these cir-
cumstances, trials were categorized as uncommitted and
were simulated as having the prestimulus discharge rate
through the entire analysis epoch. Simulations sampled
from f , a, p, and r parameter distributions (see Fig.
2D,H). Step time distributions used to simulate stepping
CorCEs required Equations 7–11; 10,000 trials were simu-
lated, sampling randomly from the negative binomial
defined in Equation 7.

To broaden the scope of models we used for simulated
datasets, we also used a dynamical attractor model,
selected for its biological plausibility in switching between
two different processes within the same circuit (Wong
and Wang, 2006; Wong et al., 2007). The model simulates
discharge rates resembling an accumulation or stepping
process based on the weights of the recurrent input such
that the network can be competitive (accumulating) or
noncompetitive (stepping). We used the same model pa-
rameters as used by Wong and Wang (2006) and
Churchland et al. (2011), except for the following: (1) for
the accumulation implementation, the NMDA recurrent
weights were set to 0.3725nA; and (2) for the stepping
implementation, the NDMA recurrent weights were set to
0.5 nA. We selected a 300ms epoch in each trial during
the transition from the initial to the final discharge rate.
The rates were used to calculate a simulated CorCE and
subsequent f estimate to compare the SC data with rates
generated by an accumulating or stepping process.
Although the Wong and Wang (2006) model is compati-
ble with non-reaction time decision tasks, we did not fit
the parameters to our behavioral data.

Estimation of the VarCE and CorCE
To compute the VarCE from each trial of each neuron,
the spike count was extracted from 60ms consecutive,
nonoverlapping bins of SC data. The mean and variance
were calculated across all trials for a given neuron, and

Figure 2. Parameter SDFs and examples of analyses. A, Histograms of the stepping model parameters
obtained using the methods from Latimer et al. (2015) from the RDM discrimination task. Plot of a parameters
(left-most) as overlain histogram of the rate of the initial state (blue), down state (gray), and up state (orange).
Posterior means from single neurons are plotted. B, Simulated SDFs using parameters in A, repeated with
10,000 iterations (trials) for Tin (orange) and Tout (gray) conditions. C, D, Same as in A, B, but for the accumula-
tion model parameters. E–H, Same as in A–D, but for the Glass pattern detection task. Bottom panels, Toy
dataset of spike trains from a series of simulated accumulating neurons (n= 49) compared with idealized accu-
mulation and idealized stepping CorCEs used in the RDM task CorCE analyses. I, Idealized accumulation (Acc).
Each colored block represents the CorCE value between two time bins and are assigned a data point label (1-
10) on the left-most plot. J, Same as in I, but for simulated accumulation. K, Same as in I, but for an idealized
stepping process. L, Graphical depiction of the CorCE values for the idealized accumulation (red points and lines),
(M) simulated dataset (green points and lines), and (N) idealized stepping (right; blue points and lines). L, Each

/

data point has been labeled with the corresponding number from I. Data
points 6, 7, and 9 are excluded from the figures in the main analyses for
clarity of visual presentation but are included during all statistical analy-
ses. O, Comparison of the CorCE values for each data point between the
simulated dataset and the idealized CorCE values. The R2 values represent
the comparison between the simulated dataset and the idealized dataset.
The relative similarity between the simulated dataset and the idealized
accumulation compared with the similarity to the idealized accumulation
is the basis for the intuition captured in the R2 values.
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the residuals were obtained by taking each time bin and subtracting the
mean counts for the same bin for each neuron individually for all trials
where a saccade was made to the RF. We then calculated the VarCE of
the spike count residuals by subtracting the estimate of the point process
variance (using spike counts; Poisson point variance [PPV]) from the
total variance (using residuals), as described by Churchland et al. (2011).
The PPV was determined by calculating the product of the mean counts
with f , an estimate of the contribution of point process noise in the
spike counts. The VarCE is approximated by the following equation:

s2hNii ¼ s2Ni
� f�Ni ¼ Var z[½ � �

XM
i¼1

ni

n[
f i�Ni (12)

Where Ni is the number of spikes in each epoch, s2Ni is the sample
variance of the spike counts within the same epoch and �N is the sam-
ple mean. The z| is the union of residuals from all conditions, ni is the
number of samples, and n| is the total number of samples across all
conditions. The CorCE is an extension of the VarCE that estimates the
correlation between spike counts at different time bins. It complements
the VarCE measure and is given by the following equation:

Cov Ni;Nj½ � ¼ Cov hNijl ii; hNjjl ji�
� �

1 hjCov Ni;Njjl i; l j�i
�

(13)

The indices i and j refer to time bins across the analyzed epoch, and
N and l refer to the spike counts and the rates, respectively. The right
term, hCov [Ni,Nj|l I,l j]i, is akin to the PPV and is 0 by reasonable
assumption (see Churchland et al., 2011) when i = j. The left term, Cov
[hNi|l i i,h Nj|l ji], is calculated by dividing each element of the correla-

tion matrix by the term
ffiffiffiffiffiffiffiffiffiffiffiffi
S2Ni

S2Nj

q
. Solving for the expected values for

each paired epoch in the covariance matrix results in the CorCE. To cal-
culate the VarCE, the exact value of f is not necessary to observe
changes in VarCE as long as f allows for VarCE. 0. The exact value of
f does not change the interpretation of the VarCE so long as f . 0, at
which value, there is no PPV and the VarCE is the sample variance of
the spike count (Churchland et al., 2011, their Supplemental Fig. 1). We
estimated f using a principled approached similar to that used by de
Lafuente et al. (2015). The value of f is a free parameter. Therefore, esti-
mating f requires calculating the actual SC data CorCE pattern that
best fits the theoretical or modeled CorCE (using estimated parameters;
see Table 1) (Latimer et al., 2015). The algorithm calculates a CorCE
across all possible f values between 0 and 1, starting at 0.01, before con-
verging on the answer. This requires applying a particle swarm optimiza-
tion algorithm to identify a f that minimizes the error between the
observed CorCE calculated using f and a theoretical CorCE (either
accumulation or stepping). Here, the error is an R2CorCE score for good-
ness of fit. The R2CorCE score is calculated over the aggregated CorCE.
The particle swarm optimization algorithm was used to avoid local min-
ima. The f that produces the SC data CorCE most similar (or has small-
est error) to the theoretical CorCE was chosen for subsequent analyses
(Table 1). To calculate the error, we took an estimate of the VarCE by
using the residuals of the spike counts and initial f in the above equa-
tion from Churchland et al. (2011). Using the residuals, a 5� 5 covari-
ance matrix (CovCE) was calculated where the VarCE occupied the
diagonal of this matrix. The CovCE was transformed into the CorCE.
The CorCE was then Fisher z-transformed for both the observed CorCE
and the theoretical CorCE. We then selected the f that provided the
smallest sum of squared errors (SSE) between the zobserved – ztheory. The

theoretical CorCE was calculated as

ffiffi
i
j

r
where i and j are times of the

bins and i, j. It is important to note our estimate relies on aggregating
all trials together to obtain a single f for the entire sample of neurons.

Because estimating f requires comparing the idealized CorCE with
the empirical CorCE, the CorCE was calculated over a range of f values
and the f value with the smallest SSE was used. When calculating the
CorCE from the simulated rates, the rate was integrated to give spike
counts. Trials were sampled from each neuron, with replacement, to
produce a resampled set of trials. Using this resampled population, we

estimated the f using a theoretical accumulation CorCE and simulated
stepping CorCE. This produced a CorCE that best fit to the theoretical
accumulation CorCE or simulated stepping CorCE from the resampled
population. The SSE was then calculated for the resampled CorCE and
the idealized CorCE. This process of resampling and calculating the SSE
was repeated 1000 times to produce SSE distributions. The SSE provides
a measure of the distance between the empirical CorCE and the idealized
ramping and stepping CorCEs. We then assessed the null hypothesis
that the distributions were the same using the Wilcoxon rank sum test.

Deviation information criterion (DIC)
We compared model fits using the DIC. The DIC implementation taken
from Latimer et al. (2015), is defined as follows:

DIC ¼ 2logp DatajH;M
� �

� 4EHjData;M logp DatajH;Mð Þ� �
(14)

whereH is the posterior mean of the parameters given the data. M is
either the accumulation or stepping model, depending on the pa-
rameters given by H (for more details, see Latimer et al., 2015, their
Supplemental methods).

WAIC
We compared model fits using WAIC. The WAIC implementation was
taken from Zoltowski et al. (2019), defined as follows:

WAIC ¼ �2
XN
i¼1

log
1
S

XS
s¼1

pðyijHsÞ
 !

�
XN
i¼1

Var logpðyijHÞ� � !

