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Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of 

high-quality haplotype-resolved human genomes without parent–child trio data. We present 64 

assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype 

assemblies (average contig N50: 26 Mbp) integrate all forms of genetic variation even across 

complex loci. We identify 107,590 structural variants (SVs), of which 68% are not discovered by 

short-read sequencing, and 278 SV hotspots (spanning megabases of gene-rich sequence). We 

characterize 130 of the most active mobile element source elements and find that 63% of all SVs 

arise by homology-mediated mechanisms. This resource enables reliable graph-based genotyping 

from short reads of up to 50,340 SVs, resulting in the identification of 1,526 expression 

quantitative trait loci as well as SV candidates for adaptive selection within the human population.

One Sentence Summary:

Structural variation from diverse human genome haplotype assemblies facilitates genotyping and 

new associations.

INTRODUCTION

Advances in long-read sequencing, coupled with orthogonal genome-wide mapping 

technologies, have made it possible to fully resolve and assemble both haplotypes of a 

human genome (1–3). While such phased human genome assemblies generally improve 

variant discovery compared to Illumina or “squashed” long-read genome assemblies (4), the 

largest gains in sensitivity have been among structural variants (SVs)—inversions, deletions, 

duplications, and insertions ≥50 bp in length. Typical Illumina-based discovery approaches 

identify only 5,000–10,000 SVs (1, 5, 6) in contrast to long-read genome analyses that now 

routinely detect >20,000 SVs (1, 3, 4, 7). Among the different classes of SVs, the greatest 

gains in sensitivity have been noted specifically for insertions where >85% of the variation 

has been reported as novel (1). In addition, repeat-mediated alterations within SV classes, 

such as variable number of tandem repeats (VNTRs) and short tandem repeats (STRs), have 

been challenging to delineate from short-read sequencing technologies and are 

underrepresented in the reference genome and often collapsed in unphased genome 

assemblies (8). The integration of long-read sequencing with new technologies such as 

single-cell template strand sequencing (Strand-seq) has further catalyzed the unambiguous 

confirmation of both heterozygous- and homozygous-inverted configurations in a genome 

(1, 9). Long-read phased genome assemblies (1) also better resolve larger full-length mobile 

element insertions (MEIs), providing an opportunity to systematically investigate their 

origins, distribution, and the mutational processes underlying their mobilization within more 

complex regions of the genome, including transductions (10, 11).

The Human Genome Structural Variation Consortium (HGSVC) recently developed a 

method for phased genome assembly that combines long-read PacBio whole-genome 

sequencing (WGS) and Strand-seq data to produce fully phased diploid genome assemblies 

without dependency on parent–child trio data (Fig. 1A) (3). These phased assemblies enable 

a more complete sequence-resolved representation of variation in human genomes.
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Here, we present a resource consisting of phased genome assemblies, corresponding to 70 

haplotypes (64 unrelated and 6 children) from a diverse panel of human genomes. We focus 

specifically on the discovery of novel SVs performing extensive orthogonal validation using 

supporting technologies with the goal of comprehensively understanding SV complexity, 

including in regions that cannot yet be resolved by long-read sequencing (fig. S1). Further, 

we genotype these newly defined SVs using a pangenome graph framework (12–14) into a 

diversity panel of human genomes now deeply sequenced (>30-fold) with short-read data 

from the 1000 Genomes Project (1000GP) (15, 16). These findings allow us to establish 

their population frequency, identify ancestral haplotypes, and discover new associations with 

respect to gene expression, splicing, and candidate disease loci. The work provides 

fundamental new insights into the structure, variation, and mutation of the human genome 

providing a framework for more systematic analyses of thousands of human genomes going 

forward.

RESULTS

Sequencing and phased assembly of human genomes.

We initially selected 34 unrelated individual genomes for de novo sequencing, with the goal 

of at least one representative from each of the 26 1000GP populations, of which 30 samples 

passed initial QC (tables S1 and S2). We additionally sequenced three previously studied 

child samples completing three parent–child trios, and we included for analysis publicly 

available sequencing data for two samples, NA12878 and HG002/NA24385, generated as 

part of the Genome in a Bottle effort (17). The complete set of 35 genomes includes 19 

females and 16 males of African (AFR, n=11), Admixed American (AMR, n=5), East Asian 

(EAS, n=7), European (EUR, n=7) and South Asian (SAS, n=5; table S1) descent. All 

genomes were sequenced (Methods) using continuous long-read (CLR) sequencing (n=30) 

to an excess of 40-fold coverage or high-fidelity (HiFi) sequencing (n=12) to an excess of 

20-fold coverage (Fig. 1B, table S1, (18)).

