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Abstract

Organoid technology has rapidly transformed basic biomedical research and contributed to significant discoveries in the
last decade. With the application of protocols to generate organoids from cancer tissue, organoid technology has opened
up new opportunities for cancer research and therapy. Using organoid cultures derived from healthy tissues, different
aspects of tumour initiation and progression are widely studied including the role of pathogens or specific cancer genes.
Cancer organoid cultures, on the other hand, are applied to generate biobanks, perform drug screens, and study muta-
tional signatures. With the incorporation of cellular components of the tumour microenvironment such as immune cells
into the organoid cultures, the technology is now also exploited in the rapidly advancing field of immuno-oncology. In
this review, I discuss how organoid technology is currently being utilised in cancer research and what obstacles are still
to be overcome for its broader use in anti-cancer therapy.
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Introduction

Cancer remains a major threat to quality of life with sig-
nificant risks of morbidity and mortality worldwide [1],
despite extraordinary progress made in cancer research,
prevention, detection, and therapy in the past decades.
For example in the USA, incidences of the prominent
cancer types of lung or colorectal cancer are decreasing
partially due to increased knowledge on cancer biology
and, hence, improved prevention, while incidence rates
of other cancer types such as liver or oral cancers are
increasing [2]. However, cancer is a heterogenous disease
with a broad range of types and subtypes, which can be
defined based on their anatomical location, histological
appearance, and genetical makeup. In order to guide the
way to improved targeted therapy, pre-clinical model sys-
tems are essential to better capture the inter- and intra-
tumour heterogeneity. For instance, animal cancer
models, in particular genetically engineered mouse
models (GEMMs), have provided significant insights into
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the cellular and genetic basis of cancer [3]. However, their
application is rather costly, time-consuming, and often
cannot be translated into therapy, due to major differences
to human pathology and tumourigenesis (reviewed in [4,
5]). Using human cancer models such as cancer cell lines
and patient-derived xenografts (PDTXs), some of these
limitations were overcome: in principle, these models
can be generated from a larger cohort of patients better
presenting the inter-tumour heterogeneity [6]. Yet, these
models also have significant drawbacks. Cancer cell lines
often do not sufficiently retain the intra-tumour cellular
and genetic heterogeneity in vitro, as only robust and
colony-forming cells (i.e. clones) can be maintained in
culture long-term, which are frequently genetically insta-
ble [6, 7]. Furthermore, cancer cell lines are devoid of the
cellular microenvironment of the tumour in vivo, includ-
ing the tumour stroma as well as immune infiltrate [6]. In
most cases, cancer cell lines also lack matched cell lines
established from normal tissue as reference control [6].
PDTXs are generated by transplanting primary patient tu-
mour material into immunocompromised mice [8]. As
such, PDTX models allow for the spontaneous develop-
ment of a tumour stroma of murine origin and the inves-
tigation of metastasis formation [6, 8]. PDTX-based ap-
proaches therefore do model some critical aspects of the
tumour and its microenvironment. Yet, PDTXs still lack
the human-specific immune components, require the use
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of animals (potentially causing mouse-specific features
not found in human cancer), and are both expensive and
time-consuming (reviewed in [9, 10]).

