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Abstract

Background: Monte Carlo simulations of diffusion are commonly used as a model validation 

tool as they are especially suitable for generating the diffusion MRI signal in complicated tissue 

microgeometries.

New method: Here we describe the details of implementing Monte Carlo simulations in three-

dimensional (3d) voxelized segmentations of cells in microscopy images. Using the concept of the 

corner reflector, we largely reduce the computational load of simulating diffusion within and 

exchange between multiple cells. Precision is further achieved by GPU-based parallel 

computations.

Results: Our simulation of diffusion in white matter axons segmented from a mouse brain 

demonstrates its value in validating biophysical models. Furthermore, we provide the theoretical 

background for implementing a discretized diffusion process, and consider the finite-step effects 

of the particle-membrane reflection and permeation events, needed for efficient simulation of 

interactions with irregular boundaries, spatially variable diffusion coefficient, and exchange.

Comparison with existing methods: To our knowledge, this is the first Monte Carlo pipeline 

for MR signal simulations in a substrate composed of numerous realistic cells, accounting for their 

permeable and irregularly-shaped membranes.
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Conclusions: The proposed RMS pipeline makes it possible to achieve fast and accurate 

simulations of diffusion in realistic tissue microgeometry, as well as the interplay with other MR 

contrasts. Presently, RMS focuses on simulations of diffusion, exchange, and T1 and T2 NMR 

relaxation in static tissues, with a possibility to straightforwardly account for susceptibility-

induced T2
∗ effects and flow.

Keywords
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1. Introduction

The MRI measurements of self-diffusion of water molecules in biological tissues provide the 

sensitivity to the diffusion length scales ranging from microns to tens of microns at clinically 

feasible diffusion times. As the feasible range of diffusion lengths is commensurate with the 

sizes of cells, diffusion MRI allows one to evaluate pathological changes in tissue 

microstructure in vivo. To balance between accuracy and precision in estimation of tissue 

parameters through biophysical modeling of diffusion MR signal, assumptions are inevitably 

made to simplify tissue microgeometry (Grebenkov, 2007; Jones, 2010; Kiselev, 2017; 

Jelescu and Budde, 2017; Alexander et al., 2018; Novikov et al., 2019). It is necessary to 

validate the assumptions of models before use, either through experiments in physical 

phantoms (Fieremans and Lee, 2018), or testing the model functional forms in animals and 

human subjects (Novikov et al., 2018), or numerical simulations (Fieremans and Lee, 2018).

So far, numerical simulation is the most flexible and economic choice among all kinds of 

validation. Benefiting from the recent advances in microscopy, realistic cell geometries for 

simulations have been directly reconstructed from the microscopy data of neuronal tissues in 

2 dimension (2d) (Chin et al., 2002; Xu et al., 2018) and 3d (Nguyen et al., 2018; Palombo 

et al., 2019; Lee et al., 2020b,a), as shown in Fig. 1. The emerging need for simulations in 

realistic substrates prompts the development of open-source software congenial to 

physicists, biologists and clinicians.

Here, we describe our implementation of Monte Carlo (MC)-based diffusion simulations: 

the Realistic Microstructure Simulator (RMS), which entails a fast and accurate model 

validation pipeline. While our pipeline has been recently announced and applied to simulate 

diffusion MRI in axonal microstructure (Lee et al., 2020b,a,d), these publications are mainly 

focused on the physics of diffusion and model validation. In this work, we describe the 

methodology in detail building on the algorithms introduced by our team over the past 

decade (Fieremans et al., 2008, 2010; Novikov et al., 2011, 2014; Burcaw et al., 2015; 

Fieremans and Lee, 2018; Lee et al., 2020c), and in particular, derive the finite MC-step 

effects relevant for the interactions (reflection and permeation) of random walkers and 

membranes.

RMS is introduced as follows. In Section 2, we provide an overview of RMS 

implementation. Theoretical results and implementation details of particle-membrane 
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collisions and exchange are presented in Appendix A and Appendix B; the first order 

correction of membrane permeability due to a discretized diffusion process is derived in 

Appendix C. In Section 3, we demonstrate the application of RMS to diffusion simulations 

in realistic axonal shapes reconstructed from electron microscopy data of a mouse brain (Lee 

et al., 2019). Simulated diffusion MR signals are shown to be closely related to features of 

cell shape, facilitating the interpretation of diffusion measurements in biological tissues. 

Finally, in Section 4 we provide an outlook for microstructure simulation tools in general, 

and RMS in particular, as a platform for MR-relevant simulations of diffusion and relaxation 

in microscopy-based realistic geometries.

2. RMS Implementation

2.1. Realistic Microstructure Simulator: An overview

The goal of our RMS implementation is to provide a universal platform of MC simulations 

of diffusion in any realistic microgeometry based on microscopy data. Therefore, the RMS 

has the following properties:

i. The simulation is performed in 3d continuous space with voxelized 

microgeometry. We will introduce this main feature of RMS in Section 2.1.1.

ii. The particle-membrane interaction of impermeable membrane is modeled as 

classic elastic collision. The reason for this choice will be explained in Section 

2.1.2, Appendix A and Appendix B.

iii. The models of permeable and absorbing membranes are implemented based on 

the novel theoretical results tailored for diffusion simulations of high accuracy, 

with details in Section 2.1.3 and Appendix C.

iv. The interplay of diffusion and other MR contrasts, such as T1 and T2 relaxation, 

surface relaxation and magnetization transfer effects, are incorporated in MC 

simulated Brownian paths and MR signal generation (Section 2.1.4).

v. The simulation kernel is accelerated by parallel computation on the GPU 

(Section 2.1.5).

2.1.1. Substrates and masks—To generate the 3d substrates based on microscopy 

data for diffusion simulations, we can translate the voxelized cell segmentation into either 

smoothed meshes or binary masks (Nguyen et al., 2018). Each approach has its own pros 

and cons.

For the smoothed-mesh approach, the generated cell model has smooth surface, potentially 

having surface-to-volume ratio similar to the real cells. However, it is non-trivial to decide 

on the degree of smoothing while generating the cell model. In addition, in simulations, the 

problem of floating-point precision may arise, especially for determining whether a random 

walker encounters a membrane.

For the binary mask approach, it is fast and simple to translate the discrete microscopy data 

into the 2d pixelated or 3d voxelized cell geometries. In this study, we only focus on the 

voxelized geometry of the isotropic voxel size in 3d. Further, the corresponding simulation 
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kernel is easy to implement and maintain, and has low computational complexity with 

minimal problem of floating-point precision. On the other hand, the generated cell model 

has unrealistic surface-to-volume ratio due to its “boxy” cell surface.

To achieve fast and accurate MC simulations of diffusion in microscopy-based cell 

geometries, we chose to use the binary mask approach, where the random walker has at most 
three interactions with membranes (elastic collision or membrane permeation) within each 

step, if the step size is smaller than the voxel size of the geometry (Fig. 2). We define the 

voxel size as the length of the side of each 3d cube. Applying a small step size smaller than 

the voxel size within the voxelized geometry, we only need to take integer part of the 

walker's position (in a unit of voxel size) to determine where the walker resides after a 

particle-membrane interaction, minimizing the precision problem in numerical calculations.

Here we clarify that the six faces of each 3d voxel do not necessarily represent the interface 

(i.e., cell membrane) of compartments; the membranes always coincide with faces in the 

voxelized geometry, but not all voxel faces are therefore part of membranes: When a random 

walker encounters a face between two voxels belonging to the same compartment, the 

random walker will permeate though the face as it does not exist; in contrast, when a random 

walker encounters a face between two voxels, each belonging to a different compartment, 

this face is effectively part of the cell membrane, and the check of permeation probability 

and particle-membrane interaction will be triggered (Sections 2.1.2 and 2.1.3).

A proper voxel size of the voxelized geometry should be (1) smaller than the length scale of 

cell shapes for accurate simulations, and (2) larger than the hopping step size in simulations 

to ensure at most three particle-membrane interactions in each step. For example, the voxel 

size of axon geometry should be much smaller than the axon diameter to capture the fine 

structures of cells, such as axon caliber variation and axonal undulation. However, choosing 

a small voxel size leads to an even smaller step size and a subsequently short time for each 

step (Section 2.1.3), considerably increasing the number of steps and calculation time. To 

speed up simulations without losing the accuracy, it is recommended to choose the voxel 

size based on simulations in cell-mimicking simple geometries (e.g., cylinders for axons, 

spheres for cell bodies) with known analytical solutions of diffusion signals or metrics.

Finally, for simulations of diffusion in a substrate consisting of multiple cells, the most 

computationally expensive calculation is to identify which compartment a random walker 

resides in. A way to solve this problem is to build a lookup table (Yeh et al., 2013; 

Fieremans and Lee, 2018). By partitioning cell geometries into many small voxels, the 

lookup table records compartment labels in each voxel. When a random walker hops across 

few voxels in a step, we only need to check compartments recorded in these voxels. 

Interestingly, each voxel in voxelized geometry records only one compartment label. In other 

words, the voxelized geometry serves as the lookup table itself and thus saves the 

computational load and memory usage, which could be non-trivial for the GPU 

parallelization (Nguyen et al., 2018).

2.1.2. Particle-membrane interaction: Why elastic collision is preferred to 
other approaches?—In MC simulations of diffusion, the diffusion process is discretized 
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into multiple steps of constant length and random orientation in 3d, during a constant time 

duration for each step. To model the particle-membrane interaction, the most commonly 

used implementation for diffusion simulations is elastic collision (Szafer et al., 1995; Hall 

and Alexander, 2009), which properly equilibrates the homogeneous particle density around 

impermeable, permeable and absorbing membranes (Fieremans and Lee, 2018). In RMS, we 

adopt this approach for simulations of high accuracy.

