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The typical reading of an echocardiographic study consists of reviewing multiple image 

sequences in the order they were acquired. The reader then integrates this information to 

make diagnoses on different aspects of cardiac anatomy and function. Additionally, readers 

need to perform measurements, the number of which has been steadily increasing under the 

pressure to comply with guideline-mandated quantification. Reading multiple 

echocardiograms is time consuming and tedious and may be overwhelming due to the large 

volume of information. Importantly, manual measurements are known to vary widely 

between readers.1–3 Recent studies have shown that these tasks could be automated using 

machine learning (ML) techniques.4–6 We hypothesized that ML could be used to improve 

the workflow efficiency of echocardiographic interpretation, while minimizing the 

interreader variability of common measurements. This approach would incorporate 

automated identification of image types and views, organizing images in thematic stacks, 
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fully automated measurements of standard parameters, and reading images organized in 

stacks while correcting the automated preliminary measurements as needed.

We used echocardiographic studies performed in 2,000 subjects from the World Alliance of 

Societies of Echocardiography Normal Values Study.7 Images were labeled by an expert 

reader with respect to type and view. Common measurements were performed in the core 

laboratory according to the latest guidelines.8 Data from 1,800 subjects were used for ML 

algorithm development purposes, and the remaining 200 subjects for testing of the newly 

developed algorithms.

Protocol 1 was designed to develop and test the accuracy of an ML approach for automated 

identification of image types and views, similar to recent studies,4–6 and assigning them to 

“reading stacks,” in order to streamline review and interpretation. The convolutional neural 

network (CNN) was trained to identify image types and recognize 18 standard views from 

two-dimensional, tissue Doppler and pulsed-wave and continuous-wave Doppler images. 

Then the CNN was instructed to assign the images to eight thematic stacks, including left 

ventricular size and systolic function, diastolic function, right ventricular and right atrial 

dimensions/function, valves (mitral, aortic, tricuspid, and pulmonic), and pericardium. The 

results were compared to the “ground-truth” labels provided by an expert reader. Automated 

classification of views took <1 second per study and resulted in an overall accuracy of 90% 

for the two-dimensional and 94% for the Doppler images. While the agreement was 

excellent for most views, errors occurred mostly in labeling nonstandard, suboptimal, 

accidentally saved views. The CNN was able to sort the images into stacks with an accuracy 

of 91%. When counting views required for each stack to be complete, stack composition was 

99% accurate.

Protocol 2 was designed to test the accuracy of automated measurements of standard 

echocardiographic parameters. The ML algorithm was trained to measure 16 commonly 

used parameters, the accuracy of which was tested in 200 subjects. We found excellent 

agreement with manual measurements by an expert reader, as reflected by high correlations, 

small biases, and narrow limits of agreement for most parameters (Table 1). The largest 

relative biases were noted for left atrial volumes in both apical views (18% and 25% of the 

measured values), followed by left ventricular volumes (6.5% and 7.8%), while biases were 

minimal for all other parameters (#3%). In a subset of 30 studies, the differences between 

the automated ML measurements and reference values (Table 2, fourth column) were found 

to be comparable to human interobserver variability between two independent expert readers 

who used conventional methodology (Table 2, third 3).

Protocol 3 was designed to evaluate the effectiveness of using the combination of these ML 

techniques in terms of efficiency and reproducibility, when compared with the current 

reading methodology. The two readers repeated their interpretation two weeks later utilizing 

the ML-assisted mode by using stacks and automated premeasurements, which they adjusted 

as needed. Conventional image interpretation took an average of 11’33” per study, while 

ML-assisted image interpretation took 6’48” on the average, namely, 41% less time. Also, 

with the ML-assisted interpretation, interreader variability was lower for 15/16 parameters 

(Table 2, fifth vs third columns).
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The hypothesis that drove this study was that ML techniques could result in a disruptive 

change in the manner echocardiographic studies are read, while simultaneously leading to 

improved reproducibility of clinical measurements. Indeed, the computer was able to 

quickly and accurately identify the majority of image types and views, accurately organize 

them in thematic “stacks” designed to help answer clinically relevant questions, identify 

structures of interest, and perform accurate measurements, other than left atrial volume, 

which needs further improvement. Moreover, the use of the ML-assisted interpretation with 

manual adjustments saved almost half of the analysis time and reduced the variability of 

most parameters to below 10%, which is generally considered as optimal in the assessment 

of cardiac function. It is likely that, pending additional algorithm training on images with 

pathological findings, widespread implementation of this ML-assisted approach in clinical 

practice will result in significant cost savings driven by improved efficiency, physician 

satisfaction, and improved diagnostic performance.
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Table 1

