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Abstract

Background: Clinical use of breast cancer risk prediction requires simplified models. We
evaluate a simplified version of the validated Rosner-Colditz model and add percent
mammographic density (MD) and polygenic risk score (PRS), to assess performance from ages
45-74. \We validate using the Mayo Mammaography Health Study (MMHS).

Methods: We derived the model in the Nurses’ Health Study (NHS) based on: MD, 77SNP PRS
and a questionnaire score (QS) (lifestyle and reproductive factors). 2799 invasive breast cancer
cases were diagnosed from 1990-2000. MD (using Cumulus software) and PRS were assessed in a
nested case-control study. We assess model performance using this case-control data set and
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evaluate 10-year absolute breast cancer risk. The prospective MMHS validation dataset includes
21.8% of women age <50, and 434 incident cases identified over 10 years of follow-up.

Results: In the NHS, MD has the highest odds ratio (OR) for 10-year risk prediction: OR per sp
=1.48 (95% CI 1.31 - 1.68), followed by PRS, OR per sp = 1.37 (95% CI 1.21 - 1.55) and QS, OR
per sD = 1.25 (95% CI 1.11 - 1.41). In MMHS, the AUC adjusted for age+MD+QS 0.650; for age
+MD+QS+PRS 0.687, and the NRI was 6% in cases and 16% in controls.

Conclusion: A simplified assessment of QS, MD and PRS performs consistently to discriminate
those at high 10-year breast cancer risk.

Impact: This simplified model provides accurate estimation of 10-year risk of invasive breast
cancer that can be used in a clinic setting to identify women who may benefit from
chemopreventive intervention.
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Introduction

Breast cancer risk prediction tools are needed to more appropriately stratify risk for women
undergoing routine mammographic screening. This demands tools that are easy to use, do
not disrupt routine clinical practice, and reflect current science in understanding
contributions of factors driving breast cancer risk. Studies show that measures of
mammographic breast density (MD), polygenic risk score (PRS), and modifiable and non-
modifiable “life course risk factors” are independently related to risk for breast cancer (1,2).

Over the past decade our models were built from life course risk factors that include
reproductive factors, adiposity at different points in life, age and type of menopause,
menopausal hormone therapy, family history of breast cancer, personal history of benign
breast disease, and alcohol intake (3-6). Investigators have added to these models to improve
discrimination often measured as the area under the ROC curve (AUC); and include MD
(3,7-10); endogenous hormones (11); and/or PRS using a variable number of SNPs (12-18).
While combinations of these factors have been evaluated (e.g., lifestyle factors and PRS or
lifestyle factors and MD), models that combine measures from all three components (life
course risk factors, MD, and PRS) (19-21) show the highest AUC values at 0.71 (9,22).
However, comprehensive models present a greater patient burden and simpler models are
needed for routine clinic use.

Following fundamental principles of model creation and validation (23,24) we evaluate a
simplified model of lifecourse variables reduced from the validated Rosner-Colditz model
(25-27) to achieve a simpler parsimonious model that retained performance characteristics
of the validated model. We then add MD and PRS, to assess the combined predictive
performance in the age range from 45 to 74. We use 10-year absolute risk as the prediction
outcome consistent with prediction models for cardiovascular disease and the Tyrer-Cuzick
model, used widely in the UK clinical setting (28,29) and ASCO guidelines (30). We report
validation using prospective data from the Mayo Mammography Health Study.
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Materials and Methods

We summarize the steps to refine a simplified questionnaire-based score (based on
established lifestyle and reproductive factors); then addition of MD and PRS from a case-
control data set, drawn from the Nurses’ Health Study (NHS) cohort. The study cohort was
established in 1976 and included 121,700 female registered nurses aged 30-55 years (31).
Questionnaires were mailed to women biennially to collect information on breast cancer risk
factors, including age at menarche, age at first birth, parity, family history of breast cancer,
height, weight, menopausal status, age at menopause, and hormone therapy use. Alcohol
consumption was assessed using a validated semi-quantitative food frequency questionnaire.
Women included in these analyses are either pre or postmenopausal and age 45-74 and free
from cancer (other than nonmelanoma skin cancer) at the beginning of follow-up in 1990.
During 10 years of follow-up time through June 2000, 2799 cases of invasive breast cancer
were diagnosed during 770,679 person years.

The study protocol was conducted in accordance with the Declaration of Helsinki and
approved by the institutional review boards of the Brigham and Women’s Hospital and
Harvard T.H. Chan School of Public Health, and those of participating registries as required.
The completion and mailed return of the self-administered questionnaire were considered to
imply informed consent.

