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Introduction 	

As common functional gastrointestinal disorders (FGIDs), 
irritable bowel syndrome (IBS) and functional dyspepsia (FD) 
are lack of gastrointestinal organic lesions, but seriously affect the 
quality of life of patients. According to the epidemiological data, 
26.7-48.7% of IBS patients and 20.0-42.1% of FD patients have 
overlapping symptoms.1-3 Overlap syndrome leads to more seri-
ous clinical manifestations, worse quality of life and more difficult 
therapy.4 The symptoms of IBS or FD are usually induced by diet, 
gastrointestinal infection, gut microbiota alteration, stress, psycho-
logical disorders and other unknown factors. The chronic inflam-
mation after infection or non-infectious inflammation related to the 
above factors and immune response lead to visceral hypersensitivity, 

dysfunction of brain-gut axis and intestinal mucosal barrier, which 
may be the causes of IBS or FD symptoms. However, whether 
inflammation has the same mechanism in overlap syndrome of 
IBS and FD (IBS-FD) remains unclear and there are few related 
studies to confirm this. In this article, we reviewed recent advances 
about mechanism of inflammation in IBS-FD and provided refer-
ences about the possible mechanism of inflammation in IBS-FD. 

The Role of Gastrointestinal Infection in 
the Pathogenesis of Irritable Bowel Syn-
drome, Functional Dyspepsia, and Overlap 
Syndrome of Irritable Bowel Syndrome and 
Functional Dyspepsia 	

In the population suffering acute gastrointestinal infection, the 
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prevalence of post-infectious IBS (PI-IBS) and post-infectious 
FD (PI-FD) is 12.7% and 9.5%, while the odds ratio of IBS and 
FD following gastrointestinal infection is 3.5 and 2.5, respectively.5 
According to previous studies, pathogens including Shigella, Sal-
monella, Escherichia coli, Campylobacter jejuni, Vibrio cholerae, 
Clostridium difficile, norovirus, Giardia lamblia, and Trichinella 
spiralis were considered to be associated with IBS, while pathogens 
that correlated with FD included Helicobacter pylori, Shigella, Sal-
monella, E. coli, C. jejuni, C. difficile, norovirus, and G. lamblia.5-7 
A recent prospective cohort study found that the incidence of PI-
IBS, PI-FD, and IBS-FD was 16.5%, 7.4%, and 4.7%, respec-
tively, 1 year after acute gastrointestinal infection, and the difference 
was statistically significant compared with healthy controls without 
infection history.8 Mearin et al9 found that 36.0% of all the patients 
with PI-FD or PI-IBS 1 year after the outbreak of acute Salmo-
nella gastroenteritis had overlapping symptoms. The incidence of 
IBS-FD 3 years after acute G. lamblia infection was higher than the 
control group without infection (44.0% vs 29.0%).10 Spiller11 put 
forward the hypothesis that the site of acute infection may be related 
to the outcome of symptoms in post-infectious FGIDs. If the infec-
tion is limited to the proximal intestine, patients are more likely to 
develop symptoms of FD; if the distal intestine or colon is involved, 
symptoms of IBS may occur. When the proximal and distal intes-
tine are both involved, patients are more likely to develop overlap 
syndrome of IBS and FD.11 However, there is a lack of prospective 
studies to confirm the above hypothesis. 

In the months to years after acute gastrointestinal infection, 
mild chronic inflammation remained in the gastrointestinal tract 
and mainly reflected by increase and activation of inflammatory 
cells such as mast cells (MCs), eosinophils, and macrophages in the 
mucosa, which was difficult to be found by routine blood tests and 
endoscopy.12-16 It has been proved that the local and systemic im-
mune response concomitant or secondary to inflammation can lead 
to damage of the intestinal mucosal barrier, dysfunction of enteric 
nervous system and brain-gut axis, as well as abnormal sensory 
and motor functions of the gastrointestinal tract. These changes are 
related to epigastric pain syndrome (EPS) and postprandial distress 
syndrome of FD in the upper gastrointestinal tract, abdominal pain, 
and altered bowel habits of IBS in the lower gastrointestinal tract. 
We will detail evidence of literatures in the following paragraphs.