A promising alternative to these conventional cancer
models is based on the discovery that adult stem cells
(ASCs) proliferate and spontaneously self-organise into
three-dimensional (3D) organotypic cellular structures—so-
called organoids—in culture, when they are embedded into a
hydrogel rich in extracellular matrix (ECM) proteins such as
Matrigel or Basement Membrane Extract (BME) [11]. A key
to organoid technology is the tissue-specific growth factor
cocktail provided to the culture. In the case of the first
organoid model system—murine small intestinal organoids
generated from Lgr5* intestinal epithelial stem cells—the
growth medium contained the Wnt pathway agonist and li-
gand of LGRS R-spondin-1, epidermal growth factor, and the
bone morphogenetic protein (BMP) pathway inhibitor Noggin
[11]. By designing a growth factor cocktail specific to each
stem cell type, tissue, and species, the protocol was adapted to
allow for the generation of organoid cultures from other mu-
rine and human epithelial tissues (Fig. 1; reviewed in [12, 13])
such as the bladder [14], breast [15], colon (and rectum) [16,
17], endometrium [18], fallopian tubes [19], kidney [20], liver
[21, 22], lung [23], oesophagus [24], oral mucosa [25], pan-
creas [26], prostate [27, 28], salivary gland [29], skin epider-
mis [30], stomach [31], and taste buds [32], and, most recent-
ly, even non-mammalian tissue such as snake venom glands
[33]. As such, it has also been possible to generate ASC-
enriched epithelial organoids from tissue pieces [11] or tissue
pieces containing both epithelial and stromal cells [34].
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Fig. 1 Generation of patient-derived normal and cancer organoids.
Patient-derived cancer organoids can be established from primary and
metastatic cancer tissue. Matched normal organoids can be generated
from normal tissue. Through gene editing, normal organoids may be
transformed into cancer organoids. By exposure to genotoxic factors, it
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Organoids allow for the long-term expansion of stem cells
and their spontaneous differentiation into specialised tissue
cells, most prominently seen in the crypt—villus differentiation
observed in murine small intestinal organoids [11, 35] or strat-
ification and cornification described for murine skin epider-
mal organoids [30] as well as murine and human oral epithe-
lial organoids [25]. Long-term analyses further suggest that
ASC-derived organoids remain largely phenotypically and
genetically stable, reflecting their tissue of origin [36].
Comparative mutational analysis of organoid cultures gener-
ated from different murine and human tissues further demon-
strated that tissue-specific mutational signatures can be de-
fined using organoids [36—38]. In addition, organoid cultures
are amenable to a wide range of experimental tools, including
single-cell transcriptomics [39], gene editing and tagging [40],
(whole-mount) imaging [41], xenotransplantation [42], and
co-culture with other cells such as immune cells (reviewed
in [43]). Another complementary approach is to generate
organoids using pluripotent stem cells (PSCs), namely embry-
onic stem cells or induced pluripotent stem cells (iPSCs)
(reviewed in [12, 13]). PSC-derived organoids reflecting var-
ious types of tissues and organs including the brain [44], in-
testine [45], kidney [46, 47], and retina [48, 49] have been
described. As PSC-derived organoids typically remain pheno-
typically and transcriptionally immature (reviewed in [50])
and, therefore, are more similar to embryonic-like tissue, their
use for cancer research has been limited so far (reviewed in
[51]). Another important disadvantage of PSC-derived
organoids in cancer research is the lack of acquired cancer
gene mutations in individual tumour organoid lines. These
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may also allow for malignant transformation of normal organoids in vitro,
as a recent study showed that normal organoids incubated with genotoxic
bacteria acquired mutational signature characteristic of cancer subsets
[63]. Some images were modified from the medical art database at
https://smart.servier.com/
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models are therefore less attractive for biobanking or drug
screening, in contrast to organoids directly derived from tu-
mour biopsies that preserve cancer gene mutations in culture.
However, improved methods may allow for broader
utilisation of PSC-derived organoid models in cancer research
in the future.

In this review, I discuss the use of human ASC-based
organoid technology in basic and translational cancer re-
search. I explore how epithelial organoid cultures serve as a
base to study the processes of tumourigenesis and metastasis,
including the role of the tissue microenvironment. I further
highlight the use of cancer organoids generated from primary
patient material in biobanks for drug discovery, personalised
anti-cancer therapy, and immuno-oncology. I close by
discussing challenges of organoid technology to be overcome
to allow its wider use in the clinic and future prospects of its
further exploitation in cancer research.

Genotoxic factors and cancer initiation

Cancer develops in a multistep process from normal tissue by
acquisitions of somatic mutations in so-called cancer driver
genes [52]. Cells throughout our body are continuously chal-
lenged by different endogenous or exogenous genotoxic fac-
tors that can damage their DNA [53, 54]. While most of the
DNA damage induced is being continuously repaired by one
of'the DNA repair pathways, errors in the DNA repair process
may result in the gain of mutations at a low frequency [52, 55].
However, prolonged exposure to such genotoxic factors may
further increase the risk of developing cancer. The
International Agency for Research on Cancer (IARC) of the
World Health Organization (WHO) has published a list of
exogenous cancer hazards, including physical agents such as
ionising radiation (i.e. gamma rays, X-rays, and higher spec-
trum ultraviolet light), carcinogenic chemicals, and certain
types of pathogenic infections (‘IARC monographs’, https://
monographs.iarc.fr/). While animal models are widely used
for research into agents associated with an increased cancer
risk, it is often rather difficult to define a mechanism of action.
In many cases, it is therefore not possible to determine
whether a suspected carcinogenic agent can be classified as
carcinogen to humans [54]. As epithelial organoid cultures
remain essentially phenotypically and genetically stable
long-term, they are an excellent model system to study the
genotoxic potential of different agents. Attempting this
strategy, a recent study described the testing of different
genotoxic chemicals, namely ethyl methanesulfonate (EMS),
acrylamide (AA), and 7,12-dimethylbutylamine (DMBA), on
mouse-derived epithelial organoids for their potential to gen-
erated tumours upon transplantation into nude mice [56].
Murine mammary gland organoids with partial loss of 7rp53
treated with DMBA displayed tumourigenicity upon

transplantation, while wild-type Trp53 counterparts did not
develop tumours in vivo, in line with earlier work done in
mouse models. Murine lung organoids, irrespective of their
Trp53 status, developed tumours in vivo following exposure
to EMS and AA [56], overall demonstrating that organoids
may be used as chemical carcinogenicity studies. Further im-
provements should aim to allow for the assessment of
genotoxic potential of chemicals in human tissue—derived
organoids with a setup that is entirely in vitro.