(15)

Where N is trials, S is posterior samples, andH is the posterior mean
of the parameters given the data. In the WAIC analyses, we extended
both accumulation and stepping models using a history filter to account
for spike history effects, such as refractory periods and bursting. This
addition to the model accounts for non-Poisson spike history effects that
are independent of the spiking driven by the latent variable. In addition,
the accumulation model incorporates a non-zero baseline and a SoftPlus
nonlinearity between the latent variable and the firing rate. For more

Table 1. / estimates used in the VarCE and CorCE analyses

Fit f

RDM: accumulation 0.425
RDM: stepping 3.965e-06
Glass pattern: accumulation 0.445
Glass pattern: stepping 0.538
RDM: attractor accumulation 0.392
RDM: attractor stepping 4.229e-06
Glass pattern: attractor accumulation 0.400
Glass pattern: attractor stepping 8.331e-05
RDM: 0% coherence 0.426
RDM: 6%-10% coherence 0.458
RDM: 10%-20% coherence 0.453
RDM: 20%-50% coherence 0.429
Glass pattern: 26% coherence 0.547
Glass pattern: 39% coherence 0.536
Glass pattern: 52% coherence 0.439
Glass pattern: 100% coherence 0.511
RDM: saccade 0.550
Monkey P: accumulation 0.353
Monkey H: accumulation 0.556
Monkey B: accumulation 0.432
Monkey S: accumulation 0.418
Monkey P: stepping 8.043e-06
Monkey H: stepping 3.565e-06
Monkey B: stepping 0.457
Monkey S: stepping 0.527
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details regarding these additions to the model, see Zoltowski et al. (2019,
their Methods).

Predictive activity
To calculate predictive activity, normalized discharge rates (stimulus
onset to 700ms for the RDM task and stimulus onset to 900ms for Glass
pattern task) were binned into 100ms consecutive, nonoverlapping
epochs and areas under the receiver operating characteristic (auROC)
were calculated between the Tin and Tout trials. To calculate the auROC,
an ROC is computed by sweeping a criterion between the Tin and Tout

activity distribution and finding the proportion of Tin counts to Tout

counts greater than the criterion. We incremented the criterion from the
minimum to the maximum discharge rate measured across all trials
within the epoch of analysis. The area underneath the ROC is integrated
to produce the auROC. Here we refer to the auROCs as the predictive
activity as done previously and for comparison with previous reports in
SC (Horwitz and Newsome, 2001).

SI analysis
The analysis epoch was divided into consecutive, nonoverlapping, 40ms
bins from 204 to 524ms for Monkey P and 255 to 675ms for Monkey H
after the onset of the motion and from 209 to 800ms for Monkey B and
337 to 800ms after the onset of the Glass pattern for Tin trials, and the
median spike count of each bin was calculated per neuron. On a trial �
trial basis, the spike count within a bin was compared with the median
and if the count was higher than the median, the bin for that trial was
assigned a 1. If the spike count was lower than the median, the bin for
that trial was assigned a 0. If the spike count within a bin was equivalent
to the median, it was randomly assigned either a 1 or a 0. To calculate
the SI, the following equation was used:

SI ¼ N �m

s
(16)

where N is the number of times the adjacent bins switch from 1 to 0 or
from 0 to 1 throughout a trial. The mean of N, m, is given by the
following:

m ¼ 11
2mn
m1 n

(17)

wherem is the number of 0s in a trial and n is the number of 1s in a trail.
The SD ofN, s , is defined as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn� ð2mn�m� nÞ
ðm1nÞ2 � ðm1n� 1Þ

s
(18)

If the spike train is generated from the same underlying Poisson pro-
cess (homogenous or nonhomogenous), then the SI should be 0.
However, if a neuron undergoes a change in state, resulting in a jump or
step in discharge rate, the m will be greater than N as the neuron under-
goes fewer switches from 0 to 1 or vice versa. In this case, the SI will fall
below 0. Therefore, if the underlying rate for a spike train does not
change throughout a trial, the likelihood of the spike counts being higher
or lower than the median would be random resulting in a mean SI of 0.
However, a positive or negative SI indicates a change in underlying rate
such that in the next time bin the spike count is less likely or more likely,
respectively, to be higher than the median count. A Wilcoxon rank sum
test determined differences between the SIs from spike trains of the SC
neurons and simulated neurons. These procedures are the same as those
used previously for LIP and SC as previously reported (Horwitz and
Newsome, 2001; Bollimunta et al., 2012). However, like Bollimunta et al.
(2012) and unlike Horwitz and Newsome (2001), our SI analysis took
place over single trials. This makes the measure robust to the trial counts,
whereas computing the SI over all trials, scales the SI to the total number
of trials.

We generated the SI distributions by a resampling procedure in
which we first simulated accumulating and stepping spike trains for the

same number of SC neurons recorded in the RDM and Glass pattern
tasks. We next calculated SIs for each simulated neuron and classified
each as showing accumulation if the SI was not significantly different
from 0 (p, 0.05) and stepping if the SI was significantly ,0 (p, 0.05)
using a Wilcoxon rank sum test. Simulated SI distributions results in
negative median SI for simulated stepping and a 0 median SI for simu-
lated ramping spike trains for both RDM and Glass pattern tasks. This
makes sense if the median spike count represents the drift rate and the
actual spike count in a bin represents the drift rate plus some diffusion
noise. If this is the case, across time bins, the spike counts would either
be randomly higher or lower as the diffusion noise randomly pushes the
decision variable up and down. Single-trial SIs would be ,0 or .0, but
overall have a distribution centered at ;0. However, in stepping, the SI
is likely to be negative. Negative SIs indicate deviations from a constant
underlying rate such that given a time bin with a higher than median
spike count, the next time bin the spike count is more likely to be higher
as well. The occurrence of an instantaneous transition (step) from a
lower to higher spike rate within a given bin would produce spike counts
higher than the median in the bins after and counts lower than the me-
dian in the bin before. This would produce SIs ,0 as the spike counts
diverge from the median count since the median count resembles a
ramp across trials.

Results
Trained monkeys performed either a two choice motion
direction discrimination task (RDM; Monkeys H and P) or a
Yes-No detection task in which they reported whether or not
they detected orientation in a dynamic Glass pattern display
(Monkeys B and S). Both tasks included noisy and varying
amounts of sensory evidence (see Materials and Methods).
We recorded SC neuronal activity while monkeys performed
these tasks, and a description of the relationships between
neuronal activity and decision performance appears else-
where (Crapse et al., 2018; Grimaldi et al., 2018; Odegaard et
al., 2018). Here, we focus on single-trial neuronal activity dy-
namics to reveal whether the underlying neuronal processes
reflected in SC activity differ in different decision-making
tasks, despite similar trial-averaged ramping activity across
tasks and monkeys. We report on data from 49 neurons from
2 monkeys performing the RDM task and 72 neurons from 2
monkeys performing the Glass pattern task and 62 neurons
from 2 monkeys performing a delayed saccade task (see
Materials and Methods).

Figure 1A shows schematics of the RDM and Glass pattern
tasks. The temporal arrangement of both was similar, with the
exception that the RDM task included a delay time that was
randomized between 500 and 700ms after the motion cue pre-
sentation, whereas the Glass pattern task included a delay time
randomized between 800 and 1500ms after the Glass pattern cue
onset (Fig. 1; Cue 1 Delay). In the RDM task, the motion
cue disappeared after 200ms, whereas in the Glass pattern task,
the cue remained visible throughout. Both tasks used delays and
therefore were not reaction time tasks. In the RDM task, the
choice targets appeared at locations in the visual field corre-
sponding to the two possible motion directions (e.g., left
motion–left choice target) and in the Glass pattern task, the
choice target was determined by color (red for No and green for
Yes); and the two positions were randomized between the two
locations on every trial, decoupling the choice report from the
saccade location. The RDM task required motion direction dis-
crimination, whereas the Glass pattern task required orientation
detection.

Figure 1B, D shows that each of our monkeys produced typi-
cal psychophysical performance in the RDM and Glass pattern
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tasks. We manipulated the strength of the sensory evidence in
both tasks by varying the coherence of the motion direction in
the RDM task and the oriented dot pairs in the Glass pattern
task. Figure 1B, D shows that perceptual sensitivity (d9) increases
as coherence increases for both monkeys in both tasks. Monkey
H saw coherences of 0%, 10%, 20%, and 50%, and Monkey P saw
coherences of 0%, 6%, 10%, and 20% (Fig. 1B; Monkey H; d9:
0% = 0.07; 10% = 1.45; 20% = 2.50; 50% = 3.77 and Monkey P;
d9: 0% = 0.08; 6% = 1.51; 10% = 2.97; 20% = 3.47), but we
grouped the data into four bins according to matched d9, 0%,
6%-10%, 10%-20%, and 20%-50% coherence (n=22 sessions).
For the Glass pattern task, both monkeys experienced 0%, 26%,
39%, 52%, and 100% coherences and showed different sensitiv-
ities (Fig. 1D; Monkey B, d9: 26% = 0.75; 39% = 1.74; 52% = 2.55;
100% = 3.06 and for Monkey S, d9: 26% = �0.30; 39% = 0.84;
52% = 1.88; 100% = 3.11; n= 93 sessions). This typical psycho-
physical performance on the RDM and Glass pattern tasks indi-
cates that the monkeys used the sensory information to inform
their decisions; as the strength of the sensory evidence increased,
the probability of correctly discriminating the motion direction
in the RDM task or reporting Yes in the Glass pattern detection
task also increased (see also Crapse et al., 2018; Odegaard et al.,
2018; Grimaldi, et al., 2018). Figure 1C, E shows that trial-aver-
aged neuronal activity recorded from the SC of the 4 monkeys
behaves similarly, despite the differences in the tasks, and as
others have reported, consistent with a process of accumulation
(Horwitz and Newsome, 2001; Ratcliff et al., 2003; Kim and
Basso, 2008). In both the RDM and Glass pattern tasks, after an
initial dip in activity following the motion or Glass pattern cue
onset, a sharp increase in the discharge rate follows for trials in
which monkeys report their decision correctly by making sac-
cades to the choice target in the RF (Tin), whereas for correct
choices made away from the RF (Tout), neuronal activity declines
or remains at a relatively reduced level (Fig. 1C,E). Some SC neu-
rons show a weak transient on Tout trials around the time of sac-
cades, which is common and likely a transient visual response
(Fig. 1E, dashed line). Trial-averaged ramping activity like this is
found in many SC neurons in the motor layers and is associated
with many processes, including attention, target selection and
evidence accumulation, and even saccade preparation and gener-
ation (Glimcher and Sparks, 1992; Munoz and Wurtz, 1995;
Horwitz and Newsome, 2001; McPeek and Keller, 2002; Horwitz
et al., 2004; Felsen and Mainen, 2008; Kim and Basso, 2008,
2010; Thevarajah et al., 2009; Krauzlis et al., 2013; Basso and
May, 2017). The similar trial-averaged ramping behavior of SC
neurons, despite differences in tasks and monkeys’ histories, jus-
tifies the further analysis of the statistics of SC spike trains to
determine the relationship of delay period activity to the under-
lying processes in different types of decision tasks and a simple
saccade task.