As a control for phasing and platform differences, we sequenced nine overlapping samples 

with both CLR as well as HiFi sequence data corresponding to the three parent–child trios 

(tables S1, S2) that had been studied for SVs previously by the HGSVC (1). For the purpose 

of phasing, we generated corresponding Strand-seq data (74-183 cells, fig. S2) for each of 

the samples. We used these data to successfully produce 70 (64 unrelated) phased and 

assembled human haplotypes (5.7 to 6.1 Gbp in length for the diploid sequence, table S1) 

using a reference-free assembly approach (Fig. 1A) (3), which works in the absence of 

parent–child trio information.

We find that the phased genomes are accurate at the base-pair level (QV > 40) and highly 

contiguous (contig N50 > 25 Mbp, Fig. 1C–E, table S1) with low switch error rates (median 

0.12%, table S3) providing a diversity panel of physically resolved and fully phased single-

nucleotide variant (SNV) and indel (insertion/deletion) haplotypes flanking sequence-

resolved SVs (table S4). Using two different metrics from variant calling and k-mer content 

methods, respectively (Fig. 1E), we find that sequence accuracy is higher for human genome 

assemblies generated by HiFi (median QV = 54 [hom. var.] / 43 [k-mer], Fig. 1E) when 

compared to CLR (median QV = 48 [hom. var.] / 39 [k-mer], Fig. 1E) sequencing. 
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Considering only accessible regions of the genome (18), the MAPQ60 contig coverage of 

HiFi and CLR genomes are similar (95.43% and 95.12%, table S5). CLR assemblies, 

however, are more contiguous (HiFi median contig N50 was 19.5 vs. 28.6 Mbp for CLR; p-

value <10e-9, t-test). Fifteen of our assembled haplotypes exceed a contig N50 of 32 Mbp, 

all of which were based on CLR sequencing where insert libraries are much larger and 

sequence coverage is higher with half the number of single-molecule, real-time (SMRT) 

cells (Fig. 1D, fig. S3, table S6).

Comparing Strand-seq phasing accuracy for six samples where parent–child trio data are 

available (table S3, figs. S4, S5; see Methods in (3)), we estimate on average 99.86% of all 1 

Mbp segments are correctly phased from telomere-to-telomere (average switch error rate of 

0.18% and Hamming distance of 0.21%, table S3). Predictably (3), remaining assembly gaps 

are enriched (18) in regions of segmental duplications (SDs) and acrocentric and 

centromeric regions of human chromosomes (figs. S6, S7, table S7). As a final QC of 

assembly quality, we analyzed Bionano Genomics optical mapping data for 32 genomes and 

found a median concordance of >97% between the optical map and the phased genome 

assemblies (figs. S8, S9, table S8).

Phased variant discovery.

Unlike previous population surveys of structural variation (1, 4, 19–21), which mapped 

reads or unphased contigs to the human reference genome, we developed the Phased 

Assembly Variant (PAV) caller (88) to discover genetic variants on the basis of a direct 

comparison between the two sequence-assembled haplotypes and the human reference 

genome, GRCh38 (18). In the end, each human genome is rendered into two haplotype-

resolved assemblies (each 2.9 Gbp) where all variants are physically linked (table S4). We 

classify variants as SNVs, indels (1-49 bp), and SVs (≥50 bp), which includes copy number 

variants (CNVs) and balanced inversion polymorphisms. After filtering (18), our 

nonredundant callset of unrelated samples contains 107,590 insertion/deletion SVs, 316 

inversions, 2.3 million indels, and 15.8 million SNVs.

We observe a 2 bp periodicity for indels (dinucleotide repeats) and modes at 300 bp and 6 

kbp for Alu and L1 MEIs, respectively (Fig. 2A), with only a small fraction intersecting 

functional elements (22) (Fig. 2B). PAV readily flags all reference-based artefacts or minor 

alleles by pinpointing regions where the 64 phased human genomes consistently differ from 

GRCh38 (1,573 SVs, 18,630 indels, and 91,537 SNVs, “shared variants”) (Fig. 2C, (18)). 