Apart from ionising radiation and carcinogenic chemicals,
pathogenic infections have been linked to tumourigenesis.
Again, organoids may allow for the investigation of pathogen-
ic infections and their contribution to cancer development.
Different organoid—pathogen co-culture protocols have been
described (reviewed in [57, 58]). For instance, gastric
organoids have been cultured with Helicobacter pylori [31],
a known pathogen populating the stomach that has long been
linked to gastric cancer [59]. Other studies demonstrated, for
example, that human noroviruses can replicate in human small
intestinal organoid cultures [60]; that human papilloma virus-
es (HPV), described as oncogenic factors in subtypes of head
and neck cancer [61], can infect human oral epithelial
organoids [25]; and that the parasite Cryptosporidium can
complete its life cycle in human small intestinal and lung
organoids [62]. A recent study addressed whether the
microbiome directly contributes to tumourigenesis using
organoid technology [63], as it has long been suggested that
gut microbiota may have been involved in colorectal cancer
(CRC) development [64]. The authors repeatedly injected a
strain of genotoxic Escherichia coli (pks E. coli) expressing an
enzyme that synthesises colibactin into the lumen of cystic
human intestinal organoids for a period of up to 5 months.
In line with a previous report demonstrating that colibactin
induces double-strand breaks in cultured cells [65], the au-
thors found that organoids co-cultured with pks E. coli had
increased levels of DNA damage [63]. Subsequently, whole-
genome sequencing (WGS) was performed on the DNA col-
lected from organoids before and after exposure to pks E. coli.
Data were then compared with those obtained from organoid
lines exposed to an isogenic control strain of E. coli incapable
of producing active colibactin (pks-mutant E. coli) [63].
Organoids exposed to pks E. coli acquired distinct mutational
signatures, which were present neither in organoids before
bacteria co-culture nor in those co-cultured with pks-mutant
E. coli. Assessment of more than 5000 genomes of human
cancer metastases revealed that the same mutational signa-
tures were present in 11% of CRC genomes as well as ge-
nomes of other cancers including head and neck cancers and
urinary tract cancers [63]. In a second CRC-specific patient
cohort, the pks E. coli-induced mutational signatures were
found in more than 20% of all CRC genomes analysed [63].
This suggests that pathogenic bacteria may directly contribute
to malignant transformation (Fig. 1). Organoids that grow as
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cystic spheroids such as human intestinal organoids are well
suited for studying host—pathogen interactions using intra-
luminal injections [62, 63]. However, future progress may
expand possibilities to study organoid—pathogen interactions
in basic cancer research. For instance, modelling more com-
plex communities of the gut microbiota in organoid—bacteria
co-cultures may allow for the functional validation of the
microbiome alternations linked to CRC formation and pro-
gression [66, 67].