To reduce the computational load of simulations in complicated geometries, more and more 

studies apply other kinds of particle-membrane interactions. The first alternative is equal-

step-length random leap (ERL) (Xing et al., 2013): a step encountering a membrane is 

canceled and another direction is chosen to leap until the new step does not encounter any 

membranes. In this way, ERL rejects some steps toward the membrane and effectively repels 

random walkers away from the membrane. This repulsive effect leads to inhomogeneous 

particle density around membranes (Appendix A, Fig. A.2); therefore, ERL should not be 

applied to simulations of MR contrasts requiring homogeneous particle density, such as 

exchange, surface relaxation, and magnetization transfer. For the case of impermeable, non-

absorbing membrane, the bias of diffusivity transverse and parallel to the membrane due to 

ERL is proportional to the step size (Figs. A.3-A.4) and could be controlled by choosing a 

small step size in simulations.

The second alternative for the interaction with membrane is rejection sampling (Ford and 

Hackney, 1997; Waudby and Christodoulou, 2011; Nguyen et al., 2018; Palombo et al., 

2018): a step encountering a membrane is canceled, and the random walker stays still for the 

step. This simple approach has been shown to be able to maintain a homogeneous particle 

density at all times (Szymczak and Ladd, 2003) and is applicable to simulations of water 

exchange, as generalized in Appendix B. However, it is rejecting some steps toward the 

membrane, which leads to a small bias in diffusivity parallel to membranes (Fig. B.2), and 

thus it is still not the best option for an accurate simulation pipeline.

To sum up, the criteria for choosing the particle-membrane interaction in an MC simulator 

include (1) the maintenance of homogeneous particle density around impermeable, 

permeable, and absorbing membranes, and (2) reliable simulations of diffusion metrics 

without interaction-related bias. Rejection sampling satisfies only the first criterion, and 

ERL fails both. In contrast, elastic collision satisfies both criteria, and thus we implement it 

in RMS for accurate simulations. Comparisons of other particle-membrane interactions can 

be found in (Szymczak and Ladd, 2003; Jóhannesson and Halle, 1996), where other 

approaches do not provide benefits in both calculation speed and accuracy.

2.1.3. Impermeable, permeable and absorbing membranes—When a random 

walker encounters an impermeable membrane within a step, the random walker is specularly 

reflected by the membrane, equivalently experiencing an elastic collision (Szafer et al., 

1995). The displacement before and after the collision are summed up to the step size 

(Einstein et al., 1905)

δs = 2dD0 ⋅ δt , (1)
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where d is dimensionality of space, D0 is the intrinsic diffusivity, and δt is the time of each 

MC step.

Further, when a random walker encounters a permeable membrane, the walker has a 

probability 1 − P to be specularly reflected by the membrane, and a probability P to 

permeate through. In Appendix C, we derive the connection between P and the membrane 

permeability κ in detail. Briefly, the permeation probability P can be determined in two 

ways:

1. For the genuine membrane permeability κ, the permeation probability is given by

P ≃ κ0δs
D0

⋅ Cd , (2a)

Cd ≡
1 d = 1 ,
π ∕ 4 d = 2 ,
2 ∕ 3 d = 3 ,

(2b)

where κ0 is the input permeability value (with κ0 ≃ κ if P ⪡ 1) (Powles et al., 

1992; Szafer et al., 1995; Fieremans and Lee, 2018). When P is not small, the 

relation of genuine permeability κ and the input value κ0 is given by Eq. (C.7), 

leading to the probability of permeation from compartment 1 (D1, δs1) to 

compartment 2 (D2, δs2):

P1 2 =

κδs1
D1

⋅ Cd

1 + κ
2

δs1
D1

+ δs2
D2

⋅ Cd
. (3)

2. Alternatively, without assigning a nominal permeability, the permeation 

probability can be determined by the ratio of tissue properties on both sides of 

the membrane, such as the intrinsic diffusivity and spin concentration, given by 

Eq. (C.15) (Baxter and Frank, 2013).

The theoretical background and limitations of the two approaches are discussed in Appendix 

C.

Finally, for magnetization transfer (MT) effect, its MC simulation can be effectively 

modeled as an “absorbing” membrane, or as a surface relaxation effect. When a random 

walker encounters an absorbing membrane, the walker has a probability

PMT ≃ ϱδs
D0

⋅ Cd

to lose all its magnetization (to be saturated) (Fieremans and Lee, 2018), where Cd is the 

same constant as in Eq. (2a), and ϱ is the surface relaxivity (with the units of velocity). A 

random walker’s magnetization is effectively “saturated” when the exchange with the 
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macromolecule pool happens with the probability PMT, equivalently introducing the 

weighting

αϱ = 1 not saturated;
0 after saturation event (4)

for the random walker’s contribution to the net signal.

The signal decay due to MT is caused by the exchange events between water protons and 

saturated macromolecule protons during diffusion. The mean-field estimate for the MT 

exchange rate R (units of inverse time) between the liquid pool and the macromolecular 

pool, with exchange happening at the surfaces with the net surface-to-volume ratio S/V, is 

given by (Slijkerman and Hofman, 1998)

R = ϱ ⋅ S
V .

2.1.4. Other MR contrast mechanisms—The transverse magnetization experiences 

the T2 NMR relaxation. Hence, during all the time when the spin magnetization is in the 

transverse plane, such as for the conventional spin-echo diffusion sequence, the weighting 

due to the T2 relaxation for each random walker’s contribution to the overall signal is 

(Szafer et al., 1995)

αT = exp −∑
i

ti
T (i) , (5)

where ti is the total time of staying in the i-th compartment during the echo time (TE), with 

the corresponding T2 relaxation time T (i) ≡ T2
(i). Similarly, for simulations of a stimulated-

echo sequence, the weighting due to the T1 relaxation during the mixing time (when the 

magnetization is parallel to B0) for each random walker’s contribution is also given by Eq. 

(5) (Woessner, 1961), where ti is the total time of staying in the i-th compartment during the 

mixing time, with the corresponding T1 relaxation time T (i) ≡ T1
(i).

Other contrasts, such as susceptibility effect, blood oxygen level dependent (BOLD) effect 

and intravoxel incoherent motion (IVIM), can be further added to RMS by modifying each 

random walker’s phase factor e−iφ(t) due to the flow velocity and the local Larmor frequency 

offset in a standard way.

2.1.5. Parallel computations and input-output—To achieve precise simulations of 

diffusion in complicated 3d microgeometry, it is inevitable to employ a large number of 

random walkers. However, the complexity of substrate and the combination of multiple MR 

contrast mechanisms in recent studies substantially increase the computational load in 

simulations, prompting the usage of parallel computations, either through multiple nodes on 

a cluster, multiple threads on a CPU/GPU core, or their combinations (Waudby and 

Christodoul 2011; Xu et al., 2018; Palombo et al., 2018; Nguyen et al., 2018; Lee et al., 

2020b).
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The simulation in RMS is implemented in CUDA C++ and accelerated through the parallel 

computation on GPU. Furthermore, by performing multiple simulations on a GPU cluster, it 

is possible to further accelerate simulations through multiple nodes, with each node 

equipped with a GPU core.

The input RMS files and the shell script to compile and run the CUDA C++ kernel are all 

generated in a MATLAB script. Moreover, both the input and output files are text files, and 

all the codes are open-sourced and platform-independent. These properties make the RMS 

congenial to even beginners in this field to adapt RMS and program their own simulation 

pipelines. In Table 1, we summarize input parameters of RMS.

2.2. Monte Carlo simulations in realistic microstructure

Here we shortly summarize the diffusion simulations implemented in RMS:

1. Random walkers’ initial positions x0 are randomly initialized to achieve a 

homogeneous particle density. In RMS, we provide users the flexibility to define 

a “dead” space, where no random walkers are initialized and allowed to step in.

2. Random walkers diffuse in a continuous space with voxelized microgeometry 

(Section 2.1.1). For the i-th step, the random walker is at position xi−1 before the 

random hop, and a step vector δx of constant length δs (< voxel size) and 

random direction in 3d is generated.

3. The random walker hops to a new position

xi = xi − 1 + δx (6)

if it does not encounter the edge of the voxel where it resides in before the 

hopping. If the edge of the voxel is encountered, it will either permeate though or 

be elastically reflected from the voxel edge based on the permeation probability 

defined in Section 2.1.2, leading to a new position xi accordingly. The 

permeation probability is set to 1 if the random walker encounters the edge 

between two adjacent voxels belonging to the same compartment.

4. The above particle-membrane interaction will repeat at most three times during 

each MC step due to the voxelized geometry and a small step size (< voxel size), 

as illustrated in Fig. 2.

5. The diffusion metrics and signals are then calculated based on the diffusional 

phase due to simulated diffusion trajectory xi and signal weighting (αϱ, αT in 

Sections 2.1.3 and 2.1.4), with details in the following Section 2.3.

The accuracy of RMS is guaranteed by the theoretical exploration of particle-membrane 

interaction (Appendix A and Appendix B) and water exchange (Appendix C).

2.3. Diffusion metrics

Normalized diffusion signals of the pulse-gradient spin echo sequence are calculated based 

on the diffusional phase φ accumulated along the diffusion trajectory x(τ) (Szafer et al., 

1995):
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S = 〈α ⋅ e−iφ〉N
〈α〉N

, φ = ∫
0

TE
g(τ) ⋅ x(τ)dτ , (7)

where ⟨…⟩N is the average over N random walkers, α = αϱ · αT is the signal weighting of 

individual walker in Eqs. (4) and (5), ⟨α⟩N is the normalization constant (the total non-

diffusion-weighted signal), ensuring that the signal S ≡ 1 in the absence of diffusion 

weighting (b = 0), TE is the echo time, and g(τ) is the diffusion-sensitizing gradient of the 

Larmor frequency.