Spiking dynamics of SC neurons show accumulation and
stepping
To ensure our analyses focused on an equivalent epoch of neuro-
nal discharge that likely included the decision time in both tasks,
despite the differences between tasks, we used a principled
approach to measure an equivalent decision epoch for each.
Identifying a likely decision epoch ensures that the spike train
epoch used to calculate the DIC, WAIC, VarCE, CorCE, and SI
includes the decision process. To determine this epoch, we calcu-
lated the auROC for the highest coherence trials (see Materials
and Methods; RDM: 20%/50%; Glass pattern: 100%) using a slid-
ing window with 100ms bins separately for each monkey

performing each task. To ensure consistency across monkeys
and tasks, we defined the decision epoch as the earliest time bin
for which the auROC reached significance (p� 0.05), as deter-
mined using a bootstrapping procedure. The auROC reached
significance for Monkeys P and H at 204 and 255ms, respec-
tively, in the RDM task, and for Monkeys B and S at 209 and
337ms, respectively, in the Glass pattern task. Based on these
numbers, we used a 300ms decision epoch: 204-504ms for
Monkey P, 255-555ms for Monkey H, 209-509ms for Monkey
B, and 337-637ms for Monkey S. These decision epochs were
used for each monkey for all analyses unless otherwise stated.

We computed five related, but different, measures of neuro-
nal activity variability using the 0% (RDM) or 26% (Glass pat-
tern) coherence trials and all Tin and Tout trials unless otherwise
specified. The use of low coherence trials ensured that we
assessed the data with the longest possible integration times. Our
first measure was the DIC as applied by Latimer et al. (2015),
where it was used to compare accumulation and stepping mod-
els. DIC uses Bayesian methods to fit model parameters to the
spike trains. Parameter distributions are used to calculate the
DIC by using the deviance to obtain a goodness-of-fit term in
combination with a penalty for the effective number of parame-
ters. Higher DDIC values indicate stronger separability between
models, with the sign of the DDIC indicating the preferred
model. Second, we also used the WAIC, which builds on the
DIC but is more robust because of its penalty term. The WAIC is
generally consistent with leave-one-out cross-validation (Gelman
et al., 2014). Third was the VarCE, which assumes that the
recorded spike trains originate from a generalized renewal pro-
cess. Formally, the VarCE is the difference between the total var-
iance of the spike count and the PPV (see Materials and
Methods). This measure was introduced by Churchland et al.
(2011) and further refined by de Lafuente et al. (2015) as a way
to glean information about neuronal processing associated with
patterns of variance in spike trains. Calculating the VarCE
requires estimating f , a constant that describes the relationship
between the PPV and the mean spike count. Subtracting the PPV
from the total variance produces the VarCE. If the variance of
the measured spike trains is consistent with a diffusion process
and reflects the accumulation of noisy sensory samples, we
expect the VarCE to show a linear, monotonic rise with time; as
the rate increases the longer the decision process has been going
on, the more variable the state of the decision process is across
trials. The fourth measure examined the autocorrelation between
expected counts across time bins, called the CorCE. Particular
neuronal processes appear as unique patterns of time-dependent
changes in the CorCE, and comparisons of CorCE matrices
obtained from spiking data with CorCE matrices obtained from
simulated data or theoretical CorCEs allow us to determine the
process that best explains the pattern in the spiking data. Here,
the simulated stepping CorCE was obtained by simulating the
stepping firing rates using a step time distribution. Step times
were randomly sampled from a negative binomial distribution,
informed by fitted parameters (Fig. 2A,E). We analyzed the
results statistically by determining the goodness of fits by com-
paring the R2CorCE fits between the actual and simulated data.
The R2CorCE comparison determines whether the predictions
from an accumulation or a stepping model better correlate with
the results from SC data, and is a relative comparison rather than
an absolute assessment of accumulation or stepping. Figure 2I–O
shows a toy example of the CorCE analysis using simulated accu-
mulating spike trains for further clarification of this method. The
fifth measure is the SI, which measures the temporal structure of
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spikes within a single trial relative by
counting the number of transitions of the
spike counts higher or lower than the me-
dian spike count. Therefore, the SI
assesses whether spike count fluctuations
are random in each trial as a result of the
same, nonhomogeneous Poisson process
(e.g., continuous ramping), or whether
there exists a pattern that might result
from different, nonhomogeneous Poisson
processes (e.g., stepping). This measure
was introduced by Horwitz and Newsome
(2001) to assess trial-averaged activity in SC
and extended to assess single-trial dynamics
in LIP by Bollimunta et al. (2012). It is this
latter method that we apply here using only
the Tin trials (see Materials andMethods).

To compare between models of accu-
mulation and stepping, we calculated the
DIC as described above and also calcu-
lated theoretical CorCE matrices for an
accumulation process and a simulated
CorCE for a stepping process (see
Materials and Methods). The accumula-
tion model results in a gradual rise in ac-
tivity reflecting evidence accumulation
and the stepping model results in a cate-
gorical, binary change in activity poten-
tially reflecting a change in decision state.
Next, we calculated the VarCE using esti-
mated f values (described below) from
these idealized CorCEs. Then, we com-
pared idealized CorCE matrices with
CorCEs created from the SC data. Finally,
we calculated SIs from simulated accumu-
lation and stepping spike trains and the
actual SC data. We constrained the
simulated datasets by using the same
number of trials and the initial and final
discharge rates of the decision epoch
measured from the actual SC spike
trains. The stepping and accumulation
models assume that the spike trains
result from a nonhomogeneous Poisson process that reflects ei-
ther a linear increase or a stepped transition.

Using parameters extracted from the observed dataset, we
first simulated SDFs for accumulation and stepping processes
and compared these with the actual data recorded frommonkeys
performing the RDM and Glass pattern tasks. This exercise
ensured that the simulated data of both models (Fig. 2B,D,F,H)
accurately captured the observed trial-averaged data before
embarking on an extensive single-trial analysis as described
below.

To assess the relationship of SC spiking activity to the proc-
esses of stepping and accumulation, we first calculated the DIC
(Latimer et al., 2015). For the RDM data, 49 of 49 SC neurons
(100%) favored accumulation (DDIC, 0) with 44 SC neurons
(90%), strongly favoring accumulation (DDIC, 10; Fig. 3A).
For the Glass pattern task, 45 of 72 SC neurons (62.5%) favored
stepping (DDIC. 0) with 42 SC neurons (43%) strongly favor-
ing stepping (DDIC. 10; Fig. 3B). These results indicate that SC
delay period activity in most SC neurons is statistically consistent
with accumulation rather than stepping during the RDM task

and is statistically consistent with stepping slightly more than
accumulation during the Glass pattern task.

We also calculated the WAIC values to assess stepping and
accumulation (Zoltowski et al., 2019). For the RDM data, 49 of
49 SC neurons (100%) favored accumulation (DWAIC, 0; Fig.
3C). For the Glass pattern task, 52 of 72 SC neurons (72.2%)
favored stepping (DWAIC. 0; Fig. 3D). Consistent with the
DDIC, these results indicate that SC delay period activity is statis-
tically consistent with accumulation rather than stepping during
the RDM task and with stepping rather than accumulation dur-
ing the Glass pattern task.