The Chronic Inflammation and Immune Response 
Secondary to Gastrointestinal Infection

After the pathogen of acute infection is removed, although 
acute mucosal injury is repaired, the ability of the immune system 

to terminate inflammation is impaired so that mild chronic inflam-
mation is left in the gastrointestinal mucosa of PI-IBS or PI-FD 
patients. The persistent immune response to mild inflammation of 
the gastrointestinal mucosa may be involve in the pathogenesis of 
PI-IBS or PI-FD. A previous study has found that the number 
of MCs in the terminal ileum mucosa in patients with PI-IBS was 
significantly increased compared with that in control subjects.12 
The intraepithelial T lymphocyte counts in rectum of patients with 
PI-IBS were still in a high level 1 year after Campylobacter enteri-
tis.13 The increase of MCs located within 5 μm of intestinal nerve 
fibers was significantly correlated with severity and frequency of 
abdominal pain/discomfort in patients with IBS.17 Compared with 
nonspecific FD patients or healthy controls, the histological score 
of chronic gastric inflammation and the number of activated MCs 
within 5 μm of nerve fibers in the gastric antrum were significantly 
greater in patients with PI-FD.14 It has been confirmed that there 
existed persisting focal CD8+ T lymphocyte and eosinophil aggre-
gates, decreased CD4+ T lymphocytes and increased macrophage 
counts surrounding the crypts in the duodenum of patients with 
PI-FD.15,16 Duodenal eosinophilia was proved to be associated 
with early satiety,18 and there was a significant correlation between 
epigastric burning and the degree of duodenitis in patients with PI-
FD.16 Inflammatory cells release pro-inflammatory cytokines such 
as TNF-α, IFN-γ, IL-6, IL-8, IL-18, and anti-inflammatory fac-
tors such as IL-10 and IL-13, which are important markers of im-
mune response and play important roles in the regulation of inflam-
matory cascade. The expression levels of IL-6, IL-18, and IFN-γ 
in colonic and rectal mucosa of patients with PI-IBS were higher 
than those in controls and patients with non-PI-IBS while the ex-
pression level of IL-10 was lower.19,20 Compared with the control 
group, plasma IL-6, IL-18, and TNF-α levels in PI-IBS were sig-
nificantly higher while the plasma IL-10 level was lower.21,22 There 
is no comparative study about the levels of multiple inflammatory 
factors between PI-FD and non-PI-FD or healthy subjects.

Damage of Intestinal Mucosal Barrier Associated 
With Gastrointestinal Infection

The intestinal mucosal barrier consists of symbiotic bacteria 
and mucus layer, epithelial cells and cell-cell junctions, as well as 
the lamina propria containing connective tissue.23 In patients with 
post-infectious FGIDs, pathogens are usually eliminated and the 
damage of intestinal mucosal barrier is mainly caused by the post-
infectious intestinal flora dysbiosis and chronic inflammation. Toll-
like receptor (TLR) is a type of receptor protein which is mainly 
involved in recognizing microbial products, mediating infection-
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related immune response and inflammatory signal transduction. 
Homologous ligands such as some bacterial components such 
as flagellin and lipopolysaccharide bind to TLR and mediate the 
activation of mature MCs and release of inflammatory mediators 
such as histamine, tryptase and prostaglandin E2, which may be 
the main mechanism of intestinal flora dysbiosis causing low-grade 
inflammation.24

Flora dysbiosis affect the normal amino acid metabolism, lead-
ing to composition changes of the mucus layer and the damage of 
the mucus barrier. Most of threonine in diet is used to synthesize 
secretory mucin, and restriction of threonine from diet can reduce 
the synthesis of secretory mucin in intestinal epithelial cells.25 The 
metabolism of glycine, serine, and threonine is closely related to the 
abundance of some species of Bacteroides (eg, Bacteroides thetaio-
taomicron) and Firmicutes (eg, Faecalibacterium prausnitzii).26,27 
The abundance of Faecalibacterium including F. prausnitzii in 
patients with IBS was significantly lower than that of healthy con-
trols.28 The microbial diversity of colonic mucosa and feces in PI-
IBS patients was reduced,29 and the Index of Microbial Dysbiosis 
was correlated with the degree of abdominal pain and increased 
bowel movements.27 In patients with FD, the abundance of anaero-
bic bacterium including Prevotella, Veillonella, and Actinomyces in 
duodenal mucosa was lower than that of healthy controls,30 but a 
lack of study was found in the exploration of the abundance change 
of Bacteroides and Firmicutes in patients with FD. 