Cancer organoids and ‘living’ biobanks
of cancer

The adaption of protocols to generate organoids from human
ASCs allowed the derivation of cancer organoids from patient
material, typically surgical specimen or needle biopsies [68].
Establishment of cancer organoid cultures has been described
for primary and/or metastatic tumour tissue sampled from the
bladder [14, 69], brain [70, 71], breast [15], colon [17, 72-74],
endometrium [18, 75], head and neck [25, 68], kidney [76,
77], liver [78], lung [23], oesophagus [17], ovaries [79, 80],
pancreas [26, 81, 82], prostate [83], rectum [72, 84], and stom-
ach [85, 86] (Fig. 1). Overgrowth or contamination by normal
(epithelial) cells is a major drawback for the generation of
organoid cultures containing only epithelial tumour cells
[68, 87]. For instance, based on the observation that cultures
lacked copy number alterations and were free of any muta-
tions in fifty common cancer-associated genes, Gao et al. re-
ported that several of their organoid cultures generated from
prostate cancer metastases into lung and liver had likely been
overgrown by normal epithelial cells [83]. This observation
highlights two considerations when establishing cancer
organoid cultures. Firstly, due to higher rates of cell death
by mitotic catastrophes and other aberrations [40, 88], cancer
organoids often grow slower than normal organoids, and, sec-
ondly, many normal organoid cultures thrive under surprising-
ly simple growth conditions or require similar conditions as
their cancerous counterparts. To avoid this, different strategies
have been developed. On the one hand, cancer organoid cul-
tures may be established from metastatic tissue, ideally, taken
from sites devoid of normal epithelial cells such as lymph
node biopsies, bone biopsies, or ascites fluid. On the other
hand, pure cancer organoid cultures may be generated by pro-
viding a minimal or selective medium inhibiting the growth of
normal epithelial cells. Activating mutations in the Wnt/[3-
catenin signalling pathway are found in about 95% of all cases
of CRC. Therefore, pure CRC organoid cultures have been
achieved by removal of Wnt pathway stimulants such as Wnt
ligands and R-spondins from the growth medium [17, 72, 88].
Withdrawal of other growth factors may be used to select for
tumour cells when mutations in other specific signalling path-
way have been identified. For instance, epidermal growth
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factor (EGF) withdrawal allows for the selection of rat sarco-
ma viral oncogene homologue (RAS) mutants, hence EGF
receptor (EGFR)-signalling independent tumour cells [88].
In accordance, combinatory withdrawal of growth medium
components has been used to select for CRC subtypes with
specific growth factor independencies [73, 88]. Furthermore,
cancer organoid cultures have been robustly purified from
non-small cell lung carcinomas, which are frequently mutant
for TP53 by selection with the MDM?2 agonist Nutlin-3 [23].
In line with observations reported for organoids established
from normal (i.e. healthy) primary material, cancer organoids
histologically, transcriptionally, and genetically largely retain
the bulk characteristics of the tumour epithelium of origin.
Based on cancer organoid protocols, large efforts have been
made to generate ‘living’ biobanks of patient-derived cancer
organoids (Fig. 2; Table 1 and references therein), often with
their matched normal counterparts. An important consider-
ation here is the use of patient-matched pairs of normal and
cancer organoid lines for subsequent analyses such as drug
screenings (see “Personalised anti-cancer therapy”). Such
matched pairing of organoid lines may allow accounting for
genetic and phenotypic variation among normal human epithe-
lial organoids derived from different patients [36-38, 89],
which may even exceed the effects of single cancer gene mu-
tations. As the complexity of cancer results in cancer types
being further broken down into subtypes, it is important to note
that the majority of these biobanks provide cancer organoid
cultures representing different cancer subtypes. Overall, more
and more cancer biobanks are being described. However, as
most of the existing cancer organoid protocols were developed
for epithelial carcinomas, future research should aim at gener-
ating more organoid cultures from non-epithelial cancers as
those recently described for glioblastoma [70] and rhabdoid
tumours of the kidney [76].

Molecular genetics meets cancer organoid
technology

To better understand the molecular genetics of cancer,
organoid cultures have been utilised for two complementary
approaches. The first strategy is the mutational analysis of
patient-derived cancer organoids via WGS, whole-exome se-
quencing (WES), or targeted sequencing for cancer gene mu-
tations (Fig. 2). On the other hand, the second strategy aims at
probing the consequences of specific mutations on
tumourigenesis by introducing putative or validated cancer
gene mutations into either normal organoids or cancer
organoids using gene editing technology.

Mutational analysis of patient-derived cancer organoids As
discussed above, cancer organoid biobanks were previously
sequenced to confirm that cancer organoids robustly retain the
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Table 1 (continued)

Cancer type
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Drug Radiotherapy Immunotherapy Clinical

Primary Metastatic Other

response
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specific

normal
tissue

tumour

tissue

cancer
tissue

cancer
tissue

medium

2020 [84]

? E, whole-exome sequencing; G, whole-genome sequencing; scG, single-cell genome sequencing; 7, targeted (cancer gene) sequencing

® M, microarray; P, qRT-PCR; scR, single-cell mRNA sequencing; R, mRNA sequencing

¢ A, array CGH; EM, electron microscopy; Me, DNA methylation analysis; Pro, proteomics

9 Colorectal cancer, gastro-oesophageal cancer, liver cancer

¢ Bladder cancer, brain cancer, breast cancer, colorectal cancer, gastro-oesophageal cancer, kidney cancer, lung cancer, ovarian cancer, prostate cancer, small intestinal cancer, soft tissue cancer, and uterus

cancer

"Breast cancer, digestive organ cancer, lung cancer, ovarian cancer, peritoneal cancer, and uterus cancer