Questionnaire-based score (QS)

Risk factors were defined in 1990 without updates during follow-up. Breast cancer risk
variables are listed in Supplementary Table S1. We built on the model used to estimate
population attributable risk for breast cancer from the NHS (32) and further reduced the
pregnancy variables to only include age at first birth, removing parity, and age at menarche.
Age and menopausal status were treated as combined indicator variables to account for the
rate of rising incidence per year in premenopausal women, and the slower rise in incidence
per year among postmenopausal women (4-6). Personal history of benign breast disease
confirmed by breast biopsy and family history of breast cancer in a first degree relative were
each included. Hormone therapy was classified as past and never combined (reference
group) with separate indicators for current form of therapy (estrogen alone; estrogen plus
progestin; progesterone alone; and other). Height, and current Body Mass Index (BMI) were
modeled as continuous variables and current alcohol as a set of indicators to better capture
the increase in risk with higher intake. Risk factors in this model were assessed at baseline
(1990) and not updated. The questionnaire score (QS) was developed from a Cox regression
model based on these risk factors to predict 10-year risk of invasive breast cancer (1990-
2000) and is given by:

10
L= pix

i=1

where x;j is the #h risk factor and B is the corresponding regression coefficient (Table 2).

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Rosner et al.

Page 4

Mammographic breast density (MD)

Analysis

In the NHS, MD is only available in a nested case-control data set of women who provided
blood samples in 1989-1990. That data set includes assessment of MD using Cumulus
software to measure percent mammographic density (33,34) with reproducibility between
readings of 0.90 (35). It comprises 533 cases of breast cancer and 633 controls matched on
age and month of blood draw. We assessed MD for mammograms retrieved from the
participants as close to blood draw (1989-1990) for DNA assessment as possible, and use
this as a continuous variable (33). In a sensitivity analysis we use the BIRADS score.

This study also includes women with GWAS data. An externally derived polygenic risk
score (PRS) was estimated using GWAS data and consists of 77 SNPs (36). The PRS was
defined as the sum of the number of risk alleles across 77 SNPs weighted by the
independently-estimated effect size of each SNP.

We assess performance over 10 years of follow-up from the baseline assessment and risk
classification using the nested case-control data set. An unconditional logistic regression was
run on the nested case-control data set of the form:

Logit (p) = a+ P (QS) + p2 (MD) + p3(PRS)

where p = probability of breast cancer

The summary risk score is given by

S =1 QS+ pp MD + p3 PRS

To estimate 10-year risk of breast cancer, we follow the approach of Gail to calibrate
individual risk to the SEER population breast cancer rates (37), as applied to calibrating the
breast cancer incidence model in the California Teachers Study ((25), Supplementary
Materials and Methods). After generating individual 10-year risk estimates, we stratify
women using the UK guideline categories: below average (<2%), average (2% to <3%),
above average (3 to <5%), moderately increased (5% to < 8%), and high (= 8%) (10,28,38).

Validation study

The prospective Mayo Mammography Health Study (MMHS) enrolled participants
undergoing screening mammography who were residents of Minnesota, lowa or Wisconsin,
from October 2003 through September 2006 at the Mayo Clinic in Rochester, MN (39). The
baseline questionnaire included risk factor data. Annual follow-up used the Mayo and tri-
state tumor registries and mail and/or phone contacts for those who moved outside this
region. This study includes incident invasive breast cancer cases through 10 years of follow-
up, and an at-risk cohort representing approximately 10% of the overall cohort, 21.8% aged
<50 at enrollment. MD was assessed by an expert reader using the Cumulus program. We
have previously shown comparable estimates from the NHS and MMHS studies (40). PRS
was also generated from the 77 published breast cancer GWAS SNPs (2). Cases and controls
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for analysis were limited to 434 incident cases and 898 controls with data on QS, MD, and
PRS.

Validation analysis

For each woman in MMHS, we generated a questionnaire score (QS) using the beta
coefficients from the NHS (Table 2) and the woman’s own risk factor status. We then
summarize QS, MD, and PRS for cases and controls in the independent MMHS data (Table
4). To assess performance in the independent MMHS data we calculate median estimated
10-year risk in each of the 5 risk groups in NHS then run a logistic regression of case/control
status on median risk in the MMHS data. This Wald Chi-square provides a test for trend on 1
df. We compare model A age+QS+MD vs model B age+QS+MD+PRS using AUC and NRI
(41).

Results

In Table 1 we describe the prevalence of risk factors in the NHS included in the QS in 1990
and the number of incident invasive breast cancer cases from 1990-2000. Distributions
reflect patterns for established breast cancer risk factors. Supplementary Table S2 has the
baseline prevalence of risk factors for the nested case-control data set.