Tight junctions and adherens junctions are important compo-
nents of the intestinal mucosal barrier. Tight junctions are protein 
complexes composed of transmembrane proteins including claudins 
and occludin, junction adhesion molecules, and intracellular pro-
tein zonula occludens (ZO). The intracellular domains of protein 
complexes are anchored on the cytoskeleton by ZO.31,32 Adherens 
junctions are mainly composed of E-cadherin, catenin and actin. It 
has been confirmed that the activation of MCs in jejunum mucosa 
of patients with IBS was correlated with the decreased expression 
of ZO-1 as well as the degree of diarrhea symptoms.33 Activated 
MCs release tryptase, which binds to the protease activated recep-
tor (PAR) on the basolateral side of intestinal epithelial cells. The 
combination of PAR with PAR1 leads to the increase of intestinal 
epithelial cell permeability through mechanisms such as apoptosis 
and the activation of myosin light chain kinase (MLCK) resulting 
in the redistribution of tight junction proteins.34 The pro-inflam-
matory cytokines such as TNF-α released by inflammatory cells 
can induce the contraction of actin-myosin ring at the top of intes-
tinal epithelial cells, the redistribution of ZO-1 and occludin, the 
decrease of transepithelial electrical resistance, and the increase of 

intestinal epithelial cell permeability to macromolecules by inducing 
the phosphorylation of MLCK.35 In patients with FD with infiltra-
tion of eosinophils and MCs, the transepithelial electrical resistance 
of duodenal mucosa decreased, suggesting that the integrity of mu-
cosal barrier was damaged.36 Further study found that the expres-
sion of ZO-1 and occludin was abnormal and the phosphorylation 
of serine/threonine residues of occludin reduced, which may be the 
cause of duodenal mucosal integrity damage.36

The Influence of Gastrointestinal Infection on 
Enteric Nervous System

There are a large number of MCs adjacent to neuron-specific 
enolase, substance P (SP), and 5-hydroxytryptamine (5-HT) posi-
tive nerve fibers in the digestive tract mucosa.37 The contact between 
cell membrane of MCs and the axons of adjacent nerve fibers lays a 
structural foundation for the neuroimmune interactions of the intes-
tinal mucosa. Compared with healthy controls, the number of MCs 
around the nerve fibers of colon and terminal ileum in patients with 
PI-IBS increased significantly.12 Animal experiments and studies 
on patients with IBS-D suggested that nerve growth factor (NGF) 
released by MCs bound with tyrosine kinase A receptor on sensory 
nerve endings, which promoted the proliferation of nerve fibers 
expressing transient receptor potential vanilloid type-1 (TRPV1), 
calcitonin gene related peptide (CGRP), and SP, and improved the 
activation of TRPV1 in the meantime. Under these circumstances, 
sensory nerve fibers released more pain-related neuropeptides (such 
as CGRP and SP) when stimulated, leading to increased visceral 
sensitivity.38,39 Activated MCs also released adenosine triphosphate, 
prostaglandin, and other inflammatory mediators, which bind to 
P2X receptor of purinergic neurons, prostaglandin receptor, and 
TRPV1 to excite cholinergic motor neurons and promote intestinal 
movement.40

Inflammatory cells such as MCs and eosinophils produce and 
release NGF and neurotrophin resulting in local tissue hyperinner-
vation (neural sprouting, and neural and ganglionic hypertrophy), 
and a switch in the neurochemical code toward preferential expres-
sion of neuropeptides (eg, SP and CGRP) which are frequently 
present in nociceptive neurons.41,42 These changes may be related to 
visceral hypersensitivity of patients with FD. In addition, the aggre-
gation and degranulation of duodenal eosinophils in patients with 
FD were correlated with the increase of the density and sprouting 
of fine nerve fibers in duodenal mucosa, which was more significant 
in patients with EPS.43 Another study pointed out that the infiltra-
tion of eosinophils in duodenal mucosa of patients with FD was 
correlated with the structural change (abnormal ganglion structure 
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and gliosis) and functional impairment (decreased calcium respons-
es to depolarization and electrical stimulation) of the submucosal 
nerve plexus,44 which may affect neuronal and muscular functions 
and lead to clinical symptoms in patients with FD.

Enterochromaffin cells (ECs) concentrate around the afferent 
nerve endings of gastrointestinal mucosa and synthesize and release 
5-HT to the lamina propria. 5-HT regulates gastrointestinal motil-
ity through binding to 5-HT2 receptor and 5-HT4 receptor, mean-
while influencing visceral sensation through binding to the 5-HT3 

receptor.45,46 Increased ECs was one of the acute changes following 
Campylobacter enteritis which could persist for more than a year47 
and was proved to be an important independent predictor of devel-
oping PI-IBS.48 The number of ECs as well as 5-HT released by 
them in gastric mucosa of patients with PI-FD were significantly 
higher than those of patients with non-PI-FD and healthy controls, 
correlating with the degree of mucosal inflammation.14 TNF-α and 
IFN-γ in inflammatory response downregulated the expression of 
selective 5-HT reuptake transporter, resulting in the decrease of 
5-HT reuptake and sustained effect of 5-HT.49 