For the pulsed-gradient sequence, the cumulant expansion of Eq. (7) yields the diffusivity 

and kurtosis in the narrow pulse limit, given by

D = 1
2t ⋅

α ⋅ (Δx ⋅ g)2 N
〈α〉N

, K =
α ⋅ (Δx ⋅ g)4 N
α ⋅ (Δx ⋅ g)2 N

2 − 3,

where Δx = x(t) − x(0) is the diffusion displacement, g is the gradient direction, and t is the 

diffusion time. For an ideal pulse-gradient sequence, TE = t in the narrow pulse limit.

For the pulsed-gradient sequence with wide pulses (Stejskal and Tanner, 1965), to obtain the 

diffusion and kurtosis tensors we simulate signals for multiple diffusion weightings b 
according to the gradient wave form g(τ), and fit the cumulant expansion in the powers of b 
to the simulated signals (Jensen et al., 2005):

ln S ≃ − b∑
ij

nijDij

+ 1
6(bD̄)2 ∑

ijkl
nijklW ijkl + O(b3), b = g2δ2(Δ − δ ∕ 3),

where nij = gigj, nijkl = gigjgkgl, Dij and Wijkl are diffusion and kurtosis tensors, 

D̄ = 1
3 ∑iDii, and the diffusion time t ≈ Δ is roughly the time interval Δ between two gradient 

pulses with the precision of its definition given by the gradient pulse width δ (Novikov et al., 

2019, Sec. 2). The above formula and the overall diffusion attenuation S = S [g(τ)] can be 

generalized to be a functional of the multi-dimensional gradient trajectory g(τ), with bnij → 
Bij being the B-matrix, and with the higher-order terms defiend accordingly (Topgaard, 

2017).

3. RMS Applied to Intra-Axonal Microstructure

In this Section, we describe an RMS-compatible example of a realistic electron microscopy 

(EM) tissue segmentation (Section 3.1), give an overview of the related biophysical models 

(Section 3.2), describe the RMS settings for MC in axonal geometry (Section 3.3), and 

outline our results for the diffusion along (Section 3.4) and transvere (Section 3.5) to the 

axons.
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All procedures performed in studies involving animals were in accordance with the ethical 

standards of New York University School of Medicine. All mice were treated in strict 

accordance with guidelines outlined in the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals, and the experimental procedures were performed in 

accordance with the Institutional Animal Care and Use Committee at the New York 

University School of Medicine. This article does not contain any studies with human 

participants performed by any of the authors.

3.1. Axon segmentation based on electron microscopy

A female 8-week-old C57BL/6 mouse was perfused trans-cardiacally, and the genu of 

corpus callosum was fixed and analyzed with a scanning electron microscopy (Zeiss Gemini 

300). We selected a subset of the EM data (36 × 48 × 20 μm3 in volume, 6 × 6 × 100 nm3 in 

voxel size), down-sampled its voxel size to 24 × 24 × 100 nm3 slice-by-slice by using 

Lanczos interpolation, and segmented the intra-axonal space (IAS) of 227 myelinated axons 

using a simplified seeded-region-growing algorithm (Adams and Bischof, 1994). The 

segmented IAS mask was further down-sampled into an isotropic voxel size of (100 nm)3 for 

numerical simulations. More details can be found in our previous work (Lee et al., 2019). 

For simulations in RMS, the voxelized microgeometry based on the axon segmentation is 

shown in the bottom-right corner of Fig. 1 (Lee et al., 2020b). In the following examples, we 

assume that the tissue properties (i.e., diffusivity, relaxation time) are the same in cytoplasm 

and organelles (e.g., mitochondria).

3.2. Tissue parameters and biophysical models for the axonal geometry

To quantify the axon geometry, we define axon’s inner diameter, caliber variation, and 

axonal undulation as follows: The inner diameter 2r ≡ 2 Ω ∕ π of an axon cross-section is 

defined as that of an equivalent circle with the same cross-sectional area Ω (West et al., 

2016); the caliber variation is defined as the coefficient of variation of radius (ratio of 

standard deviation to mean), CV(r) (Lee et al., 2019); the axonal undulation ∣w∣ is defined as 

the shortest distance between the axonal skeleton and the axon’s main axis (Lee et al., 

2020a); based on the analysis of an axonal skeleton, we can roughly estimate the length 

scale of undulation amplitude w0 and wavelength λ using a simplified 1-harmonic model 

(Appendix D).

In our previous studies, we showed that restrictions along axons are randomly positioned 

with a finite correlation length ℓc of a few micrometers (Lee et al., 2020b). This short-range 

disorder leads to the diffusivity along axons

D∥(t) ≃ D∞ + c ⋅ t−1 ∕ 2, t ≫ tc = ℓc
2

2D∞
(8)

approaching its t → ∞ limit D∞ in a power-law fashion with exponent 1/2 (Novikov et al., 

2014; Fieremans et al., 2016; Lee et al., 2020b). Here, c is the strength of the restrictions; the 

relation (8) holds in the narrow pulse limit, and acquires further corrections for finite pulse 

width δ. The scaling (8) becomes valid when the diffusion length exceeds the correlation 

length ℓc of the structural disorder (e.g., beads) along axons.
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The bulk diffusivity along axons correlates with axon geometry via (Lee et al., 2020b)

ζ ≡ D0 − D∞
D∞

∝ CV2(r), (9)

indicating that the stronger the caliber variation CV(r), the smaller D∞.

Furthermore, the nonzero diffusivity transverse to axons is contributed by axon caliber and 

undulation (Nilsson et al., 2012; Brabec et al., 2020; Lee et al., 2020a). In the wide pulse 

limit, untangling the two effects in diffusion transverse to axons is non-trivial. Instead, we 

translate the radial diffusivity D⊥ into the effective radius measured by MR, rMR (Burcaw et 

al., 2015; Veraart et al., 2020), and identify which contribution dominates (Lee et al., 

2020a):

rMR ≡ 48
7 δ t − δ

3 D0D⊥
1 ∕ 4

(10)

≃
rcal ≡ 〈r6〉 ∕ 〈r2〉 1 ∕ 4 , tD ≪ δ ≪ tu

rund ≡ 6
7π2

1 ∕ 4
⋅ w0λ, δ ≫ tu

(11)

where rcal and rund are the apparent axon size due to the axon caliber and undulation 

respectively, and

tD ≡ r2 ∕ D0 and tu ≡ λ2 ∕ (4π2D0) (12)

are correlation times for the axon caliber and undulation respectively. In realistic axonal 

shapes, r ~ 0.5 μm and λ ~ 20 μm lead to tD ~ 0.1 ms and tu ~ 5 ms for D0 = 2 μm2/ms (Lee 

et al., 2019, 2020a).

To factor out the effect of undulation, diffusion signals are spherically (orientationally) 

averaged for each b-shell. Assuming that axonal segments have cylindrical shapes, the 

spherically averaged intra-axonal signals are given by (Jensen et al., 2016; Veraart et al., 

2019; Veraart et al., 2020)

S̄(b) ≃ β e−bD⊥ + O(b2) b−1 ∕ 2 , (13)

where β ≡ π ∕ (4Da), and Da is the diffusivity along axon segments within the diffusion 

length ~ Dat. The effective radius is then calculated based on D⊥ and Eq. (10).

3.3. RMS settings for MC simulations in the intra-axonal space

To demonstrate the relation of diffusion metrics and microgeometry in intra-axonal space in 

Eqs. (9) and (11), we performed diffusion simulations in 227 realistic axons segmented from 

mouse brain EM in Section 3.1: random walkers diffused over 1 × 106 steps with a duration 

δt = 2 × 10−4 ms and a length δs = 0.049 μm (Eq. (1) with D0 = 2 μm2/ms) for each of the 

following simulations of monopolar pulsed-gradient sequences.
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For simulations of narrow pulse sequence, 1 × 107 random walkers per axon were applied. 

The apparent diffusivity D∥(t) along axons was calculated by using diffusion displacement 

along the axons’ main direction (z-axis) at diffusion time t ≤ 100 ms. Eq. (8) for the time 

range t = 60 – 80 ms was fit to the simulated D∥(t), and the fit parameter D∞ was correlated 

with the caliber variation CV(r) in Eq. (9).

For simulations of wide pulse sequence, 2 × 104 random walkers per axon were applied. The 

duration between pulses Δ = 1–100 ms was equal to the gradient pulse width δ, such that 

diffusion time t ≈ Δ = δ. The diffusion signals were calculated based on the accumulated 

diffusion phase (7) for 10 b-values = 0.2 – 2 ms/μm2 along directions (x- and y-axes) 

transverse to axons’ main direction (z-axis). The simulated apparent diffusivity D⊥ 
transverse to each axon was translated to the effective radius by using Eq. (10) and 

compared with the contribution of caliber variations and axonal undulations in Eq. (11).

For simulations of directionally averaged signal, 2×104 random walkers per axon were 

applied. The diffusion time and gradient pulse width (t, δ) = (20, 7.1), (30, 13) and (50.9, 

35.1) ms were used to match the experimental settings on animal 16.4T MR scanner (Bruker 

BioSpin), Siemens Connectome 3T MR scanner, and clinical 3T MR scanner (Siemens 

Prisma) (Veraart et al., 2020; Lee et al., 2020a). Diffusion signals were calculated based on 

the accumulated diffusional phase for 18 b-values = 16 – 100 ms/μm2 along 30 uniformly 

distributed directions for each b-shell. Eq. (13) was fit to the spherically averaged signal S̄
(b) from all axons (volume-weighted sum), and the fit parameter D⊥ was again translated to 

the effective radius in Eq. (10) and compared with the contribution of caliber variations and 

axonal undulations of all axons, i.e., rcal in Eq. (11) and r und defined below.