Table 2 summarizes regression coefficients, hazard ratios and 95 percent confidence
intervals (95% CI) for the variables included in the QS for 10-year risk of breast cancer. We
note that among premenopausal women incidence rises with age. Among postmenopausal
women who are 45 to 49 years of age, risk is significantly lower than for their comparable
aged premenopausal counterparts (HR=0.28, 95% CI 0.16 to 0.50). For postmenopausal
women, risk continues to rise through age 74. At any given age for postmenopausal women,
longer duration of menopause corresponds to earlier age at menopause and lower risk,
HR=0.85 (0.81 to 0.89) per 5 years. Other risk factors are consistent with prior studies.

We used the coefficients from the full model (Table 2) to estimate the QS and then ran a
logistic regression in the nested case-control data set of breast cancer risk on QS, MD, and
PRS (33). The odds ratio (OR) per SD is presented (Table 3). We see in the mutually
adjusted model that MD has the highest OR: ORper sp = 1.48 (95% CI 1.31 - 1.68) followed
by PRS, ORper sp = 1.37 (95% Cl 1.21 — 1.55) and QS, ORper sp = 1.25 (95% CI 1.11 -
1.41). These component measures also have low correlations with each other; Spearman
correlation (rs): (QS vs. MD, 0.054; QS vs. PRS, 0.024; MD vs. PRS, 0.085), consistent
with similarity between marginal and mutually-adjusted ORs. Furthermore, there was no
significant interaction among QS, MD, and PRS in their effects on incident breast cancer.

We assessed performance of the model both in the NHS and MMHS. (see Table 4). Cases
have significantly higher mean scores for 10-year risk than controls both for each component
and the overall risk score. The AUC for the overall model adjusted for age was 0.523, for
age + MD 0.629, for age + MD + QS 0.637 and for age+MD+QS+PRS 0.658. There was no
significant interaction between menopausal status and the components of the overall risk
score. Repeating analysis using BIRADS for breast density gave comparable AUC values
(see supplementary Table S3).

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Rosner et al.

Validation

Page 6

We next assessed the distribution of cases and controls according to the 10-year estimated
risk of breast cancer (Table 5). Using the UK National Health Service cut points for 10-year
breast cancer risk, the very high risk category (8% or higher 10-year risk) includes 9% of the
controls and 18% of the cases. The lowest category (10-year risk less than 2%) includes 19%
of the controls and 9% of the cases. This represents an OR of 4.0 consistent with the ability
of the model to separate the distribution of risk in cases and non-cases when predicting 10-
year risk of breast cancer. Figure 1 presents these distributions demonstrating separation of
controls to the left and cases to the right.

From MMHS data we note in table 1 that the women are slightly older with more cases and
controls in the 65 to 74 year age range than in the NHS. The MMHS includes more
nulliparous women and also a higher proportion with first birth before age 25, and fewer
with first birth after age 30 than in the NHS. They also have a higher proportion of women
with history of benign breast disease and family history of breast cancer. Fewer women
currently use menopausal hormone therapy, more postmenopausal women are obese, and
alcohol intake is lower than among the NHS.

Using the beta-coefficients from the NHS, the estimated QS is lower than in the NHS
although the mean difference between cases and controls in the MMHS (0.07, p=0.006) is
similar to the mean difference in the NHS (0.08, p<0.0001) (Table 4). MD is lower overall in
the MMHS, but the case / control differences are statistically significant, and the PRS is also
higher in cases than controls with significant differences overall. The overall AUC is 0.687,
comparable to 0.658 in the derivation cohort. Evaluating AUC in MMHS as variables are
added, we observed that AUC adjusted for age was 0.595; for age+MD 0.635; for age+MD
+QS 0.650; for age+MD+QS+PRS 0.687.

Stratifying women by their overall 10-year estimated breast cancer risk category (table 5)
shows comparable cases and controls in the below average 10-year risk category in MMHS
(6% of cases, 19% of controls) and NHS (9% of cases and 19% controls). Estimated risk
increased significantly with increasing risk category in the MMHS, Wald X2 = 85.83,
p<0.001. Similar distributions of women in the moderately increased and high risk
categories are seen across both studies. Figures 1a and 1b demonstrate the separation of the
distribution of risk among cases and controls in the two cohorts. The NRI comparing model
A age+QS+MD vs model B age+QS+MD+PRS was 6% in cases and 16% in controls
(Supplementary Table S4).