Brittleness describes a general phenomenon where loosely
defined mathematical models produce unintended results when
minor assumptions are violated. Chandrasekaran et al. (2018)
outlined several cases where DDIC values are sensitive to data
characteristics independent of the underlying decision-making
process. We sought to address some of these concerns by repli-
cating some of the analyses reported by Chandrasekaran et al.
(2018). One particular challenge suggests that the DDIC is sensi-
tive to whether the neuron demonstrates sub- or super-Poisson
firing. The Tout Fano factor is a significant predictor of the

Figure 3. DIC and WAIC analyses distinguish accumulation and stepping. Frequency histogram of DDIC and DWAIC values
obtained for SC neurons in the RDM discrimination task and the Glass pattern detection task. Red vertical dashed line indi-
cates no change in DIC or WAIC. Values to the right of 0 indicate larger support for stepping, and values to the left of 0 indi-
cate larger support for accumulation. Each count shows the result from a single neuron. Note the x axis scale difference
between A and B, as some neurons had extreme DIC values in the Glass pattern task. A, RDM task data. B, Glass pattern
task data. C, D, Same as in A, B for the DWAIC. E, The nonpreferred (Tout) Fano factor plotted as a function of the DDIC
score for both RDM (blue) and Glass pattern (red) tasks. The nonpreferred Fano factor was calculated from the same 300 ms
epoch used for the DIC and VarCE/CorCE analyses. F, The first PC loadings plotted against the second PC loadings for each
RDM neuron and (G) Glass pattern neurons. Blue points indicate a negative DDIC (accumulating). Red points indicate a posi-
tive DDIC (stepping). Units on the PC1 and PC2 axes are arbitrary.
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DDIC, such that lower Fano factors indicate a greater likelihood
of being labeled as stepping. Like Chandrasekaran et al. (2018),
we regressed the DDIC for each neuron against the Tout Fano
factor over the 300ms analysis epoch. For the RDM task, the
nonpreferred Fano factor is predictive of the DDIC (R2 = 0.175,
p=0.002, b = 43.938, t(47) = 3.160, p=0.002; Fig. 3E, red). The
analysis applied to the Glass pattern dataset indicates no predic-
tive relationship between the nonpreferred Fano factor and the
DDIC (R2 = 2e-4, p=0.904, b = �8.276, t(70) = �0.121, p= 0.
904; Fig. 3E, blue). Interestingly, although the nonpreferred Fano
factors were predictive of the DDIC for the RDM activity, none
of the neurons was classified as stepping according to their
DDIC. In addition, all SC neurons of either sub- and super-
Poisson dispersion (min Fano factor: 0.35; max Fano factor:
2.12) had DDIC that were classified as accumulating; 32 of 49 of
the neurons had nonpreferred Fano factors, 1, which are
expected to have DDIC, 0. Although dispersion is predictive of
the DDIC, the predictive capacity does not necessarily extend
into class labels. Given the above results, we conclude that there
lacks a clear relationship between dispersion and the DDIC in
our SC dataset, making it unlikely that the DDIC we calculated is
significantly affected by dispersion.

Chandrasekaran et al. (2018) also found that applying princi-
ple component analysis (PCA) to spike rates revealed a mixture
of monotonic and nonmonotonic PCs. Crucially, the extent of
loading on the nonmonotonic PCs was predictive of the DDIC,
such that greater loading predicted a greater likelihood of being
labeled stepping. We replicated the PCA analyses on the rates
from our SC neurons. In applying PCA to the RDM task activity,
both the first and second PCs displayed monotonic behavior, of
which only the first was consistent with an accumulation or step-
ping process (monotonic rise). The first and the second PC
explained 89% and 8% of the total variance, respectively. Since
both first and second PCs displayed monotonic-like behavior, a
clear relationship between the DDIC and nonmonotonicity can-
not be made because of the lack of counterfactual evidence.
However, for the Glass pattern, both accumulation and stepping
DIC labels were available. PCA revealed similar results as the
RDM, with a first component capturing 94% of the variance and
the second component capturing 4% of the variance. However,
the first PC was nonmonotonic, and this nonmonotonicity was
present for neurons classified as step or ramp by the DIC analy-
ses. This might explain the majority of neurons being classified
as stepping in the Glass pattern dataset. Therefore, we decided to
split the dataset into both DIC stepping and accumulating classi-
fied datasets and ran PCA on the discharge rates. We found the
same results where the first PC contained 94% of the variance.
In addition, plotting the PC score comparing PC1 and PC2 (Fig.
3F,G), we found no significant correlation between the DIC clas-
sification and the loadings on either PCs for either RDM (R2 =
�0.067, p=0.65) or Glass pattern task data (accumulation: R2 =
0.330, p=0.09; stepping: R2 = �0.165, p=0.27). Therefore, the
second point by Chandrasekaran et al. (2018) is also unlikely to
be a concern for the analysis reported here. Together, our results
demonstrate that the DDIC from the SC data is unlikely to be
susceptible to brittleness.

As the DIC results showed, the VarCE and the CorCE also
show that SC activity is more consistent with an accumulation
process than a stepping process during the RDM task. SC activity
increases linearly as the decision evolves in the RDM task,
and the VarCE shows a similar monotonic rise (Fig. 4A–C). We
computed the VarCE using f estimates derived from a theoreti-
cal accumulation CorCE (Fig. 4B) and a simulated stepping

Figure 4. SC spiking during the RDM task is consistent with accumulation. A, Averaged
SDF (a = 20ms) for all choices plotted against time and aligned to the onset of the motion
cue (vertical dashed line) for 0% coherence trials. n= 49 neurons. Overlain lines indicate
example time bins (1-5) for Monkey P as an example. B, VarCE (filled black circles) and fitted
line (red) calculated in 60ms time bins for 0% coherence plotted against time during the de-
cision epoch using estimates of f derived from best fits to the theoretical accumulation
CorCE matrix (see Materials and Methods). Error bars indicate the SD obtained from boot-
strapping but are obscured by the symbols. C, Same as in B, but for a stepping process used
to estimate f . D, The upper triangle of a symmetric CorCE matrix through time displayed
as a heat map. Warmer colors represent higher CorCE. The CorCE analysis used the same
60ms time bins. E, Same as in D, but for a stepping process used to estimate f . F,
Comparisons between the CorCE values from the SC data (black lines) and the theoretical
CorCE (red lines) from an accumulation process used to estimate f in B. Only the top row
of the CorCE matrix (dashed line in D) and the first juxtadiagonal (solid line in D) are pre-
sented. F, Filled circles represent the corresponding filled circles in the CorCE matrix plotted
in D. Inset, R2 values were calculated over all 10 r values of the matrices. Error bars indicate
the SD obtained from bootstrapping and may be obscured by the symbols in some cases. G,
Same as in F, but for a stepping process used to estimate f . The theoretical CorCE shown
in G was obtained from simulations using a step time distribution.
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CorCE (Fig. 4C; for the f estimates, see Table 1). Both VarCE
measures showed linear increases. The more stringent assess-
ment of whether the underlying neuronal process is consistent
with accumulation is the CorCE because this measure is con-
strained by the two models separately. Figure 4D shows the
CorCE of SC spike trains during the decision epoch of the
RDM task, using f estimates from a theoretical accumulation
CorCE. Figure 4E shows the same using f estimates from a
simulated stepping CorCE. Theoretically, the correlation of
spike count bins across time should increase and the correlation
between spike counts bins separated in time should decrease
gradually for an accumulation process. For a stepping proc-
esses, the correlation between spike counts across time should
decrease abruptly as the width of the step time distributions
decreases. We computed the R2 comparing the theoretical accu-
mulation CorCE to the SC data and the simulated stepping
CorCE to the SC data (R2

CorCE), over the 10 CorCE data points,
which yielded an R2

CorCE of 0.711 and 0.475, respectively.
Bootstrapping the SSEs between the accumulation and stepping
CorCEs revealed a significant difference between the two (Fig.
4F,G; p, 0.001). We present only the top row of the CorCE
matrix (dashed lines) and the juxtadiagonal (solid lines) in
Figure 4F and G for clarity. The red lines indicate theoretical
predictions, and the circles and black lines indicate the data
points from SC spike trains.

Figure 5 shows spike train dynamics of SC neurons during
the Glass pattern detection task. Although the VarCE showed a
rise during the decision epoch, it was qualitatively nonmono-
tonic compared with that seen in the RDM task (Fig. 5A–C).
This behavior is inconsistent with a process of accumulation. As
we did for the RDM task data, we next computed R2CorCE com-
paring the theoretical accumulation CorCE to the SC data
CorCE and the simulated stepping CorCE to the SC data CorCE
to determine the step times as described above. The resulting
R2CorCE values were 0.744 and 0.824, respectively (Fig. 5D–G).
Bootstrapping the SSEs revealed a significant difference between
both pairs of R2CorCE values (Fig. 5D,E; p, 0.001). Thus, the
comparatively nonmonotonic rise of the VarCE, and the CorCE
analyses of SC spiking data, indicate that decision activity during
the Glass pattern detection task is unlikely to reflect an accumu-
lation process (Churchland et al., 2011). Although the R2 values
were largely consistent with an accumulation process, the R2 val-
ues were larger and significantly different for a stepping process
(compare Fig. 5F,G). We performed the same analyses for the
RDM and Glass pattern data for individual monkeys and repli-
cated the group results in each monkey, indicating that the
results stem from differences in task and not idiosyncrasies of
the individual monkeys (Fig. 6). Bootstrapping the individual
monkey SSEs revealed a significant difference between the
R2CorCE values (p, 0.001).