The Influence of Gastrointestinal Infection on Brain-
gut Axis

Enteric nervous system interacts with the central nervous sys-
tem manifesting as emotional and physiological stress that can affect 
mucosal function of secretion and barrier, increase visceral sensitiv-
ity, and change gastric emptying and intestinal transit. Conversely, 
change of gastrointestinal motility, visceral inflammation and injury 
amplify the signals of the ascending visceral afferent pathway and 
affect brain activity, causing more intense pain and emotional/men-
tal disorders including anxiety and depression.50,51 There are 2 main 
neural regulatory pathways involved in visceral sensation. One is 
the excitatory pain-regulatory pathway, which consists of sensory 
nerves of the brain (anterior cingulate cortex, insula, hippocampus, 
amygdala, etc) and spinal cord. The function of this pathway is in 
facilitation (sensitization) in the visceral hypersensitivity state.52 The 
other is the inhibitory pain-regulatory pathway, which mainly in-
cludes the vagal afferent pathway and is in a low state while visceral 
hypersensitivity occurs.53 During a chronic inflammatory period, in-
creased MCs release nociceptive molecules such as protease, hista-
mine, platelet activating factor, leukotriene, cytokines (eg, TNF-α, 
IFN-γ, IL-1β, and IL-6). These inflammatory mediators acted on 
the adjacent nociceptive dorsal root ganglion neurons to influence 
the excitability and sensory threshold of neurons and cause visceral 
hypersensitivity through enhancing the calcium influx of neurons 
and increasing the firing rates of submucosal neurons.54,55 5-HT, 

released by ECs, is a type of important mucosal signaling molecule, 
while those secreted by enteric neurons is an important neurotrans-
mitter, and constitutes significant effects on functions of brain-gut 
axis.56,57 Chronic high concentration of 5-HT binding to the 5-HT3 
receptors on the nociceptive neurons of the vagus in the colorectal 
mucosa could enhance the pain perception induced by colorectal 
distention, which could be blocked by vagotomy or 5-HT3 receptor 
antagonists.46

Corticotropin releasing factor (CRF) is mainly produced by 
the paraventricular nucleus of the hypothalamus, cerebral cortex, 
hippocampus, amygdala, and locus coeruleus. Its mRNA is highly 
expressed in the adrenal gland, gastrointestinal tract, thymus, skin, 
placenta, and inflammatory cells. CRF plays a significant role in the 
regulation of brain-gut axis. Animal experiments showed that CRF 
inhibited gastric contraction and gastric emptying through binding 
to CRF2 receptors and stimulated colon transit and defecation by 
activating CRF1 receptors.58 Cytokines such as IL-1β and bacte-
rial endotoxins induced by gastrointestinal infection could cross the 
blood-brain barrier, affect CRF neurons in the hypothalamus and 
activate the hypothalamic-pituitary-adrenal (HPA) axis.59 Overman 
et al60 found that exposure of pig ileum to specific concentrations of 
CRF increased the permeability of intestinal epithelial cells by pro-
moting the release of TNF-α and protease from MCs. As a type 
of neuromodulator, TNF-α excites the neurons of nucleus tractus 
solitarii and inhibits gastric motility through the vago-vagal reflex 
pathway, which may be related to delayed gastric emptying in FD 
or overlap syndrome. Hussain et al61 established the animal model 
of IBS-D overlapping with FD by intraperitoneal injection of CRF. 
They also found that trimebutine significantly regulated gastroin-
testinal motility by promoting gastric emptying as well as reducing 
bowel movements.62 It is reasonable to speculate the mechanism of 
trimebutine may be relevant to inhibition of CRF. 

Taken together, we summarize the possible inflammatory and 
immune activation in gastrointestinal mucosa of patients with post-
infectious IBS-FD in Figure.

Possible Mechanism of Helicobacter pylori Infection 
in Overlap Syndrome of Irritable Bowel Syndrome 
and Functional Dyspepsia

Although meta-analysis does not support a specific association 
between IBS and H. pylori infection,63 some evidences suggest that 
H. pylori infection may be involved in the pathogenesis of IBS. 
The positive rate of H. pylori, cytotoxin-associated gene A, and 
vacuolating cytotoxin A alleles (eg, s1 and s2) in patients with IBS-
D were significantly higher than those in healthy controls.64 Both 
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vacuolating cytotoxin A and neutrophil-activating protein signifi-
cantly activated MCs and increased the release of pro-inflammatory 
cytokines such as IL-6.65,66 A cross-sectional, observational study 
has concluded that duodenal lymphocytosis was significantly associ-
ated with bloating of FD patients, and the simultaneous presence 
of duodenal lymphocytosis and H. pylori infection was signifi-
cantly more prevalent in FD patients than in control subjects.67 In 
multivariate analysis, the odds of experiencing severe symptoms in 
patients with severe microscopic duodenitis was 2.2 times greater 
than in individuals with very mild, mild, or moderate duodenitis.68 
A large population study showed that H. pylori infection and any 
dyspepsia-related consultation significantly increased the likelihood 
of an IBS related consultation.69 Duodenal inflammation caused by 
H. pylori infection may play a role in the pathogenesis of patients 
with IBS-FD, which needs to be confirmed in the future with more 
studies in patients with IBS-FD.