The rund in Eq. (11) is defined for the individual axon and does not take the volume 

differences between axons into account. To add up the contribution of D⊥ due to undulations 

of all axons, we define a volume-weighted average of rund:

r und = ∑
i

fi ⋅ rund, i
4

1 ∕ 4
, (14)

with the i-th axon’s volume fraction fi, such that ∑ifi = 1.

3.4. Results: Diffusion metrics and caliber variations along axons

In 227 realistic axons segmented from a mouse brain, the simulation result of narrow pulse 

sequence shows that the apparent diffusivity D∥(t) along axons scales as 1 ∕ t in Eq. (8) 

(Fig. 3a), and the fitted bulk diffusivity D∞ correlates with the caliber variation CV(r) in Eq. 

(9) (Fig. 3b). This demonstrates that the diffusion along axons is characterized by the short-

range disorder in 1d, corresponding to randomly positioned beads along axons (Novikov et 

al., 2014; Fieremans et al., 2016; Lee et al., 2020b).

3.5. Results: Diffusion metrics transverse to axons

We compare the contribution of the axon caliber and axonal undulation to the diffusivity D⊥ 
transverse to axons (Lee et al., 2020a): At clinical diffusion times (t ~ δ > 10 ms) of 
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conventional wide-pulse sequences, the apparent diffusivity transverse to axons is dominated 

by the contribution of undulations (Fig. 3c-f). To release the requirement of very short 

diffusion time ~ 1 ms for accurate axon diameter mapping, the modeling of spherically 

averaged signals at multiple diffusion weightings are employed to partially factor out the 

undulation effect (Fig.4).

3.5.1. Diffusivity and axonal undulations—In realistic axons of a mouse brain, the 

simulation result of wide pulse sequences shows that the apparent diffusivity D⊥ transverse 

to axons scales as δ−2 at very long time δ ≳ 50 ms in most axons (Fig. 3c). This scaling is 

consistent with both the undulation and caliber contributions, since

D⊥ ≃ − 1
b ln S ∝

rcal
4 δ ∕ D0

δ2(Δ − δ ∕ 3)
∼ δ−2, Δ = δ .

However, the onset of this scaling depends on the correlation time, Eq. (12). If the caliber 

dominates, the δ−2 scaling will occur for δ ⪢ tD ~ 0.1 ms (Neuman, 1974). However, the 

actual scaling happens at times about 2 orders of magnitude longer. The onset for the 

undulations, δ ⪢ tu ~ 5 ms, as estimated after Eq. (12), is far more consistent with our RMS 

results.

To better understand the length scale of undulations, the undulation amplitude w0 and 

wavelength λ are estimated based on the axonal skeleton (Appendix D) (Fig. 3d). The 

scatter plot of w0 and λ shows positive correlation; in other words, the longer undulation 

wavelength, the stronger undulation amplitude. Furthermore, the slope dw0/dλ ≃ 0.039 and 

the simplified 1-harmonic undulation model in Eq. (D.2) indicate an estimate of the intra-
axon undulation dispersion ≃ 10°, which is about a factor of 2 smaller than the inter-axon 

fiber orientation dispersion ≃ 22°, leading to an overall dispersion angle ≃ (10°)2 + (22°)2 ≃ 
24° (Appendix D) (Ronen et al., 2014; Lee et al., 2019). Interestingly, the inter-axon 

dispersion ~ 22° and overall dispersion ~ 24° are consistent with the numerical calculation 

of time-dependent dispersion at long and short times respectively in (Lee et al., 2019), where 

the same group of axons were analyzed.

Furthermore, the simulated D⊥ is translated to the effective radius rMR measured by MR via 

Eq. (10) and compared with the contribution of axon caliber and axonal undulation, i.e., rcal 

and rund in Eq. (11) respectively (Fig. 3e-f). At very short time δ ~ 1 ms, the MR estimate 

rMR coincides with the contribution of axon caliber rcal; however, at long time δ ~ 100 ms, 

the MR estimate rMR is consistent with the contribution of axonal undulations rund. Finally, 

at clinical time range δ ~ 10 – 50 ms, the contribution of undulations rund shows much 

higher correlation with the MR estimate rMR, compared with the correlation of rMR and rcal 

(the insets of Fig. 3e-f). These observations demonstrate that axonal undulations confound 

the axonal diameter mapping at clinical time range and need to be factored out for an 

accurate diameter estimation.

3.5.2. Spherically averaged signals and axonal diameter mapping—The 

spherically averaged signal S̄ (b) of all axons from a mouse brain scales as 1 ∕ b in Eq. (13) 
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(Fig. 4), and its negative intercept at b → ∞ corresponds to an estimate of radial diffusivity 

D⊥, whose contribution of undulations is partially factored out: On the one hand, at short 

time (t, δ) = (20, 7.1) ms (animal scanner), the S̄ (b) has a negative intercept, indicating a 

D⊥ ≃ 1.6 × 10−4 μm2/ms and an MR-measured radius rMR ≃ 0.72 μm in Eq. (10), which is 

close to the histology-based caliber contribution rcal = 0.79 μm in Eq. (11) and smaller than 

the histology-based undulation contribution rund = 2.15 μm in Eq. (14). The fitted diffusivity 

along axon segments, Da ≃ 0.19 · D0, is unexpectedly low since the variation of local 

diffusivities along axons is not considered in Eq. (13). On the other hand, at longer diffusion 

times (t, δ) = (30, 13) ms and (50.9, 35.1) ms (human scanners), the S̄ (b) has a positive 

intercept, leading to the non-physical, negative D⊥.

The simulation result demonstrates that the requirement of short diffusion time ~ 1 ms for an 

accurate axon size estimation can be partly released by spherically averaging signals.

4. Outlook

Performing MC simulations in realistic cell geometries using the proposed RMS helps to test 

the sensitivity of diffusion MRI to tissue features and validate the biophysical models. RMS 

is an open-source platform for the Monte Carlo simulations of diffusion in realistic tissue 

microstructure. In addition to the examples of diffusion within intra-cellular space, it is also 

possible to perform simulations of diffusion in the extra-cellular space, as well as of the 

exchange between intra- and extra-cellular spaces. The tissue preparation preserving extra-

cellular space in histology is non-trivial, prompting the development of pipelines to generate 

semi-realistic tissue microstructure by packing multiple artificial “cells”, such as MEDUSA 

(Ginsburger et al., 2019) and ConFiG (Callaghan et al., 2020), whose generated 

microgeometry potentially could be transformed to 3d voxelized data, compatible with 

RMS.

Beyond the proposed pipeline, here we provide an outlook for the next generation simulation 

tools. So far, most of the implementations of diffusion simulations focus on the MR 

sequence with radiofrequency pulses of 90° and 180°, such as the spin-echo (Stejskal and 

Tanner, 1965) and stimulated-echo (Tanner, 1970) sequences. To simulate other MR 

sequences, such as the steady-state free precession sequence (McNab and Miller, 2008), it is 

required to combine the diffusion simulation with the Bloch simulator in MR system. 

Furthermore, the generation of accurate cell segmentation for simulations in microscopy-

based geometry is time-consuming and labor-intensive; performing diffusion simulations 

directly in a mesoscopic diffusivity map, obtained via a transformation of the microscopy 

intensity, could largely simplify the validation pipeline — however, such segmentation-less 

simulation must itself be thoroughly validated.

As tissue microstructure imaging with MRI is a vastly expanding research area of 

quantitative MRI, the synergies between microstructure model validation, hardware and 

acquisition techniques have a potential to transform MRI into a truly quantitative non-

invasive microscopy/histology technique, as discussed in (Novikov, 2020). Hence, the 

development of next-generation simulation tools will benefit not only the field of 

microstructural MR imaging, but the whole MRI community.
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5. Conclusions

Numerical simulations in realistic 3d microgeometry based on microscopy data serve as a 

critical validation step for biophysical models, in order to obtain quantitative biomarkers, 

e.g., axonal diameter, the degree of caliber variations and axonal undulations, for potential 

clinical applications. With the help of the proposed RMS pipeline, it is possible to achieve 

fast and accurate simulations of diffusion in realistic tissue microstructure, as well as the 

interplay with other MR contrasts. RMS enables ab initio simulations from realistic 

microscopy data, facilitating model validation and experiment optimization for 

microstructure MRI in both clinical and preclinical settings.
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Appendix

Appendix A. Unbiased simulation of particle-membrane interaction — 

equal-step-length random leap

To largely reduce the computational load of MC simulations, Xing et al. (2013) proposed to 

model the interaction of random walkers and membranes by using the equal-step-length 

random leap (ERL): a step crossing the membrane is canceled, and another direction is then 

chosen to leap until the new step does not cross any membranes.

However, random walkers are effectively repulsed away from the membrane since the step 

encountering the membrane is canceled by the algorithm. This repulsion effect close to the 

membrane in a thickness of the step size δs introduces the bias of diffusivity transverse and 

parallel to the membrane, as discussed below.

Appendix A.1. Bias in the pore size estimation caused by equal-step-length random leap

To understand the origin of the bias caused by ERL, we firstly discuss the particle density 

between two parallel planes, composed of two impermeable membranes with a spacing a. 

Due to the time-reversal symmetry of diffusion, the particle density ρ(h) with a distance h 
the membrane is proportional to the fraction pΩ(h) of the hopping orientation, along which 

particles do not encounter the membrane (blue solid angle in Fig. A.1):
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pΩ(ℎ ≤ δs) =

1
2 d = 1 ,

1 − 1
π cos−1 ℎ

δs d = 2 ,
1
2 1 + ℎ

δs d = 3 ,
pΩ(ℎ > δs) = 1 .