We then calculated the VarCE using a 300ms epoch around
visual target onset for both the RDM and Glass pattern task data,
in which a target stimulus appeared in the RF of a recorded neu-
ron leading to a short burst of spikes (Fig. 7A,E). We also calcu-
lated the VarCE during the saccade epoch, when the high-
frequency motor-related activity of SC neurons occurred (Fig.
7B,F). In doing so, we could address possible concerns that the
VarCE was conflated with a disproportionally increasing PPV as
spike rate increased. The data showed that the peak VarCE did
not coincide with the peak mean rate during the visual target
onset (Fig. 7C,G) nor during the saccade. Rather, the VarCE
decreased as the mean rate increased (Fig. 7D,H), revealing a
decoupling of the spike rate and the VarCE. The exact value of

Figure 5. SC spiking during the Glass pattern task is consistent with stepping. A,
Averaged SDF (a = 20ms) for all choices plotted against time and aligned to the onset of
the Glass pattern cue (vertical dashed line) for the 26% coherence trials. N= 72 neurons.
Overlain lines indicate example time bins for Monkey B. B, Plot of VarCE (filled black circles)
and fitted line (red) calculated in 60 ms time bins for 26% coherence, all choices plotted
against time using estimates of f derived from the best fits to the theoretical accumulation
CorCE matrix. Error bars indicate the SD obtained from bootstrapping but are obscured by
the symbols. C, Same as in B, but for a stepping process used to estimate f . D, Top triangle
of a symmetric CorCE matrix through time displayed as a heat map. Warmer colors represent
higher CorCE. The CorCE analysis used the same 60ms time bins. E, Same as in D, but for a
stepping process used to estimate f . F, Comparisons between the CorCE values between
the SC data (black lines) and the theoretical CorCE (red lines) from an accumulation process
used to estimate f in B. Only the top row of the CorCE matrix (solid line in C) and the first
juxtadiagonal (dashed line in C) are presented. Filled circles represent the corresponding
filled circles in the CorCE matrix plotted in D. Inset, R2 values were calculated over all 10 r
values of the matrices. Error bars indicate the SD obtained from bootstrapping. G, Same as in
F, but for a stepping process used to estimate f . The theoretical CorCE was obtained from
simulations using a step time distribution.
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f does not change the interpretation of the VarCE so long as f
. 0, at which value, there is no PPV and the VarCE is the sample
variance of the spike count (Churchland et al., 2011, their
Supplemental Fig. 1).

We also assessed the relationship between the spike count
variance and the means across spike rate increases to justify our
use of a stationary f (Fig. 8). We found that the variance scaled
linearly or decreased with the mean during a 100ms bin around
the target onset or saccade for all neurons recorded in both
RDM (Fig. 8A,B) and Glass pattern (Fig. 8C,D) tasks. We found
the same using LIP data recorded during the RDM task from
Roitman and Shadlen, 2002) (Fig. 8E,F). For both target onset
and saccade activity, SC neuronal activity increased in mean
spike rate, but the variance to mean ratio (VMR) changed little
or decreased (Fig. 8B,D,F; compare black and gray circles). If
there were a concern about nonlinear increases in PPV, we
would expect to see the VMR turn upward with the higher spike

rates. Figure 8 shows that, for the data recorded in both the
RDM task and the Glass pattern task, the VMR remains station-
ary or decreases, despite the increases in spike rate. Comparisons
of our SC neurons to neurons from area LIP on a similar RDM
discrimination task reveal a similarly decreasing VMR with
increasing mean rate (Fig. 8E,F). Wilcoxon rank sum over the
target onset and saccade VMR revealed no statistically significant
differences in the RDM task (p. 0.05) and a statistically signifi-
cant difference, but decreasing, VMR in the Glass pattern task
(p=0.029).

As a sanity check, we also jittered spike trains from the origi-
nal data set to test the hypothesis that a CorCE measured from
random spike trains, presumably containing no accumulation or
stepping related processes, differ significantly from the CorCEs
obtained from the SC data acquired during the RDM and Glass
pattern tasks. Spikes trains recorded from the SC were jittered
using a 75ms interval window for the duration of the decision

Figure 6. Accumulation and stepping depend on the task and not monkey idiosyncrasies. A, VarCE obtained using the same methods as described in Figures 2 and 5, for 0% coherence in
Monkey P from the RDM. n = the number of neurons from each monkey. Error bars indicate the SD obtained from bootstrapping and may be obscured by the symbols. B, VarCE obtained using
the same methods as described in Figures 2 and 6, for 0% coherence in Monkey P. Error bars indicate the SD obtained from bootstrapping and may be obscured by the symbols. C,
Comparisons between the CorCE values between the SC data (circles) and the expected values from the theoretical ramping CorCE for Monkey P. Error bars indicate the SD obtained from boot-
strapping. D, Comparisons between the CorCE values between the SC data (circles) and the expected values from the theoretical stepping CorCE for Monkey P. Error bars indicate the SD
obtained from bootstrapping. E-H, VarCE and CorCE analyses from A, B, repeated for Monkey H. I-L, VarCE and CorCE analyses from A, B, repeated for Monkey B. M-P, VarCE and CorCE analyses
from A, B, repeated for Monkey S. An accumulation process explained the data for Monkeys B and S performing the Glass pattern task well, but not as well as a stepping process.
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epoch, randomizing the occurrence of the spike
within the window (Amarasingham et al., 2012).
We then calculated the CorCE for the jittered spike
trains using f estimated from theoretical CorCEs.
Next, we compared the jittered CorCE to the theo-
retical CorCE for both accumulation and stepping
by calculating the R2 goodness of fit. This process
was repeated 1000 times to obtain a distribution of
R2 values. The median R2 for the jittered dataset
was 0.44, whereas the R2 for the accumulation and
stepping processes was 0.711 and 0.798. R2 values
from the SC data for both RDM and Glass pattern
tasks were greater than all of the jittered R2 values.
Therefore, the R2 goodness of fit from the SC data
and the jittered data set are significantly different
(p, 0.01), indicating that the CorCE using the SC
data reveals time varying structure in spike trains
that is not present in the jittered spike trains.

We also performed a series of analyses using
simulated spike rates to assess whether comparing
the CorCE R2 goodness-of-fit values could reliably
select a true underlying model. To do this, we gen-
erated an artificial dataset using the same number
of neurons, number of trials, and single-trial pa-
rameters as in our empirical dataset. Some of the
parameters used to generate the rates were preset
to create idealized 0% coherence spiking activity (e.
g., the starting point set to 0.5 or chance). The
remaining parameters were obtained from the pa-
rameter fits. Simulated rates were calculated inde-
pendently for both accumulation and stepping
models using RDM or Glass pattern estimated pa-
rameters, for a total of four simulated datasets.
Each simulated dataset underwent the same proce-
dure used in the analyses shown in Figures 2, 4,
and 5, resulting in a pair of R2 distributions for
each artificial dataset as the simulated CorCE is fit to
either accumulation or stepping (Fig. 9A–D).
Statistical testing between each pair of R2 distributions
across all four simulated datasets revealed significant
differences (idealized accumulation� simulated accu-
mulation: Z=27.129, p, 0.001; idealized accumula-
tion � simulated stepping: Z = �27.393, p, 0.001;
idealized step � simulated accumulation: Z=27.234,
p, 0.001; idealized step � simulated stepping:
Z=2.590, p, 0.010), suggesting that the CorCE is
unlikely to misinterpret different models as being the
same.

A key note, however, is that the comparisons
rely on the relative R2 values for the two models.
Therefore, we took the pairwise difference between
the R2step and R2acc for each simulated dataset to
calculate the true positive, true negative, false posi-
tive, and false negative rates to then calculate the
sensitivity and specificity of the classification proc-
esses based on CorCE (Fig. 9E,F). Overall, the sen-
sitivity was 0.757 and specificity was 0.992.
However, the RDM dataset had better performance
with a sensitivity of 0.979 and specificity of 1.0 compared with
the Glass pattern’s sensitivity of 0.535 and specificity of 0.983.
These values indicate that classification based on relative CorCE
R2 goodness-of-fit values is likely to select the true underlying
process between the two, under ideal conditions.

In addition to the accumulation and stepping models
described above, we performed the same analyses using a recur-
rent neural network model from the class of dynamical “attrac-
tor” models of decision-making developed by Wong et al.
(Wong and Wang, 2006; Wong et al., 2007). We selected this
model because of its biological plausibility; changes in recurrent

Figure 7. The VarCE decreases around the time of saccade onset in decision tasks. Normalized discharge rate
collapsed over all coherences is plotted against time for SC neurons recorded in the RDM discrimination task.
Solid black lines indicate the averaged SDF (a = 20ms) for Tin trials. Gray lines indicate Tout trials aligned to
the onset of the choice targets (A) and the saccade onset (B), indicated by dashed vertical lines. E, F, Same as
in A and B, respectively, for the 72 neurons recorded in the Glass pattern detection task. Because neither a step-
ping nor an accumulation process describes SC activity at the time of saccade, we used Fano factor-guided esti-
mates of f to calculate the VarCE around the time of the visual target and saccade onsets as did Churchland
et al. (2011). This method of using the Fano factor as an estimate of the f ensures that the VarCE remains
non-negative throughout the trial. The smallest Fano factor was selected as the upper bound of f . C, The
VarCE aligned on the time of the visual target onset (dashed vertical line) from the RDM task and (D) aligned
on the time of the saccade onset in which the monkeys made Tin choices (black) and Tout choices (gray). The
VarCE is calculated using five consecutive 60 ms bins from 150 ms before the saccade onset to 150 ms after.
Error bars indicate the SD obtained from bootstrapping. G, Same as in C (and H, same as D), for the Glass pat-
tern detection task.
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weights can shift network activity from accumulation to step-
ping, and we reasoned this type of mechanism may underlie the
differences in the spiking activity of SC neurons in the RDM and
Glass pattern tasks. For the accumulation model, we used a lower
recurrent weight; and for the stepping model, we used a higher
recurrent weight (see Materials and Methods). The VarCE for
the RDM task shows a linear rise across both f estimates and
regardless of weight (Fig. 10A,B). The SC data CorCE observed
for the RDM task revealed higher conformity with the accumula-
tion recurrent weight CorCE (Fig. 10C,D; R2CorCE = 0.848) com-
pared with the stepping recurrent weight CorCE (Fig. 10F,G;
R2CorCE = 0.529). Bootstrapping the SSEs revealed a significant
difference between the R2CorCE values (Fig. 10C,F; p, 0.001). In
the Glass pattern task, the VarCE showed the same transient,
early flattening (Fig. 10H,I). And the CorCE conformed less with
the accumulation recurrent weight (Fig. 10J,K; R2CorCE = 0.205)
than with the stepping recurrent weight (Fig. 10M,N; R2CorCE =
0.696). Bootstrapping the SSEs revealed a significant difference
between the R2CorCE values (Fig. 10J,M; p, 0.001).