The greater haplotype diversity allows us to reclassify 50% of previously annotated shared 

SVs (4) as minor alleles and correct the coding sequence annotation of five genes with 

tandem repeats (RRBP1, ZNF676, MUC2, STOX1) or extreme GC content (SAMD1) (table 

S9). We estimate a false discovery rate (FDR) of 5–7% for SVs on the basis of support from 

sequence-read-based callers, as well as an independent alignment method (18). A 

comparison against SVs called from the benchmark Genome in a Bottle sample (HG002), 

including orthogonal datasets, suggests an FDR of ~4% although this estimate is restricted 

to a subset of the genome where events could be more reliably called (18).

Similarly, we estimate a 6% FDR for indels and 4% for SNVs based on an assessment of 

Mendelian transmission error from the HiFi and CLR parent–child trios (table S10, (18)). 
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We find that 42% of the SVs are novel when compared to recent long-read surveys of human 

genomes (1, 4, 19–21) (fig. S10). The addition of African samples more than doubles the 

rate of new variant discovery when compared to non-Africans for all classes of variation 

(2.21× SVs (809 vs. 366), 3.70× indels (11,514 vs. 3,109), and 2.97× SNVs (160,232 vs. 

54,006) for the 64th haplotype (Fig. 2C, table S11, (18)). On average, we detect 24,653 SVs, 

794,406 indels, and 3,895,274 SNVs per diploid human genome (table S4).

Structural variant discovery from short-read alignments.

To enable comparison of the PAV calls with genetic variants discovered by WGS, we 

performed Illumina-based short-read sequencing for 3,202 samples from the 1000GP (34.5-

fold coverage) (18) and discovered SVs using three analytic pipelines: GATK-SV (5), 

SVTools (6) and Absinthe (88). When focusing on the 31 unrelated samples with matching 

PacBio long-read sequences and callsets included in this study (NA24385, HG00514, 

HG00733 and NA19240 excluded), we observed 9,320 SVs per genome at 1.8% FDR by 

comparison to 24,596 SVs per genome from long-read assembly (Fig 2D; Fig S11). On 

average 77.4% of SVs detected by short-read pipelines were concordant with long-read 

assemblies, but only 29.6% of long-read SVs were observed in the short-read WGS callset 

(Fig. 2D). The greatest gains in sensitivity from long-read assemblies were observed among 

smaller SVs, where ~83.3% of events (<250 bp) were novel (Fig. 2E), while the short-read 

SV pipelines displayed greater sensitivity among large SVs > 5 kbp (Fig. 2E, figs. S11, S12, 

tables S12, S13).

Structural variant distribution and mechanisms.

SVs are known to be clustered (4, 15) and we identify 278 SV hotspots on the basis of our 

PAV callset (Fig. 2F, fig. S13, table S14, (18)) spanning ~279 Mbp of the genome (Fig. 2F 

inset). We find that 30.6% (32,222/105,327) of SVs on autosomes and chromosome X map 

within the last 5 Mbp of chromosome arms, corresponding to a ~4-fold enrichment 

(p=0.001, z-score=301.3, permutation test), with few notable exceptions—the long arm of 

the X chromosome and the short arms of chromosomes 3 and 20 (Fig. 2F, fig. S14A). 

Focusing on SVs >5 Mbp from chromosome ends (73,105), we identify 221 hotspots (fig. 

S14B). Of these, 49% (109/221) have not been previously identified by short-read analyses 

of the 1000GP data (23). These interstitial hotspots are enriched 6.6-fold (p=0.001, z-

score=26.6, permutation test) for SDs consistent with homologous recombination and 

frequently correspond to gene-rich regions of exceptional diversity among human 

populations. For example, we identify three distinct hotspots mapping to the major 

histocompatibility complex (MHC) region that distinguish seven selected structural 

haplotypes (Fig. 2G, fig. S15, table S15). Our analysis indicates that a majority (98.85%) of 

this 4 Mbp region has been sequence resolved at the base-pair level (29 of the assemblies are 

a single assembled contig and 18 have a single gap; 17/19 individual HLA genes are fully 

sequence resolved in all assemblies; tables S15, S16).