genetics of the tumour epithelium on the bulk level (Table 1
and references therein). Mutational analysis of these biobanks
revealed that the individual cancer organoid lines could be
assigned to different molecular subtypes of cancer [72], which
demonstrates that cancer organoids can represent inter-tumour
heterogeneity in vitro. As normal organoid cultures remain
largely genetically stable [36] and cancer organoids reflect
the bulk genetic makeup of the cancer of origin [72], cancer
organoid cultures allow for the investigation of clonal dynam-
ics within cancer, a critical feature of intra-tumour heteroge-
neity and cancer responses to therapy. A recent study, for
example, generated organoids from high-grade serous ovarian
carcinoma tissue obtained from a single patient at different
time points [79]. About 800 single-cell DNA sequencing pro-
files were generated from the primary tumour samples as well
as corresponding tumour organoid lines from two different
passages. For each single sequenced cell copy number varia-
tion (CNV), profiles were calculated and cluster analysis was
performed. The analysis revealed that the primary tumour
cells clustered into five different clusters [79]. All organoid
cells were also assigned to one of the five clusters, suggesting
that intra-tumour heterogeneity was maintained in vitro.
Interestingly, one of the clusters contained diploid cells, and
cells obtained from late passaged organoids were less abun-
dant in this cluster. The authors suggested that these cells were
likely normal cells that were outgrown by aneuploid tumour
cells (present in the remaining four clusters) upon extended
organoid culture [79]. Another study generated clonal
organoid lines from several locations within CRC tissue as
well as from adjacent normal colorectal epithelium from three
different patients and analysed genome, epigenome, and tran-
scriptome of each line [89]. WES analysis revealed a dramat-
ically higher mutational load and a robust diversification of
the mutational signatures in the CRC cells in comparison with
the normal intestinal cells. Reconstruction of phylogenetic
trees demonstrated that most mutations present in the cancer
were absent from normal colorectal cells and were acquired in
the late stages of clonal expansion [89]. Importantly, the mu-
tational alterations likely formed the basis of the inter- and
intra-tumour diversification, as epigenetic and transcriptional
changes were aligned with the mutations present within each
clonal CRC organoid line [89]. As this study highlights clonal
(genetic) diversity within one cancer, it remains important for
many applications of organoid technology in cancer research
to consider and, if possible, prevent clonal drift in tumour
organoids [90]. Here, clonal drift describes the process during
which genetically diverse and polyclonal (cancer) organoid
cultures reach a bottleneck with only one or a few dominant
genetic clones surviving, as also seen in the homoeostatic
small intestinal epithelium in vivo [91]. Different ways to
minimise the risk of clonal drift in organoid cultures
may be passaging the entire culture plate (instead of only
a smaller fraction of it), returning to cryopreserved early
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Fig. 2 Utilisation of patient-
derived organoids in cancer re-
search. Patient-derived (cancer)
organoids have already been used
to generate ‘living’ organoid
biobanks that can be exposed to
different drugs for efficacy
screenings and drug discovery
validations. Organoids have fur-
ther been used to study inter- and
intra-tumour heterogeneity by ™)
analysis of mutational signatures,
gene expression patterns, or pro-
teomics. By transplanting cancer
organoids into mice, tumour cell
invasiveness and potential to
metastasise can be tested. Finally,
approaches to incorporate cells of
the tumour microenvironment
such as stromal cells (such as
cancer-associated fibroblasts) or
immune cells (i.e. immuno-on-
cology) are being developed.
Some images were modified from
the medical art database at https://
smart.servier.com/

Stromal cell
co-cultures

passages of the cultures, or keeping the culture period as
short as possible [38].

Probing the role of (cancer) gene mutations in organoids
Epithelial organoid cultures are amendable to gene editing
via different genetical tools, including CRISPR—Cas9 and
RNAI [30, 40, 90, 92]. This versatility allows for the probing
of specific gene functions in cancer formation or the model-
ling of cancer progression using organoids (Fig. 1). For in-
stance, several studies have been published on the stepwise
introduction of classical CRC driver mutations—APC ",
TP537", SMAD4"", and KRASS'*P"*—following the so-
called Vogelgram cancer progression model [93]. Starting
from patient-derived normal colon organoid cultures, the
groups replicated key features of CRC progression, including
independence of niche factors [88, 94], chromosome instabil-
ity, aneuploidy, invasiveness [88], and ability to metastasise
when the gene-edited quadruple mutated organoids were
orthotopically transplanted into the caecum of NSG mice
[95]. CRISPR—Cas9 gene editing of human colon organoids
has further been applied to investigate the role of mutations in
DNA mismatch repair genes such as MLHI [96] or
BRAFY®°F mutations [97] in CRC. In another study, human
liver ductal organoids were modified to harbour loss-of-
function mutations for the tumour suppressor BAP1 [98]. To
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biobanks
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allow for selection of mutant organoid clones, the authors co-
injected targeting plasmids for both the genes encoding BAP1
and TP53. As described above, Nutlin-3 could then be used to
select for TP53 mutant organoids, which very likely were also
BAPI1 mutant due to the high efficiency of plasmid co-
transfection observed in the system [98]. TP53~~ BAPI ™~
double-mutant organoids showed abnormal morphology with
loss of cell polarity, perturbation of the epithelial layer, and
increased cell motility. Profiling of transcriptome and prote-
ome provided further evidence for alterations in the expres-
sion of cytoskeletal and cell-cell junctional components,
which are essential for the proper functioning of epithelia. In
elegant rescue assays, the authors demonstrated that only cat-
alytically active BAP1 localised to the nucleus can recover the
homeostatic phenotype in the organoids [98]. When introduc-
ing other known liver cancer (cholangiocarcinoma) gene mu-
tations in the organoids in combination with the BAPI muta-
tion, the authors could show that BAP1 loss-of-function is
required for tumourigenesis when mutant organoids are
transplanted into mice [98]. The authors highlighted their
study as an example to probe cancer gene function mechanis-
tically in human tissue by combining organoid technology
with gene editing tools such as CRISPR—Cas9 [98, 99]. An
essential advantage of using organoid technology to probe the
role of (cancer) gene mutations is the possibility to introduce
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the gene mutations of interest into a normal organoid line,
which—in its unmodified form—serves as an isogenic con-
trol. This strategy helps to avoid artefacts introduced by the
individual variability due to the genetic background of donors
and should be carefully considered for such studies.