The VarCE and CorCE results using simulated rates from an
attractor model (Fig. 10) are consistent with those obtained using
predictions from accumulator and stepping models and the DIC
and WAIC analyses (Figs. 3-5). Together, these results indicate

that the spiking dynamics of SC neurons during the delay period
of the RDM discrimination task are more consistent with an
accumulation process compared with a stepping process. During
the Glass pattern detection task, SC neuronal activity is well
explained by an accumulation process but is comparatively more
consistent with a stepping process. These differences occurred
despite similar trial-averaged ramping activity across tasks and
across both monkeys.

Variance measures and the strength of evidence
We used the lowest coherences in the preceding analyses to max-
imize the length of the decision epoch and therefore the likeli-
hood of observing either an accumulation or stepping process.
However, in the presence of stronger sensory evidence, and
assuming fixed decision bounds, we expect the decision variable
to hit the bound sooner and to remain at the bound for a longer
period of time. Therefore, the VarCE might reflect this by
decreasing as the strength of the evidence increases. The CorCE
should also show decreases with time because the neuronal activ-
ity is no longer changing. For a stepping process, the time of the
step change from an uncommitted to committed state should
occur earlier in time, resulting in a flattening or a decrease of the
VarCE with stronger sensory evidence. Also, because the step-
ping model we implemented estimated step time distributions
from parameter fits across coherences (see Materials and
Methods) (Latimer et al., 2015), the CorCE fits should be similar
across coherences for a stepping process.

We first examined the mean discharge rate in the RDM task
plotted over time, and separated for different coherences (Fig.
11A) and the Glass pattern task (Fig. 11F). A curiosity of SC ac-
tivity that we and others see in some neurons is that the dis-
charge patterns for Tin correct choices associated with different
levels of sensory strength show less sensitivity to the strength of
sensory evidence than the Tout correct choice discharges
(Horwitz and Newsome, 2001; Horwitz et al., 2004; Ratcliff et al.,
2007). But because the Tout activity is modulated by sensory evi-
dence, calculating the ROC between the Tin and Tout activities,
referred to as the predictive index (Horwitz and Newsome, 2001)
(see Materials and Methods), for different coherences shows that
the predictive power of the combined activity increases for
strong sensory signals and decreases for weaker sensory signals,
consistent with signaling the decision (Fig. 11B). LIP often shows
similar trial-averaged behavior (Kiani et al., 2008). Figure 11C
shows the VarCE sorted by motion coherence during the deci-
sion epoch. For all the motion coherences and Tin and Tout

choices, with the exception of the 20%/50% coherence Tout

choices, the pattern of VarCE is increasing, similar to that seen
on average (compare Fig. 11C, solid Tin, dashed Tout and Fig.
4B). The VarCE shows a slow linear rise that decreases in slope
with increased coherence, consistent with an accumulation pro-
cess. Figure 11D shows the peak VarCE, calculated by taking the
mean of the VarCE over Tin and Tout choice outcomes for the
different coherences, decreases as the strength of the sensory evi-
dence increases (ANOVA F(3,999) = 17,536.56, p, 0.001). The
R2CorCE over time also shows a progressive decrease as coherence
increases (0%: 0.710; 6%/10%: 0.559; 10%/20%: 0.620; 20%/50%:
0.221; Fig. 11E), consistent with predictions of an accumulation
process. At the time of the choice report, when trial-averaged ac-
tivity is showing large increases in discharge rate associated with
the generation of the saccade, the VarCE drops precipitously and
equally for Tin and Tout correct choices, a point to which we
return in the discussion.

Figure 8. The variance to mean relationship is stable over a range of spike rates. A, Spike
count variance plotted against the mean spike counts for each neuron in the RDM discrimina-
tion task from the SC. n= 49. Black dots indicate the data for the target onset epoch. Gray
dots indicate the saccade onset epoch. B, The VMR plotted against the mean rate for each
neuron with a line fit to the target onset bins (black), the saccade bins (gray), and a line fit
to a dataset consisting of both target onset and saccade (red). Black and gray lines are some-
what obscured by the red line. C, Same as in A, but for the SC neurons from the Glass pat-
tern detection task, n= 72. D, Same as in B, but for the Glass pattern task data. E, F, Same
as in A and B, but for a 100 ms time bins around the target onset and the saccade from 809
LIP neurons. LIP data were obtained from Roitman and Shadlen (2002).
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For most coherences, the predictive index and
VarCE calculated across Glass pattern coherences
showed a similar trend as seen in the averaged
data (compare Fig. 11F,G, solid Tin correct, dashed
Tout correct, and Fig. 5B). And the peak VarCE
values decreased as the strength of the sensory evi-
dence increased (Fig. 11I; ANOVA F(3,999) =
2194.36, p, 0.001). However, the CorCE remained
high for almost all coherences and time points,
which is inconsistent with an accumulation process
(26%: 0.809; 39%: 0.669; 52%: 0.702; 100%: 0.611;
Fig. 11J). Thus, sorting the data by coherences and
examining the spike train statistics confirmed the
results from the low or no coherence trials; during
performance of the Glass pattern task, SC spiking
activity is statistically consistent with a stepping pro-
cess compared with an accumulation process.

SI during decision formation
As an additional test of whether SC activity is bet-
ter explained by an accumulation or stepping
process in the two decision tasks, we also imple-
mented another measure of variability, but one
based on within-trial variance rather than across-
trial variance. For this, we measured and com-
pared the SI for SC neuronal activity data and for
simulated spike trains for accumulation and step-
ping processes (see Materials and Methods).

Figure 12 shows the distributions of SIs for SC
spike trains (blue), simulated accumulation spike
trains (red), and simulated stepping spike trains
(green). We generated the distributions shown
in Figure 12 by a resampling procedure in
which we first simulated accumulating and
stepping spike trains for the same number of
SC neurons recorded in the two tasks. We next
calculated SIs for each simulated neuron and
classified it as showing accumulation if the SI
was not significantly different from 0 (p, 0.05)
and stepping if the SI was significantly ,0 (p ,
0.05). The Poisson process used to generate
spike trains from the simulated rates can intro-
duce noise that results in overlapping simulated
SI distributions, although the underlying proc-
esses differ. To ensure the results were not
impacted by this potential noise, the sampling
procedure included criteria that resulted in
idealized (i.e., nonoverlapping) stepping and
accumulating rate distributions. We simulated spike trains
using parameters extracted from our empirical SC spike trains.
If the neuron passed the criterion, the corresponding empirical
SC neuron from which the parameters were sourced was
included for analysis. This approach ensured that we would
not mistakenly identify simulated spike trains as accumulating
when they were indeed stepping, or vice versa. The median SI
was calculated from the simulated and subsampled SC neu-
rons, and the process was iterated 1000 times to populate the
distributions of SIs shown in Figure 12. This was done because
the SI analysis randomly assigns a 0 or 1 to the bin when the
spike count of a bin is equivalent to the median. As a result, multi-
ple repetitions of the SI analysis on the same spike train samples
result in slight variations in the median SI across repetitions. This
method of calculating SIs resulted in variation in the classified

samples for each iteration (see Materials and Methods). The me-
dian SI for the SC neurons from the RDM task was �0.063, the
median SI for simulated stepping was �0.321, and for the simu-
lated accumulation was 0. The median differences (0.063 vs 0.258)
were statistically significant (Fig. 12A; Wilcoxon’s signed rank,
p, 0.001) and indicate that the distribution of SIs for SC spiking
data measured during the RDM task is more similar to the distri-
bution of SIs obtained from simulated accumulation than simu-
lated stepping. We observed the opposite pattern for the Glass
pattern task. The median SI for the SC data was �0.345, whereas
the median of the SI distribution for the simulated accumulation
was �0.073 and the simulated stepping was �0.565. The differ-
ence in medians between the SC data and the accumulation
(0.257) versus the difference in medians between the SC data and
the stepping (0.306) was statistically significant (Fig. 12D;
Wilcoxon’s signed rank, p, 0.001).

