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Abstract

While opioids constitute the major component of perioperative analgesic regimens for surgery in 

general, a variety of evidence points to an association between perioperative opioid exposure and 

longer-term oncological outcomes. The mechanistic details underlying these effects are not well 

understood. In this study, we focused on clear cell renal cell carcinoma (ccRCC) and utilized 

RNAseq and outcomes data from both TCGA as well as a local patient cohort to identify survival-

associated gene coexpression networks. We then projected drug-induced transcriptional profiles 

from in vitro cancer cells to predict drug effects on these networks and recurrence-free, cancer-

specific, and overall survival. The opioid receptor agonist leu-enkephalin was predicted to have 

anti-survival effects in ccRCC, primarily through Th2 immune and NRF2-dependent macrophage 

networks. Conversely, the antagonist naloxone was predicted to have pro-survival effects, 

primarily through angiogenesis, fatty acid metabolism, and hemopoesis pathways. Eight 

coexpression networks associated with survival endpoints in ccRCC were identified, and master 

regulators of the transition from the normal to disease state were inferred, a number of which are 

linked to opioid pathways. These results are the first to suggest a mechanism for opioid effects on 

cancer outcomes through modulation of survival-associated coexpression networks. While we 

focus on ccRCC, this methodology may be employed to predict opioid effects on other cancer 

types and to personalize analgesic regimens in cancer patients for optimal outcomes.
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INTRODUCTION

Retrospective clinical evidence suggests that perioperative opioid exposure may be 

associated with cancer recurrence and survival(1–4), and its specific effects are likely 

cancer-specific. For instance, while opioids are thought to have a negative effect on immune-

mediated cancers(5) like lung adenocarcinoma(6) and renal cell carcinoma(7), they may play 

a protective role in esophageal cancer(8). Despite numerous studies indicating an 

association, causal evidence and biological rationale are both lacking in human populations.

Molecular evidence links opioids to pathways known to influence cancer. Opioids are 

immunomodulators(9), and a growing literature indicates the therapeutic importance of 

immune regulation and antigen presentation in mediating cancer progression(10). Both 

cancer cells and immune cells express opioid receptors(11), and activation of these receptors 

can alter cell-cycle pathways. Opioid receptor gene mutation and expression have been 

correlated with survival endpoints in a few cancer types(12–14). These experiments provide 

intriguing evidence for the functional impact of opioids on receptor-dependent cascades and 

suggest that these drugs may have broad effects across the cancer transcriptome.

This study tests the hypothesis that opioids modulate survival-associated coexpression 

networks in clear cell renal cell carcinoma (ccRCC). Kidney cancer is the seventh most 

commonly diagnosed solid tumor in the United States(15), with clear cell being its most 

common subtype. Genetic and molecular changes are associated with survival(16), and gene 

network expression changes distinguish renal cell carcinoma subtypes(17). Opioids play a 

critical role in perioperative analgesia in oncologic surgery, and recent in vitro evidence 

implicates opioids in proliferation, invasion and metastasis of ccRCC specifically(18). We 

study RNAseq and cancer-specific outcomes data in both the TCGA KIRC cohort and an 

independent ccRCC replication cohort at Memorial-Sloan Kettering Cancer Center 

(MSKCC) who underwent nephrectomy. We construct undirected and directed gene 

networks and correlate each with recurrence-free survival (RFS), cancer-specific survival 

(CSS), and overall survival (OS). We compare the expression and network connectivity of 

opioid- and survival-related pathways between ccRCC and controls. We also project drug-

induced transcriptional profiles from in vitro cancer cells onto ccRCC gene networks to 

characterize pathways through which opioids may influence survival.

MATERIALS AND METHODS

Measuring gene expression and clinical outcomes in human cohorts

This study uses data from publicly available TCGA cohort, as well as an independent cohort 

who underwent nephrectomy at Memorial Sloan Kettering Cancer Center. The Firebrowse 

and LinkedOmics portals were used to access TCGA-KIRC data(19). Level 3 normalized 

RSEM gene expression was extracted for cases and controls, as well as relevant clinical 
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measures and metadata. For the MSKCC validation cohort, gene expression was measured 

using RNA-sequencing (See Supplemental Methods). Cancer-specific and recurrence-free 

survival were calculated by extracting relevant clinical data from internal clinical records at 

MSKCC and linking them with previous data contributions to the larger TCGA cohort.