(A.1)

The fact that ρ(h) ∝ pΩ(h) in ERL is demonstrated by simulations of diffusion between two 

parallel planes in 1d, 2d, and 3d in Fig. A.2, where the density ρ(ℎ) is normalized by the 

number of random walkers in simulations, and the step size δs in Eq. (1) is tuned by varying 

the time step δt = 0.1 – 2.5 μs with the intrinsic diffusivity D0 = 2 μm2/ms.

The knowledge of the particle density further enables us to estimate the bias in the pore size 

estimation due to ERL. Considering the diffusion between two parallel planes at x = ±a/2, 

the diffusion signal measured by using narrow-pulse monopolar sequence is given by 

(Callaghan, 1993)

S(q, t) = ∫ ρ0(x)G(x, x′; t) e−iq ⋅ (x − x′)dx dx′ , (A.2)

where q is the diffusion wave vector normal to the plane surface, ρ0(x) is the particle density 

at t = 0, and G is the diffusion propagator, i.e., the probability of a spin at x diffusing to x′ 
during the time t.

In MC simulations, on the one hand, we initialize a homogeneous particle density at t = 0, 

i.e., ρ0(x) = const if x ∈ [−a/2, a/2]. On the other hand, at long times (t ⪢ tD = a2/D0), the 

random walker loses its memory of the initial position and has an equal probability of being 

anywhere between two planes (Callaghan, 1993):

G(x, x′; t ≫ tD) ≃ ρ(x) ∝ pΩ (ℎ(x)) ,

where pΩ(h) is given by Eq. (A.1) with the distance h(x) = a/2 − ∣x∣. Substituting into Eq. 

(A.2), we obtain

S (q, t ≫ tD) ∝ ρ0(q) ⋅ pΩ(q) , (A.3)

where ρ0(q) and pΩ(q) are the corresponding Fourier transform quantities:

ρ0(q) = sinc qa
2 , (A.4)

and

pΩ(q) = 1
2 sinc qa

2 + sinc q ⋅ a
2 − δs , (A.5)

for 1-dimensional parallel planes, and
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pΩ(q) = 1
2 sinc qa

2 ⋅ (J0(qδs) + 1)

− cos(qa ∕ 2)
qa ∕ 2 ⋅ H0(qδs) ,

(A.6)

for 2-dimensional parallel planes with H0(·) the Struve function and J0(·) the Bessel function 

of the first kind, and

pΩ(q) = 1
2 sinc qa

2 + sinc qδs
2 ⋅ sin (q ⋅ (a − δs) ∕ 2)

qa ∕ 2 , (A.7)

for 3-dimensional parallel planes. Substituting Eqs. (A.4), (A.5), (A.6) and (A.7) into Eq. 

(A.3) and applying Taylor series for qδs ⪡ qa ⪡ 1, we have

−ln S
S0 t ≫ tD

≃

1
12q2 ⋅ a2 − aδs d = 1 ,

1
12q2 ⋅ a2 − 2

πaδs d = 2 ,

1
12q2 ⋅ a2 − 1

2aδs d = 3 ,

where S 0 ≡ S ∣q→0.

Using the definition of the apparent diffusivity, D ≡ − 1
b  ln S

S0
 with b = q2t in narrow pulse, 

the diffusivity transverse to parallel planes in simulations of ERL is given by D(t) = (a′)2/

(12t), where

a − a′
2 ≡ δr ≃

1
4δs d = 1 ,
1

2πδs d = 2 ,
1
8δs d = 3 .

(A.8)

Comparing with the unbiased solution D(t) = a2/(12t) (Callaghan, 1993), the bias of the pore 

size estimation due to ERL can be considered as an effective pore shrinkage, and the δr 
serves as the shrinkage distance from the membrane. To demonstrate Eq. (A.8), we 

performed MC simulations of diffusion between two parallel planes in 1d, 2d, and 3d 
(implemented by using ERL), as shown in Fig. A.3, where the step size δs is tuned by 

varying the time step δt, as in Fig. A.2.

Appendix A.2. Bias in the diffusivity parallel to the membrane caused by equal-step-
length random leap

Considering the diffusion in 3d parallel to a membrane and its simulation implemented with 

ERL, the random walker close to the membrane has a higher probability to leap parallel to 

than perpendicular to the membrane due to the repulsive effect of ERL in Appendix A.1. As 

a result, the diffusion displacement as well as the diffusivity D∥(t) parallel to the membrane 

are slightly overestimated.
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Fig. A.1. The solid angle of the hopping orientation, along which particles do not encounter the 
membrane (blue).
The step size δs and the distance h to the membrane (h ≤ δs) are shown in a 1d, b 2d, and c 
3d. The figure is adapted from (Fieremans and Lee, 2018) with the permission from Elsevier.

Fig. A.2. Inhomogeneous particle density close to the membrane due to equal-step-length 
random leap.
For elastic collisions, random walkers can not only leap away from the membrane but also 

leap toward and be reflected by the membrane. However, for the equal-step-length random 
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leap, only the steps jumping away from the boundary are allowed; this repulsive effect 

results in lower particle density close to the membrane in a thickness of the step size δs 
(indicated by vertical lines). The theoretical prediction of this effect (left column) is 

consistent with the simulation result (right column) between two parallel planes in a distance 

a in 1d, 2d and 3d.

Fig. A.3. The bias of diffusivity transverse to membranes due to equal-step-length random leap.
The inhomogeneous particle density due to equal-step-length random leap causes the bias in 

diffusivity D(t) transverse to membranes and subsequently the pore shape estimation, for 

example, the distance between two parallel planes. The ground truth of the planes distance is 

a = 1 μm, and its biased estimation based on D(t) is a′. This bias a – a′ is roughly 

proportional to the step size δs.

Given that a random walker close to a membrane with a distance h ≤ δs leaps into a direction 

of a polar angle θ and an azimuthal angle ϕ (spherical coordinate with zenith direction along 

x-axis), its diffusion displacements parallel to the membrane (along, e.g., z-axis) is δz = δs 
sin θ cos ϕ. Averaging over all possible directions allowed by the ERL, the second order 

cumulant of δz is given by
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〈δz2〉Ω = ∫cos−1( ℎ
δs )

0 ∫0
2π

(δs sin θ cos ϕ)2sin θ dθ
1 + ℎ

δs

dϕ
2π

= 1
6(2δs2 + ℎδs − ℎ2), ℎ ≤ δs .

Further averaging over the thickness δs surrounding the membrane with the consideration of 

the inhomogeneous density ρ(h) ∝ pΩ(h) in 3d in Eq. (A.1), we obtain the second order 

cumulant of δz, given by

〈δz2〉ℎ ≤ δs =
∫0

δs〈δz2〉Ω ⋅ pΩ dℎ

∫0
δspΩ dℎ

= 13
36δs2 ,

leading to a distinct diffusivity parallel to the membrane for walkers close to the membrane:

D0′ =
〈δz2〉ℎ ≤ δs

2δt = 13
12D0 ,

where the step size in Eq. (1) in 3d is applied.
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Fig. B.1. Permeability calculated based on the particle density around the membrane, which 
interacts with random walkers through rejection sampling (RS) or elastic collision (EC).
When a random walker encounters a membrane of permeability κ, the permeation 

probability is determined by Eq. (3), whose applicability for RS and EC is demonstrated by 

permeability calculated based on the simulated particle density around two parallel planes 

(membranes) separated by a distance a = 1 μm in 1d, 2d and 3d. To create a density impulse 

at time t = 0, random walkers are initialized at x = 0 with membranes at xM = ±a/2. The 

calculated permeability is consistent with the theoretical value input in Eq. (3). To show the 

trend of data without distorting the tendency, the curve of κ over t is smoothed by applying a 

Savitzky-Golay filter of 11-point cubic polynomial.
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Fig. B.2. The bias of diffusivity parallel to membranes due to rejection sampling.
The algorithm of rejecting steps toward a membrane due to rejection sampling causes the 

bias in diffusivity D∥ parallel to the membrane (e.g., two parallel planes in 3d). This bias is 

roughly proportional to the step size δs and closely related to the surface-to-volume ratio 

S/V of the geometry.

Random walkers surrounding the membrane (h ≤ δs) have a diffusivity D0′  parallel to the 

membrane and a (density-weighted) volume fraction

f′ = ∫0
δs

ρ(ℎ) ⋅ S
V dℎ

≃ ∫0
δs

pΩ(ℎ) ⋅ S
V dℎ = 3

4 ⋅ S
V δs,

where S
V  is the surface-to-volume ratio. Similarly, random walkers away from the membrane 

have a diffusivity D0 parallel to the membrane and a volume fraction f = 1 − f′. Their 

volume-weighted sum yields the overall diffusivity parallel to the membrane, given by

D∥ = f ⋅ D0 + f′ ⋅ D0′
≃ D0 ⋅ 1 + 1

16
S
V δs > D0 , (A.9)

where the correction term is negligible when a small step size is applied.

The above Eq. (A.9) was demonstrated by performing MC simulations of diffusion between 

two parallel planes in 3d (implemented by using ERL), as shown in Fig. A.4, where the step 

size δs is tuned by varying the time step δt, as in Fig. A.2.
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Appendix B. Unbiased simulation of particle-membrane interaction — 

rejection sampling

Another alternative of elastic collision is rejection sampling (Ford and Hackney, 1997; 

Waudby and Christodoulou, 2011; Nguyen et al., 2018; Palombo et al., 2018): a step 

crossing a membrane is canceled, and the random walker does not move for the step. This 

simple approach properly maintains a homogeneous particle density in simulations of 

diffusion in the substrate composed of impermeable membranes (Szymczak and Ladd, 2003) 

and can be generalized to the case of permeable membranes as follows.