Figure 9. CorCE classification as applied to simulated rates from accumulation and stepping models using SC
parameters determined from empirical data. A, Pairs of R2 distributions obtained by applying the R2 goodness of
fit of CorCE analysis on simulated accumulating spikes. Here, the artificial spikes are simulated using parameters
estimated from the RDM dataset. The R2 distribution reflects the analysis repeated over 1000 different simulated
datasets. The blue distribution was obtained by comparing the simulated data to an idealized accumulation CorCE.
The orange distribution is the same using an idealized stepping CorCE. B, Same as in A, but using simulated step-
ping spikes using parameters from the RDM dataset. C, Same as in A, but using simulated accumulating spikes
using parameters from the Glass pattern dataset. D, Same as in A, but using simulated stepping spikes using pa-
rameters from the Glass pattern dataset. E, Pairwise differences of R2 vales from the RDM parameterized spikes
used in the R2 goodness of fit of CorCE analysis to identify the better fitting model. Blue histogram represents the
pairwise R2 differences between the R2 values in A. Orange histogram represents the pairwise R2 differences
between the R2 values in B. Difference values .0 indicate that the simulated spikes we correctly categorized as
stepping or accumulating. F, Same as in D, but for the Glass pattern parameterized spikes.
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Running the SI analysis for the individual monkeys separately,
for both the RDM discrimination task and the Glass pattern detec-
tion task, produced the same results as seen in the group data and,
notably, were consistent for each monkey in each task (Fig. 12B,C,
E,F). Therefore, the differences between the SIs for the RDM and
the Glass pattern tasks are unlikely to result from idiosyncratic dif-
ferences between the monkeys, but rather, reflect real differences
in the underlying processes occurring in the two tasks; accumula-
tion for the RDM task and more likely stepping than accumula-
tion in the Glass pattern task.

The underlying process during saccade specification differs
from accumulation
It is well known that the SC is involved in saccade generation
and is modulated by the likelihood of choosing a particular

saccade and that trial-averaged activity shows ramping during
simple saccade tasks (Glimcher and Sparks, 1992; Munoz and
Wurtz, 1995; Basso and Wurtz, 1998; Dorris and Munoz, 1998;
Kim and Basso, 2008). Therefore, it is possible that the changes
in spiking variability we measured during these tasks result from
processing other than that related to decision-making, such as
the saccade specification process, shifts of attention from the
fovea to the choice target location, and reward probability. To
rule out whether the patterns observed in the VarCE and CorCE
arise from decision independent processes, we analyzed the SC
spike trains as we did for the decision tasks but for data collected
while monkeys performed simple delayed saccades, and in which
the saccade target, shift of attention and likelihood of reward
were the same as in the decision tasks (Fig. 13A). We used the
data recorded from an additional 62 neurons from Monkeys H

Figure 10. SC spiking during the RDM task is consistent with accumulation and during the Glass pattern task is consistent with stepping using a recurrent neural network model. A, The mean of
10,000 simulated SDFs with recurrent weights produces a ramping process. B-G, Results for the same analyses applied to the RDM task as shown in Figure 5B-G, except for these plots we used the theo-
retical CorCE from a ramping and stepping attractor process to estimate the f . The R2 values were calculated over all 10 r values. Error bars indicate the SD obtained from bootstrapping. H, Same as in
A, except the recurrent weights produce a stepping process. I-N, Results from the same analyses applied to the Glass pattern task as shown in Figure 6B-G, except for these plots we used the theoretical
CorCE from a ramping and stepping attractor process to estimate the f . The R2 values were calculated over all 10 r values. Error bars indicate the SD obtained from bootstrapping.

Figure 11. Predictive activity and the VarCE scale with the strength of the sensory evidence. A, The averaged SDF (a = 20ms) of SC neuronal activity for each coherence is plotted against
time and aligned on the onset of the motion cue (vertical dashed line). The strength of the sensory evidence is represented by a grayscale, with lighter gray indicating higher coherence. B,
Predictive activity calculated over 100 ms bins, separated by coherence and plotted over time aligned to motion stimulus (vertical dashed line). C, VarCE averaged over 60 ms bins, plotted over
time and aligned on the motion cue (vertical dashed line) using f estimates from the best fits to the theoretical accumulation CorCE. In all panels, solid lines indicate Tin trials and dashed lines
indicate Tout trials. D, The peak VarCE, calculated by taking the mean of the VarCE over Tin and Tout choices plotted for each coherence. The same grayscale convention is used for the strength
of the sensory evidence. Vertical black bars indicate SEM. E, The CorCE of the corresponding VarCE of 0% to 20%-50% coherence trials for the RDM task from A-D. Top row of the CorCE matrix
(open circles and fitted lines) and the first juxtadiagonal (filled circles and dashed lines) are shown for the data (black) and theory (red). Error bars indicate SD; some may be obscured by the
symbols. F-J, The same results as in A-D, but for the Glass pattern data. G, The VarCE was calculated using the best fit f estimates from the theoretical stepping CorCE.
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and P that performed the RDM task. The
mean discharge rate of the neurons,
aligned to the target onset, showed a
sharp increase associated with the onset
of the target and then another gradual
rise before saccade generation (Fig. 13B).
Using a 300ms epoch 100ms after target
onset, we calculated the VarCE (Fig. 13C)
using f estimates derived from a theoret-
ical accumulation CorCE (see Materials
and Methods). The VarCE shows an ini-
tial dip following target onset, and then
remains flat until the onset of the saccade,
;400 ms after the target onset, at which
time it increases. This rise in VarCE
occurs because the data are aligned to tar-
get onset. When the data are aligned to
saccade onset, the VarCE decreases at this
time (Fig. 7). We computed R2CorCE com-
paring the theoretical accumulation
CorCE to the SC data over the 10 CorCE
data points, which yielded an R2

CorCE of
0.296 (Fig. 13D,E). This is consistent
with the results from the VarCE and
unlike what was found for the RDM dis-
crimination task. Together, the results
from the delayed saccade task show that
SC neuronal spike train variability dur-
ing performance of a simple saccade task differs from that
measured during performance of a decision task; therefore,
the changes measured during the decision tasks likely result
from decision-related processes and not saccade preparation,
shifts of attention, predictability, or expectation of reward.
The results also confirm that trial-averaged ramping activity
of SC neurons is insufficient to identify conclusively the
underlying processing of neurons and their relationship to
behavior and cognition.

Discussion
We described spike train dynamics recorded from SC neurons in
monkeys while they performed an RDM direction discrimina-
tion task, a Glass pattern orientation detection task, and a simple
saccade task. We found that the dynamics of variability in spiking
activity of SC neurons during the RDM task show a linear rise and
better fits to a theoretical model of accumulation compared with a
simulated stepping process. In the Glass pattern detection task, SC
spiking activity showed similar rises but also dips or plateaus and
better fits to a stepping process than an accumulation process.
These differences were consistent across individual monkeys.
Finally, although trial-averaged ramping activity showed linear rises,
the variance measures of spiking that occurred during the delayed
saccade task differed from those measured during either decision
task, indicating that the changes in spiking variance during per-
formance of the RDM and Glass pattern tasks is unlikely to reflect
attention, saccade specification, or processing related to rewards.
These results point out the importance of not relying on trial-aver-
aged activity to infer function. The results further highlight an inter-
esting hypothesis that neurons in the SC play different roles in
decision-making depending on the task. For discrimination, SC
neurons may play a role in evidence accumulation, whereas for
detection, they may play a role in decision commitment (Horwitz
and Newsome, 2001; Ratcliff et al., 2003; Crapse et al., 2018). We

are currently performing causal experiments to test aspects of this
hypothesis.

Relationship to previous findings
Many brain areas are implicated in decision-making, notably the
parietal cortex (posterior parietal cortex [PPC] in rodents and
LIP/MIP in monkeys) the dorsolateral frontal cortex (FOF in
rodents and areas 8 and 46 in monkeys), caudate nucleus (dorsal
striatum in rodents), and the SC. Each shows trial-averaged
ramping consistent with accumulation culminating in a decision
(Schall, 1991; Kim and Shadlen, 1999; Gold and Shadlen, 2000;
Horwitz and Newsome, 2001; Roitman and Shadlen, 2002;
Ratcliff et al., 2003, 2007; Horwitz et al., 2004; Felsen and
Mainen, 2008; Ding, 2015; Hanks et al., 2015; Brody and Hanks,
2016; Yartsev et al., 2018). Although recent work in monkeys
and rodents explores single spike trains on decision-making
processes (Roitman and Shadlen, 2002; Churchland, et al., 2011;
Ding, 2015; de Lafuente et al., 2015; Yartsev et al., 2018), these
methods have not been applied to the SC of monkeys as we do
here. Evidence for the role of the SC in perceptual decision-mak-
ing depends on correlations between trial-averaged ramping ac-
tivity and performance on perceptual decision tasks and
comparisons of model generated accumulation profiles with
trial-averaged activity ramping profiles of SC neurons (Horwitz
and Newsome, 2001; Ratcliff et al., 2003, 2007; Horwitz et al.,
2004). However, the assumption that trial-averaged ramping ac-
tivity reflects a process of evidence accumulation has been called
into question (Thura et al., 2012; Latimer et al., 2015), highlight-
ing the need to assess the ramping activity of neurons more rig-
orously, and importantly, on single trials, as we do here.
Comparing spiking data with theoretical predictions and simu-
lated spike trains, we found that SC neurons contain spiking sig-
natures consistent with an accumulation process as well as rapid
shifts of decisions, despite similar trial-averaged activity.