A detailed analysis of the SVs with unambiguous breakpoint locations provided an 

opportunity to examine mechanisms of SV formation. Excluding MEIs and SVs with 

ambiguous breakpoints, we assessed 52,974 insertions and 30,467 deletions (table S17). We 

find 58% of insertions and 70% of deletions, including SVs in VNTRs, are flanked by at 
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least 50 bp of homologous sequence suggesting formation by homology-directed repair 

(HDR) processes or non-allelic homologous recombination (NAHR). Amongst those, 15% 

of insertions and 25% of deletions showed >200 bp flanking homology and are more likely 

mediated by NAHR. VNTRs with short repeat units (<50 bp) account for a smaller number 

of events (1.6% insertions and 0.4% deletions) and suggest replication slippage-mediated 

expansion and contraction. Additionally, 40% of insertions and 29% of deletions show 

blunt-ended breakpoints or microhomology (<50 bp flanking sequence identity), consistent 

with nonhomologous end joining, microhomology-mediated end joining, or 

microhomology-mediated break-induced replication (24). Homology-associated SVs are 

twofold more frequent than expected from reports using short reads (25–27), and when 

considering Illumina sequencing-based SV calls from the same samples, only 2% of 

insertions and 19% of deletions appear to be NAHR-mediated SVs with ≥200 bp flanking 

homology (p-value <2.2e-16; Fisher’s exact test; table S17).

SVs and their breakpoints are generally more depleted within protein-coding sequences and 

other functional elements; with the exception of specific gene families where variability in 

the length of amino acid sequences relates to the function of the molecule (lipoprotein (e.g., 

LPA), mucins (MUC1, MUC3A, MUC4, MUC12, MUC20, MUC21), zinc finger genes 

(ZNF99, ZNF285, ZNF280), among others; table S18). We identify 9.4% of all SV 

breakpoints that intersect functional elements, such as exons (n=993), untranslated regions 

(UTRs; n=1,097), promoters (n=466), and enhancer-like elements (n=6,796) (Fig. 2B, table 

S19).

When we consider structural polymorphisms that arise from perfect triplet repeats, 

expansions outnumber contractions 3 to 1 (271 expansions, 88 contractions) consistent with 

such regions being systematically underrepresented in the original reference (8, 28). Over 

the 64 haplotypes, there are six such SVs per haplotype and we identify a total of 106 

nonredundant loci (tables S20, S21). Of note, 5/7 of the largest insertions of uninterrupted 

CTG or CGG repeat insertions mapping within exons correspond to genes already 

associated with triplet repeat instability diseases or fragile sites. For example, we identify a 

21-copy CTG repeat expansion in ATXN3 (Machado-Joseph disease), a 17-copy gain of 

CAG in HTT (Huntington’s disease), a 21-copy gain of a CGG repeat in ZNF713 (Fragile 

site 4A), and a 36-copy CGG gain in DIP2B (Fragile site 12A) (18). The discovery of these 

perfect repeat insertion alleles with respect to the human reference provides an important 

reference for future investigations of triplet repeat instability.

Mobile element insertions.

On the basis of the phased genome assemblies, we identified a collection (n=9,453) of fully 

sequence-resolved non-reference MEIs, including 7,738 Alus, 1,175 L1Hs, and 540 SVAs 

(18) and used sequence content of the elements and their flanking sequences to provide 

insight into their origin and mechanisms of retrotransposition. Retroelement insertions 

typically display the classic hallmarks of integration via target-site primed reverse 

transcription. These include endonuclease cleavage motifs at insertion breakpoints, 

polyadenylate tracts at their 3ʹ end, target site duplications ranging from 3 to 52 bp (mode = 

14 bp), in addition to frequent inversion and truncation for L1 elements (fig. S16). Full-
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length L1 (FL-L1) elements are an especially relevant source of genetic variation since they 

can mutagenize germline and somatic cells and can lead to gene disruptions that cause 

human disease (29, 30). While a minority of non-reference L1s are full length (fig. S16, 

table S22), we find that 78% of FL-L1s possess two intact open reading frames (ORF1 and 

ORF2), encoding the proteins that drive L1, Alu, SVA, and processed pseudogene 

mobilization. Indeed, 23% of these sequences show evidence of activity as they are part of a 

database of 198 FL-L1s known to be active in vitro (31, 32), in human populations (33), and 

in cancers (34–36). Most active copies (72%; 142/198) are either in our callset or present in 

the reference genome and are now fully sequence resolved (table S23). We note that 19% of 

the active FL-L1s have at least one ORF disrupted, which includes a hot element at 9q32 

reported to be highly active in diverse tumors (34).