Analyzing gene and network level variation in RNAseq data

Differential gene expression was calculated in a subpopulation (N=72) for which ccRCC and 

neighboring healthy renal tissue were biopsied and sequenced. Median expression was 

calculated for each gene and genes in the bottom 20% were filtered out to remove bias from 

genes with low gene expression. Voom was used to estimate differential expression (See 

Supplemental Methods). The Kruskal Wallis test was used to associate pathologic stage and 

opioid pathway gene expression for samples with high and low opioid pathway expression. 

Samples with high and low opioid gene expression were defined for each gene as those 

samples in the top and bottom quartile of gene expression and expression-stage associations 

were determined for these sample subsets.

To estimate gene coexpression in the TCGA KIRC and BLCA cohorts, gene expression data 

was log2 transformed, and linear regression was used to correct gene expression for age, 

race, gender, and tumor purity. Genes in the bottom 20% percentile in variance and median 

expression were filtered to reduce noise, and samples with an interarray correlation greater 

than two standard deviations away from the mean were considered outliers and removed. 

Weighted gene coexpression analysis was used to determine correlation gene networks (See 

Supplemental Methods). The first principal component of each module was calculated 

(“module eigengene”) and univariate and multivariate Cox model were used to correlate 

eigengene expression with overall survival, cancer-specific survival, and recurrence-free 

survival. For multivariate testing, two models were used for the sake of comprehensiveness: 

one that included age, race, gender, and tumor purity, and a second model that included the 

aforementioned covariates, as well as stage.

Internal and external validation of gene networks

The robustness of each module was empirically calculated by repeatedly splitting the gene 

expression data in training and tests sets and calculating a module preservation score 

between each new network(20). A composite preservation statistic (Z) was calculated by 

integrating several measures of connectivity and network preservation and previously 

characterized threshold (Z>10) was used to assess for preservation. Empirical p-values were 

also calculated and Bonferroni p-value threshold < 0.05 was used to confirm these results. 

Previous evidence suggests that Z scores and p values have a strong inverse correlation, so 

this approach simply utilizes two statistics that reflect the same measure of robustness. As an 

external validation, gene expression was measured in an independent cohort and corrected 

for batch, sex, and age using linear regression. Gene coexpression was calculated 

independently in this cohort as previously described, without explicit reference or 

parameterization from the TCGA population. Module membership was directly compared 

between TCGA-KIRC and MSKCC-KIRC networks, and Fisher’s exact test was used to 

calculate enrichment. Modules were considered preserved if enrichment odds ratio > 1 and 

Bonferroni p-value < 0.05.
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Calculating enrichment and connectivity measures in differentially expressed genes and 
networks

The R package, goSeq, was used to estimate biologic pathway enrichment for differentially 

expressed genes, with gene length bias correction and multiple testing correction. The 

anRichment R package was used to estimate gene ontology enrichment for each module, and 

p-values were corrected with the Benjamini-Hochberg method. Enrichr was used to calculate 

module overrepresentation for experimental datasets, including ChIP-seq and gene knockout 

data, for a variety of cell lines and animal models, and Q values were calculated to account 

for multiple hypothesis testing(21). Previously published immune cell type signatures were 

also used for enrichment testing(17). Module enrichment for differentially expressed genes, 

immune signatures, and previously published ccRCC networks was estimated with Fisher’s 

exact test and p-values were corrected with the Bonferroni method when appropriate. ICGC 

Data Portal was used to identify mutational burden and frequency in the Reactome 

pathway(22).