Mönnikes et al70 showed that discomfort and pain thresholds 
on gastric distension were lower in H. pylori-positive FD patients. 
These patients also showed higher antral mucosal levels of CGRP 
and SP, which negatively paralleled the levels of discomfort and pain 
thresholds, demonstrating the involvement of SP and CGRP in 
the sensitization of afferent neuronal pathways.70 Choi et al71 found 
that H. pylori infection upregulated the expression of TRPV1 and 
NGF genes in human gastric cell lines. The expression of TRPV1 

and NGF genes in gastric mucosa of successful H. pylori eradica-
tion patients was significantly reduced compared with patients with-
out H. pylori eradication after 1 year follow-up, and the decreased 
expression of TRPV1 and NGF genes was correlated with the im-
provement of symptoms of FD patients.71 It was also demonstrated 
that NGF, TRPV1, SP, and CGRP were involved in the develop-
ment of visceral hypersensitivity in patients with IBS. For example, 
the high level of NGF in the mucosa of rectum and sigmoid was 
related to the increase of sensory nerve fibers expressing TRPV1 
and CGRP in patients with IBS-FD.39 The expression of microR-
NA-199 was significantly reduced in patients with IBS-D and was 
related to visceral pain since the upregulation of microRNA-199 
decreased visceral pain via inhibition of TRPV1 signals.72 However, 
no study have attempted to confirm the relationship between the 
above mechanism and H. pylori infection in patients with IBS.

Eradication of H. pylori improved the symptoms of some pa-
tients with FD. Therefore, the Rome IV Committee recommended 
eradication treatment for H. pylori-positive patients with FD.73 A 
number of studies have explored the efficacy of H. pylori eradica-
tion in patients with IBS but no consistent conclusions have been 
reached.74,75 The positive rate of H. pylori in patients with IBS-FD 
and whether H. pylori eradication benefits patients with IBS-FD 
have not been reported.
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The Role of Non-infectious Inflammation 
in the Pathogenesis of Irritable Bowel Syn-
drome, Functional Dyspepsia, and Overlap 
Syndrome of Irritable Bowel Syndrome and 
Functional Dyspepsia 	

Small Intestinal Bacterial Overgrowth
In IBS and FD patients without gastrointestinal infection histo-

ry, the continuous low-grade inflammation of the intestinal mucosa 
may also be related to small intestinal bacterial overgrowth (SIBO), 
since intestinal flora makes significant difference in mucosal and 
systemic immune response. In recent years, SIBO is considered to 
be significantly associated with functional bowel disease, especially 
IBS.76 A recent meta-analysis showed that the incidence of SIBO in 
IBS patients is 36.7% (95% CI, 24.2-44.6) and it was closely asso-
ciated with intestinal inflammation.77,78 There are few studies focus-
ing on the relationship between SIBO and FD. In a small sample 
Brazilian study, SIBO was found in 56.5% (13/23) of patients with 
FD but not observed in healthy controls (P = 0.005).79 Japanese 
scholars tested SIBO in 38 patients with refractory functional 
gastrointestinal diseases (11 FD, 10 IBS, and 17 IBS-FD) and 2 
patients were positive (1 FD and 1 IBS-FD). The symptoms of 2 
patients with positive SIBO were significantly improved and their 
breath hydrogen levels decreased to normal following levofloxacin 
administration for 7 days, suggesting that the occurrence of FD 
symptoms may be related to SIBO.80