Using L1 Pan troglodytes as an outgroup, we construct a phylogeny (85) of active human 

L1s and estimate their age in million years (Myr) (Fig. 3A, fig. S17). As expected, copies of 

the Ta-1 subfamily are the youngest (mean = 1.00 [95% CI: 0.88-1.13]), followed by Ta-0 

(mean = 1.63 [95% CI: 1.49-1.77]) and pre-Ta (mean = 2.15 [95% CI: 1.91-2.40]) (fig. S18). 

Notably, the evolutionary age correlates with L1 features such as subfamily, level of activity, 

and allele frequency (Fig. 3B, fig. S19)—with the youngest FL-L1s typically corresponding 

to highly polymorphic and active Ta-1 sequences. Indeed, three out of the four youngest 

active FL-L1s, namely 2q24.1, 6p24.1 and 6p22.1-2, are Ta-1 copies reported to be 

extremely active in cancer genomes (34). In contrast, 1p12 is a fixed Pre-Ta insertion that 

despite integrating into the human genome approximately 1.8 Myr ago remains highly active 

both in the germline (33) and somatically associated with tumors (34–36). This indicates 

that a small set of pre-Ta representatives possibly remain very active in the human genome.

SVA source elements are able to produce 5′ and 3′ transductions through alternative 

transcription start sites or bypassing of normal poly(A) sites during retrotransposition (10, 

11). We detected 77 transduced non-repetitive DNA sequences at SVA insertion ends (table 

S24). Interestingly, 5′ transductions are more abundant (58%, 45/77) than 3′ transductions 

(Fig. 3C), as opposed to L1s, which primarily mediate 3′ transduction events (95%, 89/94). 

We used these unique transduced sequences to trace the origin of all 77 SVAs to 56 source 

SVA elements (fig. S20, table S25). A majority of source loci (84%) belong to the youngest 

human-specific SVA-E and SVA-F subfamilies (37), and only 11 source elements generate 

38% of the offspring insertions.

SVA transductions can occasionally shuffle coding sequences as illustrated by the 

mobilization of a complete exon of HGSNAT by an intronic SVA in antisense orientation 

(fig. S21). In addition, one SVA source element appears to have caused three sequential 

mobilization events as indicated by nested transductions flanked by poly(A) tails (Fig. 3D, 

fig. S22). Finally, SVA elements harbor CpG-rich VNTRs in their interior regions that can 

expand and contract; we find that non-reference SVAs show significantly greater variability 

in VNTR copy number compared to those present in the reference (p-value < 10e-5, 

student’s t-test, two-sided, Fig. 3E).
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Inversions.

Copy number neutral inversions are among the most difficult SVs to detect and validate (1). 

We applied multiple approaches integrating Strand-seq, Bionano optical mapping, and PAV-

based variant discovery to generate a comprehensive and orthogonally validated set of 

inversions. PAV specifically increases inversion detection sensitivity for smaller events (fig. 

S23) by including a novel k-mer density assessment to resolve inner and outer breakpoints 

of flanking repeats, which does not rely on alignment breaks to identify inversion sites (18). 

PAV identifies an additional 43 inversions, on average, increasing sensitivity >2-fold 

compared to previous phased assembly callsets (2). In total, we discover on average 117 

inversions per sample (316 nonredundant calls across samples) (fig. S23). As expected, 

inversions flanked by SDs tend to be larger than those in unique regions of the genome (38) 

(Wilcoxon rank sum test (one-sided, greater), p-value: 3.2x10−13, fig. S24). We focus on one 

complex region mapping to chromosome 16p12 where we observed a large number of 

polymorphic inversions flanked by SDs (9) (fig. S25A). The region harbors 11 different 

inversions (red and gray arrows) distinguishing 22 different structural configurations that 

span a ~2.5 Mbp gene-rich region of chromosome 16p (up to 13 protein-coding genes are 

flipped in orientation depending on human haplotypes) (Fig. 4A, (18)). These configurations 

are distributed among human populations, but do not correspond to unique haplotypes (Fig. 