Differential network connectivity was calculated by comparing the mean intramodular 

connectivity for each disease network with those same network genes in the control 

cohort(23). The ratio of average network connectivity between cases and controls was used 

as an estimate of differential connectivity. For example, a measure of 2 signifies that the 

average correlation strength for a group of genes in a network is two times greater in disease 

than in controls. We estimated two separate false discovery rates (FDR) by randomly 

shuffling samples and genes of disease and control networks. Shuffling samples creates 

networks with random edges and shuffling genes creates networks with random nodes. We 

quantified the final FDR by selecting the larger estimate and used a conservative FDR 

threshold to assess significance (FDR < 0.001).

Projecting drug-induced transcriptional profiles onto survival networks

Connectivity scores were calculated between network hubs and drug-induced transcriptional 

profiles for leu-enkephalin, naloxone, and the VEGF-inhibitor class. The drug profiles were 

catalogued by Connectivity Map and the CLUE Research platform was used to calculate 

connectivity scores(24). Connectivity Map has catalogued gene expression profiles for 

thousands of chemical and genetic perturbations across nine cell lines, and connectivity 

scores between all reference perturbations were calculated based on a weighted Kolmogorov 

Smirnov statistic, normalized for cell line and perturbation type(25). A non-parametric 

weighted connectivity score and an enrichment score, τ, was then calculated for each 

module-drug pair of interest, ranging from −100 to +100(26). τ measures the fraction of 

reference connectivity scores greater than the tested module-drug pair. A positive score 

shows that hub expression and drug-induced expression are in the same direction, while 

negative scores reflect expression in the opposite direction. A score of 90 indicates that only 

10% of the reference set had a stronger score. Unlike a null distribution generated by 

random permutation, this empirical test avoids strong assumptions about the distribution of 

gene expression data under perturbed conditions. Instead, it tests module-drug connectivity 

directly against an expansive and diverse gene set under biologic and pharmacologic 

perturbation and provides a useful corresponding effect size. Empirical validation has 

demonstrated that τ > |90| also pass p-value and FDR thresholds < 0.05 based on 
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permutation-based null distribution methods, but lower τ estimates may also pass those 

thresholds(26). Hubs positively correlated with survival were considered upregulated and 

hubs negatively correlated with survival were considered downregulated. Each module was 

studied independently and each gene in the corresponding hub set was considered as a 

binary, either upregulated or downregulated. Drug-hub pairs with τ > +90 indicate pro-

survival relationship in hubs positively correlated with survival. Drug-hub pairs with τ > +90 

indicate anti-survival relationship in hubs negatively correlated with survival.

Calculating master regulators of directed gene-gene networks

Directed transcriptional relationships were retrieved using the “aracne.network” R library, 

derived from the ARACNe algorithm. ARACNe first calculates pairwise gene expression 

mutual information to identify candidate relationship and then uses data processing 

inequality to trim edges representing indirect relationships between genes that are strongly 

co-regulated without being directly dependent(27). This two-step procedure recovers gene 

expression dependencies with high fidelity. Directed networks describing relationships 

between modules were constructed by calculating edges between genes in different modules. 

For each pair of modules, edge weight was calculated by summing the total number of edges 

between the module pair, scaled by the product of their respective module sizes. Permutation 

testing (N=1000) was performed to calculate a null distribution of edge weights between 

each pair of modules, and an edge was only kept if Benjamini-Hochberg p value < 0.05. 

Within each module, master regulators were inferred using MARINa, leveraging a 

phenotype transition signature derived from t-test analysis comparing gene expression 

between cases and controls(28).

RESULTS

Characterizing opioid pathway gene expression changes in clear cell renal cell carcinoma

We first characterized gene expression changes associated with ccRCC across the 

transcriptome. Using TCGA data, we compared tissue from ccRCC with adjacent normal 

renal tissue in 72 individuals (Figure 1A). Six thousand three hundred twenty one genes 

(6,321) were upregulated and six thousand three hundred sixty six (6,366) genes were 

downregulated (P < 0.05). Cell migration, biologic adhesion, and immune regulation gene 

ontology pathways are most robustly overrepresented in these differentially expressed genes 

(P < 0.05, Figure S1), consistent with previous literature. Notably, many genes involved in 

opioid metabolism, regulation, and signaling are also differentially expressed in ccRCC 

(Figure 1B–1F), including IL4R, OGFR, OPRL1, OGFRL1, ARRB1, ARRB2, POMC, 

FOS, CYP3A4, PTGS2, and BDNF (p < 0.05). Given the differential expression of several 

opioid-related genes, we specifically investigated enrichment testing for the Reactome 

opioid signaling pathway and found suggestive evidence for its overrepresentation in 

differentially expressed genes (Fisher’s exact test, nominal P = 0.03, OR = 1.7(1.04–2.81)). 