SIBO occurs because bacterium in the distal intestine move 
into the small intestine for various reasons, which may cause mal-
nutrition, abnormal intestinal motility, diarrhea, abdominal disten-
tion, and other symptoms. The overgrowth of harmful bacterium 
produces a variety of toxic substances including ammonia, D-
lactate, endogenous bacterial peptidoglycan, etc. These substances 
as well as bacterium themselves stimulate intestinal immune cells 
to produce pro-inflammatory cytokines resulting in sustained mild 
intestinal inflammation and immune activation, impaired intestinal 
mucosal barrier function, and increased intestinal sensitivity. It 
was confirmed that the increase of IL-1α and IL-1β in the up-
per gastrointestinal mucosa of patients with IBS was associated 
with SIBO.81 Bacterial translocation was associated with enhanced 
local immune response in the small intestinal mucosa including 
the increase of plasma cells secreting IgA and IgM in the lamina 
propria.82 Clinical research demonstrated that rifaximin effectively 
relieved the abdominal distention symptoms of IBS or FD patients 

and the incidence of adverse reactions was low in long-term follow-
up.83,84 Rifaximin is a type of oral broad-spectrum antibiotic acting 
on the local gastrointestinal tract. According to the study on a stress-
induced rat model, rifaximin reduced the total load of intestinal 
flora, increased the relative abundance of lactobacilli, regulated 
the imbalance between the levels of pro-inflammatory factors and 
anti-inflammatory factors caused by stress (that is, downregulated 
the levels of pro-inflammatory factors such as IL-17, IL-6, and 
TNF-α and upregulated the level of anti-inflammatory factor IL-
10) so as to inhibit stress-induced chronic inflammation of mucosa, 
reduce intestinal permeability, and improve visceral hypersensitiv-
ity.85 At present, lack of large-scale studies, research focuses on 
the incidence of SIBO in patients with IBS-FD, the correlation 
between SIBO and overlapping symptoms, and the benefits from 
rifaximin treatment in patients with IBS-FD.

Food Allergy
Dietary factors play a more and more vital role in the etiology 

and pathophysiology of IBS and FD. In addition to their direct 
effects on sensitive mucosal receptors, food components also partici-
pate in the pathogenesis of IBS and FD by inducing mucosal im-
mune response. In IBS patients with food allergy, acute eosinophil 
degranulation in duodenum and permeability of intestinal mucosa 
increased, and these patients had a 4-fold increase in prevalence of 
atopic disorders compared with controls.86 In the study of Fritscher-
Ravens et al,87 diluted food antigens were administered directly to 
the duodenal mucosa, which immediately caused duodenal mucosal 
breaks, increased intervillous spaces, and increased intraepithelial 
lymphocytes in IBS patients with a suspected food intolerance to 
candidate food antigens. Duodenal eosinophilia of patients with FD 
was associated with history of allergy (including food allergy) and 
early satiety.88 In addition, α-amylase/trypsin inhibitors in wheat act 
as strong activators of innate immune responses in monocytes, mac-
rophages, and dendritic cells induced gastrointestinal inflammation 
by activating TLR-4.89

In type I anaphylaxis, the combination of IgE antibody and 
food allergens induces degranulation of MCs and the recruitment 
of eosinophils, basophils, and T-lymphocytes in the intestinal mu-
cosa. These cells proliferate and secrete T helper 2 cytokines includ-
ing IL-4, IL-5, and IL-13. Tryptase released by MCs activates 
eosinophils through PAR-2 receptor expressed on eosinophils. Ac-
tivated eosinophils degranulate and release major basic proteins, a 
type of endogenous allosteric inhibitor of agonist binding to the M2 
muscarinic receptor, resulting in the enhancement of smooth muscle 
contraction.90 Early studies have found that IBS patients produced 
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higher IgG4 titers for certain dietary antigens (such as wheat, beef, 
pork, and lamb) compared to controls, and a food elimination diet 
based on serum IgG/IgG4 antibodies was able to improve overall 
symptoms in IBS patients.91 Similarly, FD patients had significantly 
higher titers of IgG antibody to egg and soybean than controls.92 It 
is suggested that IBS or FD symptoms caused by dietary antigens 
may be involved in the IgG mediated MCs sensitization.

Psychological or Mental Stress
Studies on animals and humans both have demonstrated that 