Fig. A.4. The bias of diffusivity parallel to membranes due to equal-step-length random leap.
The inhomogeneous particle density due to equal-step-length random leap causes the bias in 

diffusivity D∥ parallel to the membrane (e.g., two parallel planes in 3d). This bias is roughly 

proportional to the step size δs and closely related to the surface-to-volume ratio S/V of the 

geometry.

Appendix B.1. Generalization of rejection sampling to the case of permeable membranes

Here, we use the theoretical framework similar to that in Appendix 1 and Figure 7 of 

(Fieremans et al., 2010): Given that, in 1d, a permeable membrane is positioned at xM = 0, 

and the intrinsic diffusivity at both sides is D0, the probability of a random walker showing 

at position xP on the right side of the membrane at time t + δt, such that xP − xM < δs, is 

related to the probabilities of previous steps at time t, i.e.,

P(xP , t + δt) = 1
2P(xP + δs, t) + PT

2 P(xP − δs, t) + 1 − PT
2 P(xP , t) , (B.1)

where δt is the time step, δs is the step size in Eq. (1) in 1d, PT is the permeation probability, 

and P( ⋅ ) is the probability density function (PDF) of the particle population at a given 

position and time. Notably, the third right-hand-side term in Eq. (B.1) corresponds to the 
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canceled step without update due to the rejection sampling. This minor difference from the 

Eq. [40] in (Fieremans et al., 2010) leads to slightly different result in the permeation 

probability.

The PDF obeys the diffusion equation,

D0∂x2P = ∂tP ,

and the boundary condition at the permeable membrane of permeability κ is given by

κ (P− − P+) = − D0∂xP−, D0∂xP− = D0∂xP+ .

Substituting into the Taylor expansion of Eq. (B.1) at xM and t and ignoring higher order 

terms, we obtain the permeation probability specifically for the implementation of rejection 

sampling:

PT
1 − PT

= κδs
D0

,

similar to the functional form in Eq. (C.1), except that PT is related to the step size, rather 

than the particle’s distance to the membrane. Likewise, the above expression of PT can be 

generalized in 2d and 3d by using Eqs. (2a) and (C.7) in Appendix C.

It has been shown that both rejection sampling and elastic collision maintain homogeneous 

particle density around membranes (Szymczak and Ladd, 2003). Furthermore, to 

demonstrate the permeation probability in Eq. (3) for both interactions, we performed MC 

simulations of diffusion between two parallel planes separated by a distance a = 1 μm in 1d, 

2d, and 3d (implemented by using rejection sampling or elastic collision). We created a 

localized density source of Dirac delta function at time t = 0, i.e., ρ0(x) = δD(x), half-way 

between two permeable membranes of permeability = 0.1 μm/ms at xM = ±a/2. Then we 

calculated the permeability κ based on the particle density ρ(x) around membranes (Powles 

et al., 1992; Fieremans et al., 2008):

− D0
+ ⋅ ∂xρ(xM

+ ) = − D0− ⋅ ∂xρ(xM− ) = κ ⋅ [ρ(xM− ) − ρ(xM
+ )] ,

where D0
+ and D0

− were diffusivities on the right and left side of the membrane, and xM
+  and 

xM−  were positions at the right and left side of the membrane. Here we applied 2 × 107 

random walkers diffusing over 1000 steps with a step duration δt = 4 × 10−4 ms and a step 

size given by Eq. (1), where D0 = D0
+ = D0

− = 0.5 μm2 ∕ ms.

For both rejection sampling and elastic collision, the permeability calculated based on the 

particle density is consistent with the theoretical value input in Eq. (3) (Fig. B.1). Ideally, the 

calculated permeability is independent of diffusion time, and the spurious permeability time-

dependence at short time is, to the best of our understanding, caused by the discretization 
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error due to the small number of steps, when too few particles reach the membrane and 

contribute to the flux.

Appendix B.2. Bias in the diffusivity parallel to the membrane caused by rejection 
sampling

In this section, we will follow the framework in Appendix A.2 to evaluate the bias in 

diffusivity parallel to the membrane due to rejection sampling. Considering that the diffusion 

around a membrane in 3d obeys the rejection sampling, the random walker cancels some 

steps (without updates) toward but not completely transverse to the membrane, leading to 

smaller diffusion displacement cumulant as well as diffusivity D∥(t) parallel to the 

membrane.

Given that a random walker close to a membrane with a distance h ≤ δs leaps into a direction 

of a polar angle θ and an azimuthal angle ϕ (spherical coordinate with zenith direction along 

x-axis), its diffusion displacements parallel to the membrane (along, e.g., z-axis) is δz = δs 
sin θ cos ϕ. Averaging over all possible directions allowed by the rejection sampling, the 

second order cumulant of δz is given by

〈δz2〉Ω = ∫cos−1( ℎ
δs )

0 ∫0
2π

(δs sin θ cos ϕ)2sin θ dθ dϕ
4π

= δs2
12 2 + 3 ℎ

δs − ℎ
δs

3
, ℎ ≤ δs .

Further averaging over the thickness δs surrounding the membrane with a homogeneous 

particle density maintained by rejection sampling, we obtain the second order cumulant of 

δz, given by

〈δz2〉ℎ ≤ δs = ∫0
δs

〈δz2〉Ω ⋅ pΩ
dℎ
δs = 13

48δs2 ,

leading to a distinct diffusivity parallel to the membrane for walkers close to the membrane:

D0′ =
〈δz2〉ℎ ≤ δs

2δt = 13
16D0 ,

where the step size in Eq. (1) in 3d is applied.

Random walkers surrounding the membrane (h ≤ δs) have a diffusivity D0′  parallel to the 

membrane and a volume fraction f′ = S
V δs. Similarly, random walkers away from the 

membrane have a diffusivity D0 parallel to the membrane and a volume fraction f = 1 − f′. 

Their volume-weighted sum yields the overall diffusivity parallel to the membrane, given by

D∥ = f ⋅ D0 + f′ ⋅ D0′
≃ D0 ⋅ 1 − 3

16
S
V δs < D0 , (B.2)

Lee et al. Page 25

J Neurosci Methods. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the correction term is negligible when a small step size is applied.

The above Eq. (B.2) was demonstrated by performing MC simulations of diffusion between 

two parallel planes in 3d (implemented by using rejection sampling), as shown in Fig. B.2, 

where the step size δs is tuned by varying the time step δt.

Appendix C. Unbiased simulation of membrane permeability

Here we introduce the theoretical background of unbiased simulations of permeable 

membranes and provide a first order correction of permeation probability by considering the 

particle density flux around membranes. The theoretical results extend the applicability of 

related simulation models and offer a guide to choose simulation parameters. In this section, 

the particle density at position x is denoted by ρ(x).

Appendix C.1. The physics of the permeability correction: Equal molecular concentration

The discussion in this section follows the logic of the Appendix B in our previous work (Lee 

et al., 2020c). Given that a random walker encounters a membrane of permeability κ, the 

permeation probability P through the membrane is related with the distance h between the 

random walker and the encountered membrane when h ≤ δs, with δs the step size in Eq. (1), 

D0 the intrinsic diffusivity and δt the time step in d dimensional space, as derived in 

Appendix A of (Fieremans et al., 2010), Eq. (43):

P
1 − P = 2κℎ

D0
, (C.1)

which is a well-regularized functional form of P even for a highly permeable membrane: As 

expected, the limit κ → ∞ corresponds to the probability P → 1.

In actual implementations, to reduce the computational load due to the calculation of the 

distance h from a random walker to the encountered membrane, the distance h could be 

approximated by the step size δs, by averaging the particle density flux j(h) around the 

membrane over h ≤ δs. To do so, a low probability is assumed (P ⪡ 1), such that the 

denominator in the left-hand-side term in Eq. (C.1) is about 1, i.e., P(h) ≃ 2κ0h/D0, where 

the permeability is redefined (κ → κ0) since the approximate relation is not exact. 

Averaging the particle density flux j(h) is equivalent to averaging the permeation probability 

P(h) because j ∝ P, leading to

P (ℎ) P (δs) ≃
∫0

δsP (ℎ) pΩ(ℎ ≤ δs) dℎ

∫0
δspΩ(ℎ ≤ δs) dℎ

=
κ0δs
D0

⋅ Cd ≪ 1 ,

where pΩ = 1 − pΩ is the fraction of directions encountering the membrane, corresponding to 

the red solid angle in Fig. A.1, and pΩ is defined in Eq. (A.1).

In this case, the permeation probability is given by Eq. (2a), where its presumption, i.e., P ⪡ 
1, yields a condition to be satisfied:
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κ0 ≪
D0

2dδt ⋅ 1
Cd

,

indicating that using a short time step δt is required in simulations of exchange through a 

highly permeable membrane (large κ0); in this case, the genuine permeability κ is close to 

the input value κ0.

For larger κ, the input κ0 would be significantly different from the genuine value κ in 

simulations while extending the approximation of h by δs. We will show that averaging over 

h ≤ δs simply renormalizes the input κ0 entering Eq. (2a), leading to a genuine κ in Eq. 

(C.7) given below. The idea behind is that averaging over δs affects not just the permeation 

probability but also the particle flux density. We here demand the Fick’s first law satisfying 

the permeation probability in Eq. (2a) and derive a correction factor renormalizing the 

permeability κ0 → κ.

The particle density flux from left to right (1 → 2) is given by

j1 2 ≃ (2dCd)−1 ⋅ 〈ρ1〉 ⋅ (S δs1) ⋅ P1 2
S ⋅ δt , (C.2)

where S is the surface area, P1→2 is the permeation probability from left to right given by 

Eq. (2a), ⟨ρ1⟩ is the particle density averaged over the layer (of thickness δs1) on the left 

side of the membrane, and (2dCd)−1 is the mean fraction of the hopping orientation 

(averaged over δs1 as well) along which particles encounter the membrane (Fieremans and 

Lee, 2018).