Further analysis also demonstrates that sixty-two of the top one hundred genes predicted to 

be functionally associated with opioids(29) are also differentially expressed. Opioid 

signaling is not nearly as overrepresented as large pathways more proximal to pathogenesis, 

like immune regulation and cell migration, but these analyses provide evidence for its 

association with ccRCC. Canonical opioid receptor genes OPRM1, OPRD1, OPRK1 are all 
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poorly expressed in renal tissue and there is no evidence in our analysis that they are 

differentially expressed in ccRCC, though the expression of each shows greater variability in 

the disease state (Figure S2). At the same time, OPRL1 (nociception receptor), OGFR, and 

TLR4 receptor genes are upregulated in ccRCC (Figure 1C–1F). These receptors are known 

to bind opioids and are implicated in ccRCC progression, in which OGFR signaling is likely 

protective and TLR4 contributes to cancer pathogenesis(30,31).

An analysis of mutational burden in ccRCC in the TCGA cohort provides further orthogonal 

evidence of the relationship between ccRCC and opioid signaling. This study identified 149 

mutations across 76% (67/88) of opioid signaling pathways genes in ccRCC (Supplementary 

Table S1), but the functional impact and clinical significance of most of these mutations are 

unknown. Further analysis showed that pathologic stage is associated with whether the 

sample is high or low expression of particular Reactome opioid signaling pathway genes (P 

< 0.05, Figure S3), suggesting tumor heterogeneity in opioid pathway expression may be 

associated with clinical features.

Calculating ccRCC gene networks relevant to survival

Gene expression is organized into networks that can respond to genetic, pharmacologic, and 

environmental perturbations. We identified gene networks in renal cell carcinoma (using the 

N=533 individuals in the TCGA KIRC data set) using weighted gene coexpression network 

analysis (WGCNA)(32). This analysis revealed 15 distinct gene networks, each labeled by 

an arbitrary color (Figure 2A). Module membership is reported in Supplementary Table S2. 

We used a resampling technique to confirm these networks were internally robust and 

reproducible (Figure 2B)(20). Lastly, we showed that these gene networks map onto known 

functional pathways, confirming their biologic coherence (Supplementary Table S3).

Next, we hypothesized that a subset of these networks may be associated with survival. To 

test this hypothesis, we estimated the relationship between recurrence-free survival, cancer-

specific survival, and overall survival, and pathologic characteristics to the first principal 

component (“eigengene”) of each module, which captures the predominant variation of gene 

expression of each respective network (Figure 2C, 2D). Each individual sample exhibited 

very high or low expression in relatively few modules, and eigengenes show modest 

correlation across networks (Figure S4A–C). We reasoned that increased or decreased 

expression in a gene network may be related to the length of survival. We analyzed these 

data using the Cox proportional hazard model, accounting for multiple hypothesis testing. 

Univariate and multivariate modeling showed that eight networks were associated with 

survival (P < 0.05), seven of which were also associated with cancer-specific survival (P < 

0.05) and recurrence-free survival (P < 0.05) (Figure 2D–2J, Supplementary Table S4). 

Notably, many of these networks were also associated with tumor stage and grade as 

expected (Figure 2C) and Fisher’s exact testing of sample subgroups corroborated this 

finding, showing samples with high eigengene expression were associated with stage 

(Supplementary Table S5). These results reflect the well-known strong correlation between 

stage, grade, and survival in ccRCC. Lastly, we validated that each of these 8 networks was 

reproduced in an independent cohort of individuals (N=34) with ccRCC from Memorial-

Sloan Kettering Cancer Center (ccRCC-MSKCC) (Figures S5 and S6A–H).
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Tumor microenvironment and oncogenesis pathways associated with survival-associated 
gene networks