Discussion

A simplified lifestyle assessment of breast cancer risk factors, combined with MD and PRS,
performs consistently to discriminate those at high risk of subsequent breast cancer from
those who will remain free from breast cancer over 10-years. This combination of three
established predictors of breast cancer risk is robust and after controlling for age, it identifies
18% of cases and 9% of controls coming from the high risk category (>8% 10-year risk).
Equally important, only 9% of cases and 19% of controls arise from those at low risk of
breast cancer in the next ten years (<2% 10-year risk). This separation of absolute 10-year
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risk for cases and controls holds up in an independent validation data set of over 400
incident invasive breast cancer cases. The AUC is 0.687 in the MMHS validation data set
with an NRI of 6% in cases and 16% in controls for Model A vs. Model B. Stratification of
risk using a model that integrates questionnaire risk factors, PRS and MD could usefully be
adapted to clinical practice to modify frequency and intensity of screening programs.

We note that assessment in colorectal cancer also can perform adequately in the context of
simplified assessment by dichotomizing or reducing respondent burden with simpler
assessment (42). Truncating assessment complexity does not reduce performance while it
increases ease of use (43-47).

MD shows only modest decay over time. The longitudinal correlation of MD over 10 years
is estimated at 0.91 (48), and peak percent MD is at ages 35-39 (49). Thus, a one-time
assessment is adequate for long-term risk prediction (50). Additionally, germline SNPs are
unchanging, equally supporting the need for only a one-time assessment. The number of
SNPs in PRS has increased over time from 77 (36) to 313 (15) SNPs with modest change in
the AUC. Here we use the lower count as a conservative PRS, but expect similar findings
with the expanded PRS, though generating a PRS comprising 300 or more SNPs (15)
remains problematic in routine screening clinics.

Risk models continue to pursue dual measures of success — better model performance based
on discrimination and easier adaptation to clinical application. We have shown that in an
independent validation data set the Rosner-Colditz model of lifecourse questionnaire risk
factors outperforms the Gail model (25). Compared to the Rosner-Colditz model, both the
Gail and Tyrer-Cuzick models over predict risk in high risk women and under predict risk in
low risk women (27). Both models perform less well than the Rosner-Colditz model, and all
show better discrimination among women under age 70 (27). Assessing 10-year
performance of BOADICEA, BRCAPRO, the Breast Cancer Risk Assessment Tool
(BCRAT), and IBIS model, the BCRAT model under predicts risk as does BRCAPRO, and
the BOADICEA, BCRAT, and IBIS models over predict in the highest risk subgroup of
women, while the models are overall well calibrated with AUC of 0.71 or lower (51). That
analysis used data from the Breast Cancer Prospective Family Study Cohort of women
without breast cancer at baseline but identified from families over sampled for early onset
breast cancer (52).

We use SEER breast cancer incidence data from 1995 for the population estimates of
average risk. This corresponds to the mid-point of the 10 year follow-up for the NHS. This
anchoring could be readily updated to more recent time periods for routine clinical use.

We, like others (53), see no interaction between MD and PRS attesting to the value of the
combined measures to maximize discrimination. The BOADICEA implementation of
similar combinations of lifestyle, PRS, and MD gives a broad distribution of risk for the UK
population (54). Moving to routine clinical use both to increase screening in high risk
women, and reduce screening and surveillance in low-risk women, looks increasingly
possible. The NRI of 16% in controls supports adding PRS to the risk model. This is
consistent with the growing call for more widespread use of PRS in routine clinical care
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(55,56) and continuing refinement to screening recommendations that use risk of disease to
modify frequency and modality for screening (57). Saliva DNA can be collected prior to
baseline mammogram to generate PRS.

Current US guidelines vary, but in general recommend screening mammography from age
45 (American Cancer Society (58)) or 50 (US Preventive Services Task Force (59)), with
either annual or biennial mammography (60). Assessment and screening decisions should
include shared decision making as recommended by numerous guidelines. This assumes a
reliable risk assessment and shared decision-making tools. These recommendations apply to
average risk women, defined by USPSTF to include women with a history of breast cancer
in a single family member and women with dense breasts.

In summary, the combination of QS, MD, and PRS predicts 10-year risk of invasive breast
cancer. Now validated, this model can be readily implemented in routine clinical services to
identify women at higher risk of breast cancer and those who are at low risk and unlikely to
benefit from chemoprevention interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

shows estimated 10-year incidence of breast cancer by case/control status
Figure 1a contains a histogram of estimated 10-year breast cancer incidence in the NHS,
separately for cases (blue) and controls (red).
Figure 1b contains a histogram of estimated 10-year breast cancer incidence in the MMHS,
separately for cases (blue) and controls (red).
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