Personalised anti-cancer therapy

Organoid technology is already exploited for personalised
therapy of cystic fibrosis (CF) patients. CF is a monogenic
disease caused by a wide spectrum of mutations in the cystic
fibrosis transmembrane conductor regulator (CFTR) gene
encoding a chloride ion transport channel [100]. An in vitro
assay was developed using normal intestinal organoids gener-
ated from rectal biopsies of patients that allows for the predic-
tion of patient response to CF drugs [101]. Following the
proof-of-concept, several further studies validated the suitabil-
ity of the drug testing platform utilising organoid cultures
[102, 103]. Using different proxies to show inhibition of can-
cer cell growth or induction of cytotoxicity, limited drug
screens have also been performed on cancer organoid
biobanks (Fig. 2 and Table 1; [68]). However, robustness,
reproducibility, and applicability of the assays to different
cancer types still require further assessment before cancer
organoid-based drug (or small molecule) screenings may be
more broadly used for personalised medicine approaches [68,
87,104, 105]. Another critical issue is whether patient-derived
cancer organoids at all have the potential to predict patient
response to anti-cancer therapy. Several studies aimed at re-
solving this concern comparing cancer organoid responses
with chemo- or chemoradiotherapy with clinical outcomes.
In one study, the authors generated fifty cancer organoid lines
from metastatic tissues of different gastrointestinal cancers
(i.e. CRC, gastro-oesophageal cancer, and cholangiocarcino-
ma) [87]. Following genotypical and phenotypical character-
isation and validation of the cancer organoids as well as tran-
scriptional profiling, the authors tested a variety of drugs di-
rectly in vitro on the organoids and in vivo using organoid-
based murine xenograft models. Strikingly, when comparing
their results with the clinical data, the authors found an 88%
positive predictive value and 100% negative predictive value
of organoid-based targeted therapy or chemotherapy [87].
Another study using organoids derived from metastatic CRC
patients demonstrated almost similar predictive values for the
drug irinotecan alone or in combination with 5-fluorouracil,
while treatment with only oxaliplatin or oxaliplatin combined
with 5-fluorouracil could not be validated [104]. A third study
tested irradiation, 5-fluorouracil, and irinotecan on a set of
rectal cancer-derived organoid lines and found a diagnostic
accuracy of almost 85% using the organoids [84]. Lastly, a
study described that cohorts of pancreatic cancer patients
could be stratified based on transcriptional signatures and
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chemosensitivity profiles obtained from cancer organoid cul-
tures of these patients [82]. Collectively, these efforts make a
strong case that cancer organoids may have a significant pre-
dictive value for patient response to anti-cancer treatments.
However, many variables, including the tumour microenvi-
ronment and drug metabolism or toxicity by peripheral or-
gans, remain to be addressed.

Immuno-oncology and the tumour
microenvironment in a dish

The tumour microenvironment plays a critical role in tumour
formation and progression (reviewed in [6]). Hence, the inter-
action of the tumour with its microenvironment is a heavily
studied hallmark of cancer [106]. Bidirectional communica-
tion between tumour cells and cellular components of the
tumour microenvironment such as fibroblasts, the vasculature,
and immune cells plays a critical role in tumour promotion
[106]. For instance, cancer cells may stimulate endothelial
cells to induce angiogenesis or chronic inflammation mediat-
ed by tissue-infiltrating immune cells may provide survival
factor or mitogens promoting tumour growth [106]. On the
other hand, an active immune response may suppress tumour
growth and, therefore, cancer cells may develop means to
avoid immune destruction [106]. A better understanding of
the influence of the tumour microenvironment on tumour
growth dynamics is essential to guide anti-cancer therapy
and minimise resistance against treatment [6]. However, the
tumour microenvironment is composed of a heterogencous
pool of cells with a variety of features that may promote or
prevent tumour growth, making it a highly complex biological
system to be studied [6].