To examine the relationship between ccRCC pathogenesis and survival-related networks, we 

integrated our network analysis with publicly available experimental genomic, ChIP-seq, 

gene expression, and gene ontology data(21). Survival networks include modules 

overrepresented for gene signatures related to T helper type 2 cells (“tan”), angiogenesis 

(“yellow”), fatty acid metabolism (“green”), and mitochondrial ATP synthesis (“turquoise”), 

pathways significantly altered in ccRCC. CSS- and RFS-networks are also downstream 

targets for known ccRCC transcriptional regulators, including NRF2 (“green”, q=5.4×10–7, 

OR=4.6), JUN (“black”, q=1.7×10–4, OR=1.6), JAK2 (“brown”, q=1.6×10–4, OR=2.3), and 

MET (“blue”, q=4.9×10–4, OR=1.83). Survival-related networks also include approximately 

40% (9 out of 22) of the intOGen RCC mutational driver genes(33). Notably, all survival 

networks are strongly overrepresented for differentially expressed genes, and four networks 

(black, brown, salmon, yellow) also gain stronger connections in ccRCC compared to 

controls (Figure 3A). Together, these results show that the survival-associated networks are 

intimately tied to oncogenesis, progression, and pathophysiology in ccRCC. We further 

probed possible localization of these networks within the tumor microenvironment by 

examining each network for enrichment of 24 empirically derived cell-type specific gene 

markers(17). These analyses revealed that the “green” network is strongly associated with 

macrophage-specific signatures, the “tan” network is overrepresented with genes specific to 

Th2 cells, and the yellow network is associated with B cells T follicular helper cells (P < 

0.05, Figure S7A–D)

Leu-enkephalin modulates gene networks relevant to cancer-specific survival

Next, we examined whether opioid receptor agonism and antagonism affect the expression 

of these survival-relevant networks. First, we calculated intramodular connectivity and 

identified hub genes for each of the eight networks (Supplementary Table S6). Hub genes 

are the most highly connected nodes in each network, making them potent targets and 

important predictors of disease(34,35). We hypothesized that leu-enkephalin, a non-selective 

opioid receptor agonist, would downregulate pro-survival gene network hubs and upregulate 

anti-survival network hubs. To perform this analysis, we projected gene expression changes 

induced by all compounds catalogued by Connectivity Map onto each network(24). This 

analysis showed that leu-enkephalin has significant anti-survival effects on seven survival-

related networks, upregulating modules negatively correlated with survival and 

downregulating modules positively correlated with survival (Figure 3B). Leu-enkephalin 

most strongly modulates the Th2 immune network (“tan”) and NRF2-dependent 

macrophage network (“green”) (τ >= |90|).

Next, we examined the molecular effects of naloxone, hypothesizing that opioid receptor 

antagonism would shift networks towards pro-survival expression (Figure 3C). This analysis 

showed that the effect of naloxone on survival-related networks opposes that of leu-

enkephalin. It most strongly influences angiogenesis (“yellow”), NRF2-dependent 

macrophage network (“green”), and hemopoesis (“salmon”) networks and drives them 

towards pro-survival expression patterns, though naloxone’s effect doesn’t pass strict 

statistical threshold. As a positive control, we investigated the effect that VEGF receptor 
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inhibitors, a pharmacologic class shown to have some survival benefits in renal cell 

carcinoma patients. As anticipated, it has strong pro-survival effects on Th2 immunity 

(“tan”, τ >= |90|) and hemopoesis (“salmon”, τ >= |90|), and a moderate effect on NRF2-

dependent macrophage network (“green”, τ > |80|). Interestingly, it also has a strong anti-

survival effect on the brown network (τ >= |90|) and minimal effect on three networks, 

pointing to a potential mechanism for its therapeutic limitations (Figure 3D).

Lastly, we tested the hypothesis that leu-enkephalin preferentially affects networks more 

strongly associated with survival (Figure 3E). The leu-enkephalin effect size is positively 

correlated with Cox model regression coefficients for survival-associated networks and 

significantly associated with recurrence-free survival (rho=0.93, P=0.007). This suggests 

that the clinical relationship between opioids and ccRCC survival may depend on the 

preferential effect of opioids on networks most strongly associated with survival.