Substituting Eq. (2a) into Eq. (C.2) and using (δs1)2/δt = 2dD1, we obtain j1→2 ≃ κ0 · ⟨ρ1⟩. 
Similarly, the particle density flux from right to left side is j2→1 ≃ −κ0 · ⟨ρ2⟩. Then the net 

particle flux density is given by

j = j1 2 + j2 1 ≃ κ0 ⋅ (〈ρ1〉 − 〈ρ2〉) . (C.3)

Given that the particle density right at left and right surface of the membrane is ρ0,1 and ρ0,2 

(without spatial averaging), the net particle density flux is (by definition of the genuine κ)

j = κ ⋅ (ρ0, 1 − ρ0, 2) (C.4)

= − D1 ⋅ ∂xρ0, 1 = − D2 ⋅ ∂xρ0, 2 , (C.5)

where κ is the genuine permeability that we would like to achieve with simulations, different 

from the input value κ0, and ∂x ρ0,1 and ∂x ρ0,2 are density gradients right at left and right 

surface of the membrane.

Lee et al. Page 27

J Neurosci Methods. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here we average the density ⟨ρ1⟩ (and ⟨ρ2⟩) over the layer on the left (and right) side of the 

membrane, of thickness δs1 (and δs2), and equate the flux density in Eq. (C.3) to that in Eq. 

(C.4) to obtain the genuine permeability κ.

Approximating the particle density (ρ1, ρ2) variation close to the membrane with a linear 

function of the distance from the membrane, we have

ρ1(x) ≃ ρ0, 1 + ∂xρ0, 1 ⋅ x, ρ2(x) ≃ ρ0, 2 + ∂xρ0, 2 ⋅ x .

Considering the fraction pΩ(x) of the hopping orientation along which particles encounter 

the membrane, as shown in Fig. A1 in (Fieremans and Lee, 2018), the particle density 

averaged within the thickness of step size is given by

〈ρ1〉 =
∫−δs1

0 ρ1(x)pΩ(x) dx

∫−δs1
0 pΩ(x) dx

= ρ0, 1 − ∂xρ0, 1 ⋅ δs1 ⋅ Cd
2 , (C.6a)

〈ρ2〉 =
∫0

δs2ρ2(x)pΩ(x) dx

∫0
δs2pΩ(x) dx

= ρ0, 2 + ∂xρ0, 2 ⋅ δs2 ⋅ Cd
2 , (C.6b)

where

pΩ(x) =
1 − pΩ( ∣ x ∣ ≤ δs1) x < 0 ,
1 − pΩ( ∣ x ∣ ≤ δs2) x ≥ 0 ,

and pΩ is defined in Eq. (A.1).

Substituting Eqs. (C.3) and (C.5)-(C.6) into Eq. (C.4) yields

κ = κ0
1 − α > κ0 , (C7)

where

α = 1
2κ0

δs1
D1

+ δs2
D2

⋅ Cd

= P1 2 + P2 1
2 .

(C.8)

Interestingly, the correction factor α is the permeation probability averaged for both 

directions, i.e., α ∈ [0, 1]. Therefore, the genuine permeability κ in Monte Carlo simulations 

of any dimension d is always larger than the input value κ0, as in Eq. (C.7), where the 

correction factor α is essential especially when simulating the diffusion across a highly 

permeable membrane. To minimize α and reduce the bias, a smaller time-step and larger 

intrinsic diffusivity should be used.
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Fig. C.1. Non-zero density flux close to the membrane leads to the bias in membrane 
permeability.
The particle density across a permeable membrane has an offset due to the finite 

permeability. The input permeability κ0 is related to the difference of particle density (⟨ρ1⟩, 
⟨ρ2⟩) averaged within the thickness of the hopping step size (δs1, δs2); however, the genuine 

permeability κ, to be achieved in simulations, is related to the difference of the particle 

density (ρ0,1, ρ0,2) at the membrane. As a result, the genuine permeability κ is always larger 

than the input value κ0. To clarify, only density flux to the right is plotted in this figure. In 

actual simulations, the balance of the density flux in both directions yields a homogeneous 

particle density in each compartment.

Practically, to simulate a membrane of permeability κ, we have to tune the input 

permeability κ0 for the permeation permeability in Eq. (2a) based on

κ0 = κ
1 + κ ⋅ (α ∕ κ0) ,

where the right-hand side is independent of κ0 due to Eq. (C.8). Substituting the above 

relation into Eq. (2a) yields the corrected permeation probability in Eq. (3). The above 

correction ensures the genuine permeability κ in simulations.

Furthermore, the corrected permeation probability in Eq. (3) should still be ⪡ 1, leading to 

the following constraint, as a guidance of choosing simulation parameters:

κ ≪ 2
dδt ⋅ 1

Cd
⋅

D1D2
∣ D1 − D2 ∣ .

In other words, Eq. (3) works particularly well for a small time-step δt, large intrinsic 

diffusivities D1D2, and similar intrinsic diffusivities between compartments (D1 ≃ D2).
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Appendix C.2. General case: Different spin concentration at both sides of the membrane

In the previous section, the medium is assumed to have the same spin concentration in all 

compartments. However, a lower spin concentration is expected for some tissue 

microstructure, such as myelin water. To generalize for different spin concentrations in each 

compartment, the permeation probability in Eq. (2a) is re-written as

P1 2 ≃ κ0δs1
D1

⋅ Cd ⋅ c2
c1

λ
, (C.9a)

P2 1 ≃ κ0δs2
D2

⋅ Cd ⋅ c2
c1

λ − 1
, (C.9b)

where c1 and c2 are spin concentrations over the left and right sides of the membrane, and λ 
∈ [0, 1] is an exponent determined later. It is worthwhile to notice that the probability ratio 

P1 2 ∕ P2 1 = c2 D2 ∕ c1 D1 is maintained to ensure the particle density equilibrium for 

all diffusion times.

Similar to the derivation in previous section, substituting Eq. (C.9) into Eq. (C.2) and 

calculating j1→2 and j2→1, we obtain

j = j1 2 + j2 1

≃ κ0 ⋅ 〈ρ1〉 ⋅ c2
c1

λ
− 〈ρ2〉 ⋅ c2

c1

λ − 1
. (C.10)

Considering the ratio c2/c1 of spin concentrations, the net particle flux density is given by

j = κ ⋅ ρ0, 1 ⋅ c2
c1

λ
− ρ0, 2 ⋅ c2

c1

λ − 1
(C.11)

= − D1∂xρ0, 1 = − D2∂xρ0, 2 , (C.12)

where the unbiased permeability κ is re-defined accordingly.

Substituting Eqs. (C.6), (C.10) and (C.12) into Eq. (C.11) yields

κ = κ0
1 − αλ

, (C.13)

where

αλ = 1
2κ0

δs1
D1

⋅ c2
c1

λ
+ δs2

D2
⋅ c2

c1

λ − 1
⋅ Cd

= P1 2 + P2 1
2 .

(C.14)
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The choice of λ is essential not only for the generalization of permeability definition, as in 

Eqs. (C.9)-(C.11), but also for the permeability bias in Eq. (C.13). On the one hand, to 

maintain the same permeability definition for all membranes in the medium, we can fix λ as 

a constant, e.g., 0, 1/2 or 1. On the other hand, to minimize the correction factor αλ, we can 

choose the λ based on

λ = arg min
λ ∈ [0, 1]

(αλ)

= 1 +
c2 D2
c1 D1

−1
,

which is well-regularized for even extreme cases, e.g., c1 = 0 or c2 = 0.

Appendix C.3. Alternative approach for simulations of permeable membrane

Instead of assigning a nominal permeability κ for a permeable membrane, Baxter and Frank 

(2013) defined the permeation probability based on the spin concentration (c1, c2) and 

intrinsic diffusivity (D1, D2) over the left and right side of the membrane:

P1 2 = c2 D2
c1 D1

, (C.15a)

P2 1 = 1 , (C.15b)

where the left side compartment 1 is a “high-flux medium”, compared with the right side 

compartment 2, i.e., c1 D1 ≥ c2 D2. This approach has been applied in simulations of, e.g., 

the exchange between intra-/extra-axonal water an myelin water (Harkins and Does, 2016) 

and the water exchange between intra-axonal cytoplasm and mitochondria (Lee et al., 

2020b). It seems that this method introduces neither adjustable parameters for membrane 

permeability nor particle density transition over the membrane; however, this is true only for 

infinitely small time-step δt. For finite δt, a δt-dependent permeability may emerge in 

simulations.

The derivation of this extra permeability is similar to those in previous sections. Substituting 

Eqs. (C.6) and (C.15) into Eq. (C.2), the particle density flux for both directions is given by

j1 2 ≃ κ0′ ⋅ ρ0, 1 − ∂xρ0, 1 ⋅ δs1 ⋅
Cd
2 ⋅

c2
c1

,

j2 1 ≃ − κ0′ ⋅ ρ0, 2 + ∂xρ0, 2 ⋅ δs2 ⋅
Cd
2 ,

where

κ0′ =
D2

2d ⋅ δt ⋅ 1
Cd

.

Therefore, the net particle density flux is
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j = j1 2 + j2 1

≃ κ0′ ⋅ ρ0, 1 ⋅ c2
c1

− ρ0, 2 − Cd
2 ∂xρ0, 1 ⋅ δs1 ⋅ c2

c1
+ ∂xρ0, 2 ⋅ δs2 , (C.16)

which indicates the equilibrium condition at t → ∞ limit:

j 0, ∂xρ0, 1 0, ∂xρ0, 2 0,
ρ0, 1
ρ0, 2

c1
c2

.