While cancer organoid cultures lack cellular components of
the tumour microenvironment, they may serve as very good
reductionist in vitro model systems to study the influence of
tumour microenvironment on cancer growth. Recently, sever-
al immuno-oncological protocols have been developed using
organoid technology (Fig. 2; reviewed in [43]). One such ap-
proach used cancer organoid co-cultures with peripheral blood
mononuclear cells (PBMCs) to generate patient-specific tu-
mour-reactive cytotoxic T cells [107, 108]. Since high degree
of neoantigen presentation is critical to elicit a robust anti-
tumour immune response by antigen-specific T cells [109,
110], the authors chose organoids generated from specific
subtypes of CRC and non-small cell lung cancer with a high
mutational burden. Through serial co-cultivation of cancer
organoids and PBMCs in the presence of a T cell-
stimulating growth factor cocktail, it was possible to select
for and expand antigen-specific cytotoxic T cells in about half
of the samples. Importantly, co-cultures of expanded T cells
with organoid generated from adjacent healthy epithelial tis-
sue resulted in undisturbed organoid expansion without
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significant levels of organoid cytotoxicity [107]. In another
approach, tumour-infiltrating T cells and CRC organoids were
separately expanded using their respective gold standard
methods and then combined to assess T cell-mediated
organoid killing [111]. Interestingly, the extent of cell death
in the in vitro co-culture assay correlated well with the pa-
tient’s response to chemotherapy and immune checkpoint
blockade [111]. Furthermore, the authors tested immune
checkpoint blockade using PDI1 antibodies in their co-
culture model system and demonstrated that organoid killing
by PD1"e" T cells was improved upon antibody treatment.
Two other groups described organoid-based immuno-oncolo-
gy assays that utilised cytotoxic lymphocytes engineered to
recognise defined antigens and kill organoids presenting such
antigens. The first group generated chimeric antigen receptor-
engineered natural killer cells recognising the antigens of
choice [112], while the second group generated T cell receptor
transgenic cytotoxic T cells [113]. In both cases, robust
antigen-specific cytotoxicity was observed against cancer
organoids presenting the antigen of choice [112, 113]. Co-
cultures with matched normal epithelial organoids or cancer
organoids presenting control antigens did not show significant
levels of antigen-specific cytotoxicity. Apart from these re-
ductionist approaches, other protocols to test lymphocyte-
mediated tumour organoid killing have been established.
One such approach utilises the air—liquid interface (ALI) cul-
tures of patient-derived cancer organoids that preserved not
only the tumour epithelium but also significant cellular com-
ponents of the tumour microenvironment including fibro-
blasts, macrophages, and lymphocytes for about 1 month
[114]. These ALI-based cultures could be established from
various cancers such as CRC, lung cancer, head and neck
cancer, and melanoma and also allowed for modelling of im-
mune checkpoint blockade [114].

Apart from the immune infiltrate, fibroblasts may also crit-
ically contribute to tumour initiation and progression. A recent
study in mice, for instance, described the presence of a rare
population of Ptgs2-expressing fibroblasts that reside under
the crypt epithelium and constitute the intestinal stem cell
niche in mice [115]. The authors then showed that Ptgs2-ex-
pressing fibroblasts secreted prostaglandin E, (PGE,), which
promoted adenoma formation in the classical Apc™™* tumour
mouse model in vivo [116]. As there is growing evidence for
the tumour-promoting features of PGE, [117, 118], but its
cellular source remained elusive, the authors investigated fur-
ther. To decipher the bidirectional signalling between stem
cells and their mesenchymal niche, the authors then developed
a co-culture method of mouse small intestinal organoids and
wild-type primary mouse intestinal fibroblasts (Fig. 2). In the
absence of fibroblasts, organoids started budding and
displayed the typical crypt—villus architecture [11].
However, when co-cultured with fibroblasts, organoids
formed cystic spheroids. This is usually only seen for a very