In order to further validate these results, we applied this methodology to bladder cancer, 

where evidence also suggests that opioids promote tumor progression(36). Bladder cancer is 

a relevant comparison to ccRCC given that it is also a urological cancer where opioid 

excretion in urine could enable direct effects on tumorigenesis. Similar analysis in the 

TCGA BLCA cohort identified that one network (“pink”) was associated with overall 

survival. Leu-enkephalin showed anti-survival expression effects on the pink network, while 

naloxone and numerous chemotherapeutic drugs and classes showed pro-survival expression 

effects (Figure S8A–B).

Reconstructing directed transcriptional networks and master regulators of RFS, CSS, and 
OS

Finally, we reasoned that causal networks regulators may provide mechanistic and functional 

insight into the downstream transcriptional effects of opioids. An information theoretic 

approach was used to calculate direct transcriptional relationships between genes, and 

master regulators (MRs) of the transition from normal to disease state were inferred(27,28). 

This analysis revealed 211 MRs (FDR < 0.05) across the transcriptional network 

(Supplementary Table S7). The NRF2-dependent macrophage network (“green”) and Th2 

(“tan”) networks, most robustly influenced by leu-enkephalin, had 27 MRs (Figure 4). 

Several of their regulators have been experimentally validated drivers of oncogenesis, tumor 

progression, and metastasis in ccRCC, suggesting possible transcriptional mechanisms 

through which opioids may affect ccRCC development and metastasis. Notably, CDH2, the 

MR with the strongest enrichment score, is known to be involved in the opioid pathway, and 

CDH2 variants influence methadone response(37,38). MRs associated with other survival-

related networks also are tightly linked with opioid pathway (Figure 4), including genes 

involved in the opioid signaling cascade (GIT2(39), PLD2(40), RALGDS(41)) and opioid-

related modulation of the immune system (CREB5(42), IL4R(43), CLEC2D(44), 

PLXNB1(45)). Given that opioid-related immunomodulation is generally considered central 

to opioid effects in cancer, we further examined correlation of gene expression of these four 

latter MRs with expression of immune signature genes(46) (Figure S9A–D and 

Supplementary Table S8). Taken together, the evidence suggests that ccRCC progression and 

opioid regulation converge onto these survival networks and provides a biologic rationale for 
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how these seemingly divergent processes may transcriptionally influence each other in 

humans. The mechanistic details of this convergence remain unclear and require further 

study.

DISCUSSION

This analysis explored the relationship between opioid-related transcriptional pathways and 

survival-relevant gene networks in ccRCC. This study identified opioid-related genes 

differentially expressed in ccRCC and characterized the effect of leu-enkephalin on ccRCC 

gene networks. While our analysis is focused on opioid pathways in ccRCC, we also 

highlight novel transcriptional features of ccRCC. Previous large-scale systems approaches 

have focused on networks that distinguish RCC subtypes(17) and networks correlated with 

pathology and overall survival(47–49). Our study focuses specifically on clear cell RCC 

coexpression networks, validates these networks in an independent cohort, and studies their 

relationship with recurrence-free survival, cancer-specific survival, and overall survival. We 

also integrate our analysis with experimental gene knockout and ChIP-seq data to 

characterize survival-relevant networks, and we calculate transcriptional master regulators in 

directed gene networks to help dissect drivers of disease and their relationship to opioid 

pathways.

We find that leu-enkephalin most strongly mediates fatty acid metabolism and Th2 immune 

networks, two processes central to the oncogenesis and progression of clear cell RCC. The 

clear cell subtype is characterized histologically by clear cytoplasm secondary to lipid 

accumulation, so fatty acid metabolism is a fundamental feature of clear cell RCC. 