Agreement between automated ML-derived measurements and expert reader’s reference values in 200 studies, 

including linear regression with Pearson’s correlation coefficients (R values) and Bland-Altman analyses of 

biases and limits of agreement

Linear regression Bland-Altman analysis

R value Bias ± SD % Bias Lower limit Upper limit

IVS thickness, mm 0.65 −0.11 ± 1.3 −1.5 −2.7 2.4

LVPW thickness, mm 0.64 −0.04 ± 1.1 −0.5 −2.2 2.1

LVIDs, mm 0.78 0.85 ± 2.5 3.0 −4.2 5.9

LVIDd, mm 0.82 0.65 ± 3.1 1.5 −5.6 6.9

LVOT diameter, mm 0.82 0.85 ± 1.5 4.1 −2.1 3.8

LV EDV (A2C), mL 0.91 6.6 ± 12.5 6.5 −18.4 31.6

LV EDV (A4C), mL 0.94 7.4 ± 9.5 7.8 −11.5 26.3

LV ESV (A2C), mL 0.87 −0.5 ± 6.2 −1.3 −12.9 11.9

LV ESV (A4C), mL 0.89 0.6 ± 5.6 1.6 −10.7 11.8

LA Vol (A2C), mL 0.87 11.8 ± 10.3 25 −8.9 32.5

LA Vol (A4C), mL 0.89 8.6 ± 8.5 18 −8.4 25.6

LVOT VTI, cm 0.91 0.46 ± 1.7 2.2 −2.8 3.8

MV E Vel, cm/sec 0.96 −0.01 ± 0.05 −1.1 −0.11 0.09

MV A Vel, cm/sec 0.95 −0.01 ± 0.05 −1.1 −0.11 0.10

LV E’(l), cm/sec 0.96 −0.03 ± 1.30 −0.2 −2.62 2.56

LV E’(s), cm/sec 0.90 −0.03 ± 1.21 −0.3 −2.45 2.39

A2C, Apical two chamber; A4C, apical four chamber; EDV, end-diastolic LV volume; E’(l), lateral mitral annular peak early; E’(s), septal mitral 
annular peak early ESV, end-systolic LV volume; IVS, interventricular septum; LA, left atrial; LV, left ventricular LVIDd, LV internal dimensions 
at end-diastole; LVIDs, LV internal dimensions at end-systole; LVPW, LV posterior wall; LVOT, LV outflow tract; MV, mitral valve; Vel, velocity; 
Vol, volume; VTI, velocity-time integral.

Positive biases represent overestimation by the ML technique, while conversely, negative biases reflect underestimation. IVS and LVPW 
thicknesses are measured at end diastole; LVIDs and LVIDd, LVOT diameter in midsystole, and LV ESV and LV EDV are measured in the A2C 
and A4C views; maximum LA volume is measured in the A2C and A4C views.
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Table 2

Comparison between automated ML-derived measurements against expert reader’s reference values obtained 

using the conventional methodology, side by side with intra- and interobserver variability of the conventional 

methodology

Conventional interpretation Automated ML 
interpretation vs 

conventional 
interpretation

ML-assisted interpretation 
interobserver variability

Intraobserver 
variability

Interobserver 
variability

IVS thickness, mm 7 ± 5 11 ± 8 14 ± 10 0 ± 1*

LVPW thickness, mm 8 ± 7 15 ± 13 17 ± 15 1 ± 3*

LVIDs, mm 3 ± 2 8 ± 6 10 ± 10 3 ± 5*

LVIDd, mm 2 ± 2 4 ± 4 6 ± 5 0 ± 1*

LVOT diameter, mm 2 ± 3 4 ± 3 5 ± 4 6 ± 14

LV EDV (A2C), mL 10 ± 9 20 ± 13 14 ± 10 6 ± 8*

LV EDV (A4C), mL 7 ± 5 22 ± 7 16 ± 8 4 ± 5*

LV ESV (A2C), mL 11 ± 9 23 ± 14 27 ± 19 3 ± 4*

LV ESV (A4C), mL 9 ± 7 32 ± 13 35 ± 16 4 ± 5*

LA Vol (A2C), mL 14 ± 9 17 ± 22 14 ± 10 9 ± 9

LA Vol (A4C), mL 13 ± 13 18 ± 13 16 ± 8 9 ± 8*

LVOT VTI, cm 5 ± 4 7 ± 5 8 ± 7 1 ± 4*

MV E Vel, cm/sec 4 ± 4 8 ± 7 6 ± 5 3 ± 16

MV A Vel, cm/sec 3 ± 3 14 ± 11 14 ± 11 3 ± 16*

LV E’(l), cm/sec 7 ± 9 10 ± 20 11 ± 17 2 ± 8

LV E’(s), cm/sec 4 ± 4 6 ± 8 8 ± 7 0 ± 0*

Values represent absolute difference in percentage of the mean. Abbreviations are as in Table 1.

*
P < .05 for ML-assisted vs conventional interpretation.
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