The VarCE, CorCE, and SI measures from LIP neurons dur-
ing RDM performance all show signatures consistent with

Figure 12. The SI reveals accumulation and stepping in SC neuronal activity. A, Frequency histograms of SIs calculated
from SC neuronal spike trains during performance of the RDM task (blue), simulated accumulation spike trains (red), and
simulated stepping spike trains (green). Values;0 indicate accumulation, and values,0 indicate stepping. Each bar plots
the number of neurons, or simulated neurons with a particular SI. Blue line is fit to the SI distribution from the SC spike
trains. Data from both monkeys are collapsed. B, C, Same as in A, but separated for individual monkeys: Monkeys P and H.
The spikes trains are measured from 204 to 574 ms for Monkey P and 255 to 700 ms for Monkey H after the onset of the
motion. D–F, Same as in A-C, but for SC neuronal spike trains during performance of the Glass pattern task (blue), simulated
accumulation spike trains (red), and simulated stepping spike trains (green). The spike trains are measured from 209 to 800
for Monkey B and 337 to 800 ms for Monkey S after the onset of the Glass pattern. Values,0 indicate stepping. Downward
arrow indicates the median of each distribution color-coded. Vertical dashed line indicates the zero point.
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accumulation. The VarCE in LIP shows a linear rise that pla-
teaus, and at the time of the choice report, declines. Our findings
in SC mirror those from area LIP, including the decrease in
VarCE around the time of the choice report for Tin trials. In LIP
the VarCE for Tin choices drops quickly during the choice report,
whereas for Tout choices it drops comparatively slowly and later
(Churchland et al., 2011). However, in SC, the VarCE drops
precipitously simultaneously for both Tin and Tout choices.
Churchland et al. (2011) hypothesized that the Tout decline in
LIP neurons reflected accumulation interruption for the losing
choice. Our SC results suggest that both processes reach the deci-
sion bound synchronously in the SC. From these differences, we
speculate that the SC may terminate processing in LIP for Tout

choices. In both the caudate and frontal eye field (FEF) of mon-
keys, the VarCE shows a linear rise and plateau (Ding, 2015). But
the rise appears faster and, in the case of the FEF, reaches higher
than LIP or the SC early in the decision epoch. Indeed, variance
measures from caudate and FEF during the RDM task appear
similar to the SC during Glass pattern detection. These differen-
ces suggest that the SC is more similar to LIP than the caudate or
FEF. This contrasts with rodent findings in which processing in
SC appears more related to the FOF (Kopec et al., 2015).

Interestingly, results from the DWAIC and
DDIC scores for SC were consistent, even when
including the SoftPlus nonlinearity and history
filter described by Zoltowski et al. (2019). That
is, none of the DDIC labeled stepping SC neu-
rons changed their classification to accumula-
tion based on the DWAIC. This result is in
marked contrast to reports of LIP neurons,
where the WAIC and the DIC result in different
classifications for some neurons. Based on these
differences between DIC and WAIC in SC and
LIP, we hypothesize that the specific implemen-
tation of accumulation in SC and LIP may dif-
fer. The differences between LIP and SC further
motivate the application of these novel methods
to other brain regions implicated in decision-
making processes.

The measures of variability from SC neurons
appear different during the performance of the
RDM and Glass pattern tasks, and we interpret
this as reflecting different neuronal processing
underlying different task requirements. Both
the RDM and the Glass pattern tasks are one-
interval decision tasks; a single stimulus appears
on each trial, and the observer must determine
to which of two categories the stimulus belongs.
In the RDM task, the observer performs a direc-
tion discrimination. In the Glass pattern task,
the observer detects whether orientation is pres-
ent or absent. Because the former task compares
between two possibilities, it is referred to as
discrimination, whereas the latter compares a
stimulus to a null case and is referred to as
detection. Whether or not evidence accumula-
tion is required for detection tasks is not well
studied, although behavior in such tasks is well
explained by a diffusion process. The drift diffu-
sion model of decision-making explains reac-
tion times in a brightness change detection task,
and the effects of difficulty that occur from var-
iations in stimulus contrast are well captured by
the drift rate parameter of the model, consistent

with a type of evidence accumulation at least for the difficult
trials (Ratcliff and Van Dongen, 2011). Our results are less con-
sistent with a process of accumulation for the Glass pattern
task, at least at the level of the SC. The differences are unlikely
to stem from differences in visual stimuli (form vs motion),
although motion cues and Glass patterns activate both overlap-
ping and nonoverlapping regions of visual cortex (Krekelberg
et al., 2003, 2005; Smith et al., 2007; Lestou et al., 2014). The
dynamic Glass patterns contain noisy sensory evidence that
varies over time as does the motion cue in the RDM task. Like
the motion cue, Glass patterns give rise to global orientation
percepts through sparse local cues (Glass, 1969; Smith et al.,
2002, 2007), and the difficulty of the orientation detection
varies with coherence just as is done for motion in the RDM
task. Thus, noisy samples of sensory evidence occur in both
tasks. The key difference between the tasks, therefore, is the de-
cision strategy used for discrimination versus detection.
Moreover, since the results were the same in the 2 monkeys
that performed the Glass pattern task and the 2 monkeys that
performed the RDM task, the differences are unlikely to result
from monkey idiosyncrasies.

Figure 13. Spiking statistics during simple saccades are not explained by decision processes. A, Schematic of the
spatial arrangement of the delayed saccade task in which no evidence accumulation is required. The arrangement is
the same as in Figure 1. B, Solid black lines indicate the averaged SDF (a = 20ms) for SC neuronal activity plotted
over time and aligned on the onset of the target (dashed vertical line). n= 62 recorded neurons over 19 sessions
from the same 2 monkeys that performed the RDM task. Gray shaded region represents the epoch used for the
VarCE and CorCE analyses. Error bars indicate the SD obtained from bootstrapping. C, The VarCE is plotted over time
from 100 to 400 ms after target onset using the same data as in B. D, The matrix of CorCE through time displayed
as a heat map. Warmer colors represent higher CorCE. The CorCE analysis used the same 60ms time bins and the
same data as in B. E, Comparisons between the CorCE values from the SC data (circles) and the theoretical CorCE
(lines) from an accumulation process used to estimate f in D. Top row of the CorCE matrix (filled dots) and the first
juxtadiagonal (open dots) are presented. Error bars indicate the SD obtained from bootstrapping and are obscured
by the symbols.
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One concern, however, is that the tasks differed in ways other
than just discrimination and detection. For example, the cue
stimulus presence during the delay period and timings differed
between the tasks, which may impact the monkeys’ training his-
tory and thus strategy for performing the tasks. Moreover, the
datasets from the RDM task were collected during performance
of a confidence task and the Glass pattern task dataset were part
of an experiment that manipulated priors. To mitigate concerns
about timing, we used a principled and model-free approach to
define a decision epoch used for all analyses, similarly across all
monkeys and tasks. Moreover, we used control trials from both
tasks mitigating concerns about confidence trials or prior manip-
ulations (Crapse et al., 2018; Grimaldi et al., 2018; Odegaard et
al., 2018). Despite all these differences, the trial-averaged activity
was remarkably similar, showing ramping activity in both tasks
and across both pairs of monkeys and even during a delayed sac-
cade task. Even if differences in the monkeys’ strategy occurred
because of these other reasons, the differences are not as appa-
rent in the trial-averaged activity than they are in the single-trial
spiking dynamics. We think that the similarity in trial-averaged
activity is a key reason why the analytical effort we engaged in
here is so important. It is possible that the monkeys are not
engaged in a process of accumulation, yet the trial-averaged
responses look as though they are, even in the delayed saccade
task, which is how these neurons received their name (Glimcher
and Sparks, 1992; Munoz and Wurtz, 1995).

Placing the SC in decision-making circuits
Although a number of areas in the brain contain accumulation
signatures from trial-averaged spike rate measures, their precise
role within the decision-making circuit is only recently coming
to light. These insights result from the measures described in this
report as well as causal manipulations in brain areas implicated
in decision-making. Causal manipulations in monkeys and
rodents reveal a circuit involved in different aspects of decision-
making. Stimulation of the FEF in monkeys during the RDM
viewing period results in deviations of electrically evoked sac-
cades depending on the decision report (Gold and Shadlen,
2000). These findings provide evidence for shared circuitry
between evidence accumulation and motor preparation. Similar
rat experiments have used halorhodopsin to inactivate the FOF
during the Poisson clicks task, an auditory discrimination task
dependent on an accumulation process (Brunton et al., 2013;
Erlich et al., 2015; Hanks et al., 2015). Inactivation of FOF late in
the decision epoch biases performance toward decisions to the
inactivated hemifield. These results indicate that the FOF of
rodents participates at a stage after accumulation, when the sen-
sory evidence is converted into a categorical decision. A role for
the FEF in processes occurring after accumulation is consistent
with experiments performed in monkey (Ferrera et al., 2009) and
may be reflected in the VarCE measures (Ding, 2015).

Area LIP of the monkey and the PPC of rodents show
response properties consistent with sensory evidence accumula-
tion. Stimulation of monkey LIP produces more and faster
choices to the stimulated hemifield to and fewer and slower
choices to the nonstimulated hemifield (Hanks et al., 2006).
However, a recent study showed that inactivation of LIP with
muscimol fails to alter decision-making performance (Katz et al.,
2016; Zhou and Freedman, 2019). In the rodent, activation or
inactivation of PPC fails to alter decision-making performance
on the auditory Poisson clicks tasks (Erlich et al., 2015; Licata et
al., 2017). However, activation of PPC alters decision perform-
ance of a visual equivalent, but inconsistently with accumulation

(Licata et al., 2017). Whatever the role of LIP, our results provide
evidence that SC neurons support accumulation in the RDM dis-
crimination task and stepping in the Glass pattern detection task.
These results highlight important caveats in decision-making
studies: (1) trial-averaged activity correlations with behavior are
insufficient to reveal the role of a brain area; and (2) it is critical
to know the monkeys’ strategy while performing a given cogni-
tive task, as neurons even in areas just a few synapses frommotor
neurons, such as the SC, may change their contribution depend-
ing on task demands.
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