Experimental evidence suggests that these mechanisms are not simply a byproduct of 

oncogenesis, but are critical to tumorigenesis and malignant transformation of renal 

cells(50). The tumor microenvironment is also critical to the development and progression of 

ccRCC, leading to the development of PD1 inhibitors. Both CD8+ and CD4+ T cells 

mediate tumor development by targeting antigenic components of renal cell carcinoma, and 

tumor-associated macrophages influence tumor development and angiogenesis(51). Our 

study suggests that leu-enkephalin affects ccRCC networks through both its effects on 

immune cells within the microenvironment and by direct action on primary tumor cells. This 

double-hit may be an important molecular feature distinguishing opioid agonists that can 

clinically influence cancer recurrence and survival.

The relationship between opioids and cancer outcomes is controversial. Some retrospective 

studies have failed to replicate earlier findings and reported effect sizes are variable and 

often specific to cancer subtypes(3,52–55). In some cases, this may point to truly null effects 

or confounders. It may also indicate that opioids have cancer subtype-specific effects that are 

masked in larger heterogeneous cohorts. Without prospective experiments, quasi-

experimental studies, or a molecular understanding of opioids in humans with cancer, it is 

difficult to adjudicate between these possibilities. Our experiments address the molecular 

effects of opioids in humans with ccRCC by partly elucidating the regulation of opioid 

transcriptional pathways and the effect of opioid agonism in ccRCC. Our analysis provides a 

molecular rationale for this clinical relationship and supports the hypothesis that opioids 

negatively influence survival in clear cell renal cell carcinoma. Our results also suggest a 
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possible therapeutic role for the peripherally acting opioid antagonist methylnaltrexone in 

RCC, analogous to the pro-survival effect observed in other cancer types(56). Future studies 

can model network perturbations of various opioid agonists on different cancer subtypes in 

order to predict and corroborate clinical associations between opioid exposure and cancer 

recurrence. These survival-associated networks may also function as potential 

pharmacogenomic biomarkers, helping to risk-stratify individual patients and predict 

individual response to the drug of interest. By better modeling underlying cancer biology 

and its response to pharmacologic perturbations, integrative systems-based models may use 

individual gene expression profiles to guide personalized anesthetic and analgesic plans and 

to optimize cancer-specific outcomes for individual cancer patients.

These analyses focused on leu-enkephalin as a model opioid, which has strengths and 

weaknesses. As an endogenous opioid peptide, it is a natural, non-specific ligand. It is not 

currently used in clinical practice, but recent work has focused on targeting endogenous 

opioid pathways in the development of novel analgesic agents(57), and leu-enkephalin 

specifically(58). Furthermore, endogenous opioids have been specifically implicated in 

cancer progression(59). The transcriptional profile induced by leu-enkephalin also has been 

detailed across numerous cancer cell lines, facilitating an analysis of opioid agonism in gene 

networks associated with recurrence-free and cancer-specific survival. At the same time, 

extrapolation to the exogenous opioids commonly used in the perioperative setting, like 

morphine, morphine-derivatives (hydromorphone), and the phenylpiperidines (fentanyl) is 

limited. Comparisons between opioid agents in general are limited since clinical effects are 

affected by differences in structure, pharmacokinetic profiles, and relative selectivity for the 

different opioid receptors. Our study is also limited by evidence suggesting transcriptional 

profiles can differ between in vitro and in vivo cancer cells(60). While our analysis of 

naloxone and VEGF inhibitors help support our general interpretation, the effect of other 

opioid receptor agonists should be tested directly in vivo.

An intriguing finding of our study is that the mu, delta, and kappa opioid receptor genes are 

poorly expressed in renal tissue and ccRCC, though greater variability was noted in the 

disease state. This implies that opioids may act through other mechanisms in ccRCC, like 

TLR4, OPRL1, and OGFR, which are known to bind opioids and are relevant to cancer 

progression in general and ccRCC in particular(30,31,61). In fact, both TLR4 and OGFR are 

found in our analysis to be members of survival-associated ccRCC networks – TLR4 in the 

MET-dependent (“blue”) network and OGFR in the JUN-dependent (“black”) network. 