Considering the ratio of spin concentrations, we have the net particle density flux

j = κ′ ⋅ ρ0, 1 ⋅ c2
c1

− ρ0, 2 (C.17)

= − D1 ⋅ ∂xρ0, 1 = − D2 ⋅ ∂2ρ0, 2 , (C.18)

where κ′ is the effective permeability due to the finite time-step. Substituting Eqs. (C.16) 

and (C.18) into Eq. (C.17) yields

κ′ =
κ0′

1 − β ∝ 1
δt , (C.19)

where

β = 1
2

c2 D2
c1 D1

+ 1

=
P1 2 + P2 1

2 .

Interestingly, similar to α in Eq. (C.8) and αλ in Eq. (C.14), the correction factor β ∈ [0.5, 

1] is also the permeation probability averaged for both directions.

For an infinitely small time-step (δt → 0), the effective permeability is infinitely large (κ′ 
→ ∞), as predicted by Eq. (C.19). In this case, the finite density flux j in Eq. (C.17) 

indicates no particle density transition over the membrane, i.e. ρ0,1/ρ0,2 → c1/c2. Similarly, 

when c1 D1 ∕ c2 D2 = 1 in Eq. (C.15), the P1→2 = 1 leads to an infinitely large κ′, based on 

Eq. (C.19), and ρ1/ρ2 → c1/c2 due to the finite density flux j in Eq. (C.17).

In contrast, when P1→2 < 1, a finite time-step δt results in an extra effective permeability κ′, 

hindering the permeation through membranes. To reduce this unwanted effect, the applied 

time step needs to be small. For example, considering a multi-compartmental system in 1d, 

the size and intrinsic diffusivity in the i-th compartment are li and Di. Then we can ignore 

the hindrance through membranes caused by κ′, if the time-step is sufficiently small, such 

that
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κ′ ≫ max
Di
li

,

where Di/li is the intrinsic permeability of the i-th compartment (Novikov et al., 2011). 

However, in 2d and 3d, the compartment length scale li could be ill-defined, complicating 

the choice of time step δt.

Appendix D. Estimation of the undulation amplitude and wavelength from 

a 3d axonal skeleton

In this Appendix, we will introduce how to estimate the length scale of undulation amplitude 

and wavelength based on a 3d axonal skeleton.

Considering an axonal skeleton aligned to its main axis (z-axis), the skeleton can be 

quantified as l = w + zz, with w the deviation of the skeleton from the main axis. We can 

decompose the axonal skeleton with multiple harmonics (Lee et al., 2020a):

w = ∑
n

wxn cos(knz + ϕxn) x + wyn cos(knz + ϕyn) y ,

where, for the n-th harmonic (n ∈ ℕ), wxn and wyn are the undulation amplitudes along x- 

and y-axes, and ϕxn and ϕyn are the phases. Here we focus on the case of kn = n · 2π/Lz 

(with Lz the axonal length along z) such that all harmonics are orthogonal. This allows us to 

define a Euclidean measure of the undulation amplitude, given by

w0 ≡ ∑
n

w0n
2 , w0n ≡ wxn2 + wyn2 .

The values of wxn and wyn can be estimated by applying discrete cosine transform to w, 

yielding a length scale of the undulation amplitude ~ w0.

Furthermore, the projection factor transverse to the main direction has been shown to be 

(Lee et al., 2020a)

〈sin2 δθ〉z ≃ 2
ξ2 ∑

n

πw0n
λn

2
, ξ ≃ 1 + ∑

n

πw0n
λn

2
≳ 1 , (D.1)

where δθ = δθ(z) is the angle between the individual axon’s skeleton segment at z and its 

main axis, ⟨…⟩z is the average along each axon’s main axis, and λn = 2π/kn is the 

corresponding wavelength. To have a rough estimate of the undulation wavelength, we 

impose a simplified 1-harmonic model (n ≤ 1) to Eq. (D.1), leading to

λ ≃ πw0
2

〈sin2 δθ〉z
, (D.2)
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where we approximate ξ ≃ 1 due to the small w0/λ ~ 0.02 in realistic axons of a mouse 

brain (Lee et al., 2020a).

Note that Eq. (D.2) should not generally be interpreted as a proportionality relation between 

the undulation wavelength and its amplitude, since each axon can have its own dispersion 

δθ(z). However, empirically, this proportionality seems to be valid based on the high 

correlation between these two geometric quantities in Fig. 3d. In other words, the slope 

dw0 ∕ dλ ≃ 〈sin2δθ〉z
1 ∕ 2 ∕ π 2  seems to be sufficiently axon-independent. From the 

estimated slope in that plot, we find the intra-axon undulation dispersion 

〈δθ2〉 ≃ 〈sin2δθ〉z
1 ∕ 2 ≈ 10°

, which is about a factor of 2 smaller than the inter-axon fiber 

orientation dispersion 〈θ̄2〉 ≃ 22°
 estimated from histology (Ronen et al., 2014; Lee et al., 

2019). By using the Rodrigues’ rotation formula and the small angle approximation, it is 

straightforward to combine the two contributions and estimate the overall dispersion angle 

〈θ2〉 ≃ 〈θ̄2〉 + 〈δθ2〉 ≈ 24°
. This means that the “Standard Model” estimates of dispersion 

(Novikov et al., 2018; Dhital et al., 2019) is dominated by the inter-axonal contribution, in 

agreement with the Standard Model assumptions.
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Fig. 1. Benefiting from advances in microscopy techniques and from increases in computational 
power, the research focus of diffusion simulations has gradually switched to 3-dimensional tissue 
microgeometries.
Realistic white matter axons in (Lee et al., 2020b) are examples of voxelized simulation 

substrates used in RMS. The figure is adapted from (Chin et al., 2002; Xu et al., 2018; 

Nguyen et al., 2018; Palombo et al., 2019; Lee et al., 2020b) with permission from Wiley, 

Elsevier, and Springer Nature.
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Fig. 2. In the voxelized geometry, a random walker has at most three interactions with 
membranes in each step.
The simulation of diffusion in 3d voxelized cell geometry can be simplified as at most three 
interactions between a random walker and membranes in each step, when the step size is 

smaller than the voxel size; the interactions include either an elastic collision with or a 

permeation through the membrane. This simplification is similar to the concept of the corner 

reflector (three consecutive coordinate reflections send vector x → −x, after which no wall 

can be encountered within the corner, representing a given voxel), which has been applied to 

radar sets, glass prisms, and bicycle reflectors.
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Fig. 3. Simulated apparent diffusivity parallel and transverse to 227 realistic axons segmented 
from a mouse brain corpus callosum.
a-b In the narrow pulse limit, the simulated time(t)-dependent diffusivity D∥(t) along axons 

scales as 1 ∕ t in Eq. (8), and its bulk diffusivity D∞ correlates with the caliber variation 

CV(r) via Eq. (9). c In the wide pulse limit (t = δ), the simulated diffusivity D⊥(δ) transverse 

to axons scales as δ−2 (dashed line) at very long times δ ≳ 50 ms. d Based on the analysis of 

realistic axonal skeleton (Appendix D), the estimated undulation wavelength λ positively 

correlates with the undulation amplitude w0. e-f Translating the simulated D⊥ into an 

effective radius rMR measured by MR via Eq. (10), the value of rMR is compared with the 

Lee et al. Page 40

J Neurosci Methods. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contributions of caliber variations and undulations, rcal and rund in Eq. (11) respectively. The 

Pearson’s correlation coefficient R of rMR and each contribution is also shown as a function 

of time δ (insets). The result in panel b is similar to Fig. 2d in (Lee et al., 2020b), whereas 

the short T2 and slow diffusivity in mitochondria are ignored here to focus on the effect of 

axonal shape. The results in panels c and e-f are similar, but not identical, to the ones 

obtained using ERL algorithm in Fig. 7 of (Lee et al., 2020a). Here, these simulations were 

re-done using elastic collision with impermeable membranes, and the estimation of 

undulation amplitude and wavelength is purely based on the geometry of axonal skeleton, as 

opposed to using ERL in simulations and fitting a 1-harmonic undulation model to simulated 

D⊥ with fit parameters w0 and λ in (Lee et al., 2020a). The effective theory parameters and 

scaling relations are essentially the same for both MC implementations (elastic collision vs 

ERL) because only diffusion simulations within impermeable cells were performed.
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Fig. 4. Simulated spherically averaged signal of all 227 realistic axons segmented from a mouse 
brain corpus callosum.
The simulated spherically averaged signal S̄(b) of all axons scales as 1 ∕ b in Eq. (13), and 

its negative intercept at b → ∞ indicates an estimate of diffusivity D⊥ transverse to axons. 

For (t, δ) = (20, 7.1) ms (animal scanner), the negative intercept of S̄(b) corresponds to a D⊥ 
≃ 1.6 × 10−4 μm2/ms and an MR-measured radius rMR ≃ 0.72 μm based on Eq. (10); 

however, for (t, δ) = (30, 13) and (50.9, 35.1) ms (human scanner), the positive intercepts of 

S̄(b) leads to the non-physical, negative D⊥. The MR-measured radius rMR at (20, 7.1) ms is 

close to the caliber contribution from histology, rcal = 0.79 μm in Eq. (11), and much smaller 

than the undulation contribution from histology, r und = 2.15 μm in Eq. (14), indicating that 

the undulation contribution is factored out by orientational average. The result of left panel 

is similar, but not identical, to the ones obtained using ERL algorithm in Fig. 8g of (Lee et 

al., 2020a). Here, these simulations were re-done using elastic collision with impermeable 

membranes. The effective theory parameters and scaling relations are essentially the same 

for both MC implementations because only simulations within impermeable axons were 

performed.
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