short culture period or under high Wnt conditions with in-
creased stemness and inhibited differentiation of the cultures
[119]. By generating organoids lacking the main PGE, recep-
tor in the (murine and human) intestinal epithelium (prosta-
glandin E, receptor 4, EP4; encoded by Ptger4 in mice and
PTGER4 in humans), the authors then elegantly demonstrated
that fibroblast-secreted PGE, directly acts on the epithelial
stem cells, as spheroids did not form when culturing Ptger4-
depleted organoids [115], aphenotype that was readily
reproduced by applying an EP, inhibitor to the co-cultures
[115]. Interestingly, PGE, is a critical component of the
growth factor cocktail for human intestinal organoid culture
promoting stem cell proliferation and formation of the very
characteristic cystic spheroids [16, 17]. In line with the results
on murine intestinal organoids, the effect of PGE, on human
colon organoid cultures could also be blocked by PTGER4
inhibition [115], suggesting a conservation of the mechanism
of action between mice and humans. Further along the line of
tumour progression, cancer-associated fibroblasts (CAFs)
play a major role in the tumour microenvironment, for exam-
ple by providing mitogenic factors to the growing cancer as
well as mediating resistance against anti-cancer therapy [6].
CAFs are typically studied following xenotransplantation of
human cancer cells or organoids into mice; however, the tu-
mour stroma generated in this setting is entirely composed of
murine cells. In order to better understand the interaction be-
tween cancer cells and their mesenchymal niche, a few co-
culture methods have been published over the last couple of
years. One study, for example, described the development of a
co-culture protocol of organoids and CAFs derived from pan-
creatic ductal adenocarcinoma (PDAC) to investigate stem
cell niche factor dependency during tumour progression
[81]. In their PDAC organoid biobank, the authors found that
the organoids showed different levels of dependency on Wnt/
R-spondin supplementation. Some organoids survived in the
absence of both ligands, while others were fully dependent on
exogenous Wnt ligands or both exogenous Wnt and R-
spondin. The cellular source of Wnt ligands remained un-
known. However, as PDACs are characterised by robust stro-
mal cell infiltration, it was hypothesised that these may be the
Whnt source promoting survival of Wnt-dependent PDAC sub-
types in vivo. To test this, the authors went on to generate
stroma-attached organoids by letting PDAC cells and CAFs
(derived from the same patient) aggregate together [81]. In
this co-culture system, Wnt-dependent PDAC organoids
formed in the absence of Wnt supplementation [81], as
Wnt3A was provided by the CAFs in short range to PDAC
cells, in line with earlier studies describing a short-range Wnt
gradient in intestinal organoids [120]. A similar effect was not
observed when CAF-conditioned medium was provided or
when Wnt-dependent PDAC organoids and CAFs were co-
cultured without direct physical contact [81]. PDACs self-
producing Wnt ligands have been shown to be more
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aggressive [81], which suggests that PDACs dependent on
Wnt supplementation by CAFs may represent an initial stage
of tumour initiation that is lost during tumour progression into
an aggressive and metastatic cancer.

Challenges and outlook

In order to use organoids for cancer therapy, several challenges
remain to be overcome. ASC-derived organoid models have
mostly been established from epithelial tissues, and, in line, can-
cer organoid cultures are in most cases only available for epithe-
lial cancer such as different types of carcinomas with the excep-
tion of the recently described culture protocols for glioblastoma
organoids [70] and rhabdoid tumour organoids [76]. Another
critical issue is the efficiency at which cancer organoid cultures
can be established [87], as well as the culture purity, as contam-
ination with normal epithelial cells remains a problem, making
organoid culture from some primary cancers such as prostate
cancer very difficult [83]. Furthermore, to allow high-
throughput assays, improved methods are required to decrease
the time and costs of organoid generation as well as the input
material needed to establish cultures. At the same time, other
prerequisites for personalised (precision) medicine using cancer
organoids are a better understanding of the clonal dynamics of
cancers as well as the role of cellular components of the tumour
microenvironment, which are too often still poorly understood.
While some in vitro approaches have been developed to incor-
porate cells of the tumour microenvironment such as immune
cells and fibroblasts into the cancer organoid culture [43, 107,
112, 114, 115], existing methods need further improvement and
incorporation of more (non-epithelial) cell types. In addition,
advancements to co-culture organoids with bacteria still need
broader implementation and explorations. A major challenge re-
mains the use of (non-human) animal products for organoid cul-
tures such as murine-derived extracellular matrix (ECM)
hydrogels (such as Matrigel, BME, Geltrex) or bovine-derived
foetal calf serum or bovine serum in growth factor-conditioned
media [68]. Bioengineering approaches such as the development
of hydrogels using artificial matrices [121] or the use of alterna-
tives to conditioned media may help to overcome some of these
limitations in the future [122]. However, the need to test inva-
siveness or metastatic potential of cancer organoids using mouse
xenograft models is still without robust alternatives [95].
Research into finding suitable replacements for such models
should be fostered in the future. Lastly, ethical implications of
cancer organoid biobanks preserving viable patient material re-
quire further considerations and may result in a stronger legisla-
tive regulation in the future [123].

Organoid technology has been developed just over 10 years
ago. Its rapid implementation by numerous research groups
worldwide led to many breakthroughs in the field of cell and
developmental biology, but also in pre-clinical (cancer)
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research. The application of organoid technology in basic can-
cer research has provided many new experimental models and
led to a variety of new discoveries. With the establishment of
living biobanks of cancer organoids, new possibilities arise for
the broader testing and development of anti-cancer drugs as
well as the better stratification of cancer patient cohorts. With
its versatility, robust ability to model in vivo situations, and
fast-evolving set of applications, organoid technology is ex-
pected to keep making a significant impact on basic cancer
research and clinical cancer therapy in the future.
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