Another explanation may be that our bulk tissue analysis masks important single-cell 

variability in mu, delta, and kappa opioid receptor gene expression, which plays a critical 

role in both cancer tissue and its microenvironment. Several studies have already 

demonstrated that intratumoral and microenvironment heterogeneity at the single cell level is 

associated with clinical outcomes and have possible therapeutic implications(62–64). Single 

cell RNAseq studies have also demonstrated that acute opioid administration has widespread 

suppression of antiviral pathways across the immune system and particularly in 

monocytes(65). These data point to ways in which single cell variability may play a critical 

role in understanding the relationship between opioid administration and clinical outcomes 

in ccRCC. Our results highlight the molecular relationship between ccRCC and opioid 
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pathways, but future work is required to determine what are likely multiple mechanisms 

mediating this relationship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

This study suggests a possible molecular mechanism for opioid effects on cancer 

outcomes generally, with implications for personalization of analgesic regimens.
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Figure 1. Differential expression of opioid pathway genes in clear cell renal cell carcinoma.
(A) Top fifty differentially expressed genes between cases and controls in clear cell renal 

cell carcinoma, clustered by gene expression. Shades of red represents lower expression, and 

blue expression represents greater expression. (B) P value and log2 fold change for a subset 

of five hundred differentially expressed genes. Horizontal dotted line represents P threshold 

of 0.001, and the vertical dotted line represents fold change threshold of 0.5. Genes with a 

log2 fold change > 0.5 are labeled in red and log2 fold change < 0.5 are labeled in blue. 

Genes in the opioid signaling pathway are represented by large labeled nodes. (C-F) 
Comparing gene expression distributions between cases and controls for OGFR, OGFRL1, 

TLR4, OPRL1, all of which P < 0.05.
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Figure 2. Characterization of the 15 gene coexpression networks in ccRCC and association with 
survival endpoints.
(A) Topological overlap matrix plot depicts gene coexpression. Darker yellow and red 

represents stronger correlations between genes. (B) Z statistic represents reproducibility of 

each module. Z > 10 (green dotted line) represents strong evidence of robustness and Z >1 

(blue dotted line) represents weak evidence. (C) Circos plot depicts module eigengene 

correlations with survival and pathology measurements. Modules are ranked by the strength 

of their association with cancer-specific survival, reflected by the height of the purple 

histogram in Row 1. Rows 2–4 reflect the Cox model beta coefficient for overall survival, 

cancer-specific survival, and recurrence-free survival, respectively. Rows 5–7 reflect rho 

values for T, N, and M stage, respectively. Bluer values reflect negative values, while brown 

values reflect strong positive values. Rows 8–13 depict the −log10(P) values for the same 

survival (8–10) and pathology variables (11–13). (D) Cox model beta coefficient and 95% 

confidence interval for each module and its association with cancer-specific survival. Red 

bars depict P < 0.05. (E-J) Survival curves comparing individuals with upregulated (blue) 

and downregulated (gold) network expression for green module (E-G) and tan module (H-
J). Cancer-specific survival (E,H), recurrence-free survival (F, I), and overall survival (G,J) 
are depicted, and their respective Cox P values are each less than 0.05.
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Figure 3. Prediction of drug effects on the survival-associated networks.
. (A) A comparison of topological overlap matrices in cases (top right triangle) versus 

controls (bottom left triangle) for four modules. Greater coexpression is colored in dark 

yellow and red, while less coexpression is colored in light yellow and white. Module 

differential connectivity (MDC) and FDR values are depicted for each module. Differential 

connectivity was considered significant by FDR < 0.01. (B-D) Tau scores representing 

modulation of each survival network by leu-enkephalin (B), naloxone (C), and VEGF-

inhibitor (D). Red dotted lines represent strong evidence of drug modulation, |tau| > 90. Blue 

dotted lines represent suggestive evidence, |tau| >30. (E) The association between leu-

enkephalin tau score and Cox model survival coefficients for overall survival, recurrence-

free survival, and cancer-specific survival.
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Figure 4. Reconstructing directed transcriptional networks and master regulators in ccRCC.
Directed networks representing relationships between modules (boxed), as well as gene-

gene relationships within four separate modules. Each node is outlined based on its module 

color. Key drivers are represented by large nodes, and shaded key drivers are those with 

known associations to the opioid pathway.
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