stress was closely correlated with the activation of inflammation and 
immune response, and its possible mechanism includes the efferent 
cholinergic pathway of the vagus and the pro-inflammatory and 
anti-inflammatory effects of central and peripheral CRF signal-
ing pathways.93 Compared with control group rats, the number of 
CD4+ T lymphocytes and the expression of occludin and ZO-1 in 
the duodenum mucosa of the stressed rats decreased significantly.94 
The results showed that acute stress could lead to abnormal im-
mune function of the duodenal mucosa, damage of mucosal barrier, 
and increased permeability of intestine. In addition, the secretion 
of CRF by the hypothalamus increased under stress, which pro-
moted the degranulation of MCs in ileum of pigs and the release 
of TNF-α and tryptase, leading to the increase of intestinal perme-
ability.95 The activation of HPA axis and the increase of intestinal 
mucosal permeability induced by public speech and intravenous 
injection of CRF could be inhibited by the MC stabilizer sodium 
cromoglycate, indicating that MCs participated in the inflamma-
tory response mediated by CRF.96 Moreover, the activation of HPA 
axis was associated with the increase of IL-6 in peripheral blood.97 
Other studies confirmed the relationship between inflammation and 
mental disorders showed that patients with anxiety and depression 
had immune dysfunction manifesting as the increase of serum C-
reactive protein, IL-6, IL-5, IL-13, TNF-α, and other inflamma-
tory mediators.98,99 Patients with IBS-FD had more serious psy-
chological problems than those without overlapping symptoms.100 
Multivariate logistic regression analysis showed that anxiety was 
an independent factor affecting the overlap of IBS and FD symp-
toms.101 Antidepressants are used in practice for FGIDs patients 
with epigastric or lower abdominal pain. Current evidence for the 
use of antidepressants is much stronger in IBS than in FD. 

In summary, SIBO, food allergy and mental or psychological 
stress all participate in the local or systemic chronic inflammatory 
response and immune dysfunction of IBS/FD as stimulants. The 
changes of MCs, eosinophils and lymphocytes, and the increase of 
pro-inflammatory cytokines released by them lead to the increase of 

intestinal permeability and the disorder of the brain-gut axis, result-
ing in gastrointestinal symptoms through mechanisms similar to 
that of PI-IBS/PI-FD.

The Guiding Significance of Inflammatory 
Mechanism in the Treatment of Patients 
With Overlap Syndrome of Irritable Bowel 
Syndrome and Functional Dyspepsia 	

Therapies such as food elimination diet, H. pylori eradication, 
antibiotics and antidepressants/anti-anxiety agents (currently called 
neuromodulators)102 can remove the initiating factors of inflamma-
tory response and become potential therapeutic options for IBS-FD 
patients. However, there is no case-control study to confirm the effi-
cacy of the above treatments in patients with IBS-FD. Other treat-
ments that may be effective for patients with IBS-FD include drugs 
that inhibit the intermediate links of inflammation besides rifaximin 
as mentioned above. 

Mesalazine plays an anti-inflammatory role through affecting 
various mediators and signaling pathways that mediate leukocyte 
chemotaxis and epithelial defense function (such as free radical-
scavenging, promoting proliferation of intestinal epithelial cells, and 
inhibiting their apoptosis). In recent years, the therapeutic effect 
of mesalazine on intestinal inflammation of IBS patients has been 
widely reported. It was confirmed that mesalazine reduced the 
number of MCs in the colonic mucosa of IBS patients and down-
regulated the function of MCs.103 A randomized controlled study 
of Barbara et al104 showed that mesalazine treatment was not supe-
rior to placebo at the primary end point of the study (significant im-
provement of abdominal pain/discomfort), but some IBS patients 
(11.6%) showed sustained response (relief of abdominal pain and 
improvement of overall symptoms) to the treatment. As altered mu-
cosal immune activity is a pivotal pathogenic factor in PI-IBS, An-
dresen et al105 observed that mesalazine reduced the risk of PI-IBS 
after infection with Shiga-like toxin-producing E. coli O104:H4 
through its modulatory action on mucosal immunity. Since mesala-
zine mainly acts on the lower gastrointestinal tract to exert its anti-
inflammatory effect and considering the potential side effects of its 
long-term treatment, we can speculate that mesalazine benefits little 
to patients with FD or IBS-FD, but there are no relevant studies.

MCs are the main inflammatory cells involved in the inflam-
matory response of IBS and FD. Pretreatment with disodium 
cromoglycate, a MC stabilizer, could prevent the increased intes-
tinal permeability due to acute stress and CRF injection.96 Oral 
disodium cromoglycate treatment could also significantly improve 
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gastrointestinal symptoms of patients with IBS by reducing activa-
tion of MCs.106 Meta-analysis showed that the improvement rate of 
FD symptoms after being treated by 5-HT4 receptor partial agonist 
(tegaserod) was significantly higher than placebo.107 Tegaserod was 
also significantly better than placebo in relieving IBS symptoms 
such as abdominal distention and constipation.108 5-HT3 receptor 
antagonists (alosetron and cilansetron) were more effective than the 
comparators in achieving global improvement in IBS symptoms 
and relief of abdominal pain and discomfort.109 Through inhibit-
ing the synthesis of 5-HT, tryptophan hydroxylase inhibitor could 
down-regulate the release of 5-HT in inflammatory response, 
which is beneficial to the improvement of symptoms in patients with 
IBS-D.110 In the future, more studies will be needed to explore the 

efficacy of these drugs in patients with IBS-FD.

Summary and Outlook 	

The subtype analyses regarding IBS-FD showed that IBS with 
constipation was the most prevalent subtype in the postprandial dis-
tress syndrome-IBS overlap group, while IBS with diarrhea was the 
most frequently reported type in the EPS-IBS group,111 which sug-
gest that visceral hypersensitivity or dyskinesia of the whole gastro-
intestinal tract and abnormal perception and processing to pain in 
the central nervous system may be the pathophysiological character-
istics of IBS-FD. As mentioned earlier, comorbidity with psycho-
logical or mental illness also increases the risk of overlap syndrome. 

Table. The Known and Possible Mechanism of Inflammation in Patients With Overlap Syndrome of Irritable Bowel Syndrome and Functional 
Dyspepsia

Pathogenic  
factors

Disease Pathophysiological changes Pathophysiological outcomes Related symptoms

Gastrointestinal 
infection

IBS Intestinal MCs, T lymphocytes ↑12,13 and  
inflammatory cytokines ↑19,20

Downregulation and redistribution of  
ZO-1 and occludin33

TRPV1, SP, and CGRP positive nerve fibers ↑38,39

Increased excitability of DRG and  
submucous plexus neurons54,55

Persistent activation of CRF neurons,59  
CRF binding to CRF1 receptor61,62

Increased intestinal permeability 
Visceral hypersensitivity
Colon transit and defecation ↑61,62

Diarrhea33

Abdominal pain

FD Gastric and duodenal MCs, eosinophils ↑14-16

Abdominal expression of ZO-1 and occludin36

SP, CGRP positive nerve fibers ↑41,42

CRF binding to CRF2 receptor61,62

Damage of duodenal mucosal barrier
Visceral hypersensitivity
Gastric contraction and  

gastric emptying ↓61,62

Epigastric burning16

Early satiety18

SIBO IBS IL-1α and IL-1β ↑81 Mild inflammation and  
immune activation of  
intestinal mucosa

Abdominal distention 
relieved by rifaximin83

FD NA NA Abdominal distention 
relieved by rifaximin84

Food allergy IBS Increased intervillous spaces and  
intraepithelial lymphocytes in intestinal mucosa87

Titers of IgG antibody to specific food antigen ↑91

Increased intestinal permeability

FD Duodenal eosinophilia88

Titers of IgG antibody to specific food antigen ↑92

NA Early satiety88

Psychological or 
mental stress

CD4+ T lymphocytes ↓94

CRF secreted by hypothalamus ↑, degranulation of 
MCs and released TNF-α and tryptase ↑95

Expression of occludin and ZO-1 in  
duodenal mucosal ↓94

Increased intestinal permeability
Visceral hypersensitivity

SIBO, small intestinal bacterial overgrowth; IBS, irritable bowel syndrome; FD, functional dyspepsia; MC, mast cell; ZO, zonula occludens; TRPV1, transient 
receptor potential vanilloid type-1; SP, substance P; CGRP, calcitonin gene related peptide; DRG, dorsal root ganglion; CRF, corticotropin releasing factor; NA, not 
applicable.
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It is worth mentioning that inflammation may be involved in any 
level of the above pathogenesis. The mechanism of inflammation in 
IBS-FD can be summarized as various factors such as acute gas-
trointestinal infection, intestinal flora disorder, food allergy, or stress 
lead to the damage of intestinal epithelial barrier and antigen pre-
sentation, causing the activation of inflammatory cells and release of 
pro-inflammatory cytokines and chemokines of inflammatory cells. 
Then, the activation and degranulation of inflammatory cells leads 
to different degree of gastrointestinal mucosal inflammation and 
immune response resulting in visceral hypersensitivity, dysfunction 
of gastrointestinal motility, sensory and secretion. Compared with 
IBS or FD patients, the systemic or local inflammation of the gas-
trointestinal tract induced by infection, diet, microbiota alteration, 
mental or psychological factors may be more obvious in patients 
with IBS-FD. In addition, the distribution of inflammation is prob-
ably more extensive in the digestive tract, which involves the upper 
and lower digestive tract at the same time or subsequently, resulting 
in overlapping symptoms. 

The known and possible mechanisms of inflammation in pa-
tients with IBS-FD is summarized in Table. Although there are 
few studies regarding IBS-FD, this article specifically reveals many 
commonalities of inflammation in the mechanism of IBS and FD 
and provides references for future research direction. In the future, 
we need more researches focusing on confirming the pathogenesis 
of IBS-FD, and more high-quality, multi-center, and large-sample 
studies on efficacy to guide clinicians to optimize the treatment of 
patients with IBS-FD.
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