4A). For example, an analysis of the flanking sequence shows that at least five of the 

inversions occur in multiple haplotype backgrounds, indicative of recurrent inversion 

toggling (38, 39) between a direct and inverted state (fig. S26, (18)). Although Strand-seq 

data allow us to unambiguously identify the inversion status of the unique regions, most of 

the breakpoints themselves are not yet fully sequence resolved due to the presence of large 

repeats (Fig. 4A, fig. S25B, (3)).

Complex structural variation.

We investigated the remaining gaps in our assemblies that map near or within centromeres, 

acrocentric regions, and SDs (figs. S6, S7, table S7). Because such repetitive regions have 

long been known to be enriched in complex variation (40) and refractory to sequence 

assembly even with long-read data (1), we re-examined the genome-wide optical maps to 

assess additional regions of structural variation. In 30 samples, we find that 72% of the large 

insertions and deletions (≥5 kbp) discovered by optical mapping are completely sequence 

resolved and concordant with the assembly (table S26), but the remainder show additional 

complexity. As an example, our analysis of the Puerto Rican phased genome assembly 

(HG00733) originally identified a 75 kbp deletion between the two haplotypes at 

chromosome 1p13.3, but a comparison with Bionano Genomics data shows a more complex 

pattern than a single deletion event: An inversion of 75 kbp is found in the alternate allele 

flanked by inverted SDs of 100 kbp involving NBPF genes (Fig. 4B). Interestingly, such 

discrepant regions appear to cluster in the genome.

A comparison between the phased assemblies and Bionano Genomics optical maps revealed 

1,175 nonredundant SV clusters not detected in the phased assemblies and an additional 482 

SV clusters with support in a different individual (table S27). Among the 1,175 Bionano SV 

clusters not detected in the PacBio phased assemblies, 71 overlapped unresolved sequence 

(“N” gaps), and 69.3% (765/1104) of the remaining SV clusters were detected from the 
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Illumina short-read alignment pipelines (table S28). We manually inspected the 339 Bionano 

SV clusters that could not be detected in any of the short-read or assembly-based analyses 

and found read-depth evidence supporting 13.9% (47/339).

We estimate that there are still ~35 unresolved regions per phased assembly that are >50 kbp 

in length where there are five or more distinct SV haplotypes in the human population. On 

chromosome 3q29, for example (Fig. 4C), we identify 18 distinct structural haplotypes 

involving at least nine copy number and inversion polymorphisms affecting hundreds of 

kilobases of gene-rich sequence (min. 375 kbp, max. 690 kbp) (Fig. 4C). This pattern of 

structural diversity maps to the proximal breakpoint of the chromosome 3q29 microdeletion 

and microduplication syndrome rearrangement (chr3:195,999,954-197,617,802) associated 

with developmental delay and adult neuropsychiatric disease (41).

Genotyping.

We applied PanGenie (42), a method designed to leverage a panel of assembly-based 

reference haplotypes threaded through a graph representation of genetic variation that takes 

advantage of the linkage disequilibrium inherent in the phased genomes. We initially 

performed this genotyping step using a reference set of 15.5M SNVs, 1.03M indels (1-49 

bp), and 96.1k SVs (where there was <20% allelic dropout; fig. S1, table S29) and 

genotyped these variants into the 1000GP WGS dataset (18) observing expected patterns of 

diversity (15) (Fig. 5A, figs. S27, S28).

As one measure of genotyping quality, we compare the allele frequencies derived from 

assembly-based PAV calls across the 64 reference haplotypes to short-read-based allele 

frequencies obtained from PanGenie for the 2,504 unrelated individuals. From the raw 

output of PanGenie, we observe an allele frequency correlation (Pearson’s) of 0.98 for 

SNVs, 0.95 for indels, and 0.85 for SVs. To further improve SV genotyping, we filter the 

variants by assessing Mendelian consistency, the ability to detect the non-reference allele, 

genotype qualities, and concordance to assembly-based calls in a leave-out-one experiment 

into account (18). Using these criteria, we define a subset of strict and lenient SVs for 

genotyping containing 24,107 SVs (25%) and 50,340 SVs (52%), respectively, with 

excellent allele frequency correlation of 0.99 (strict, Fig. 5B) and 0.95 (lenient, fig. S29). 

Performance metrics for deletions and insertions are comparable (strict set: SV deletions, 

r=0.98; SV insertions, r=0.99; Fig. 5B), highlighting the value of sequence-resolved 

insertion alleles being part of our reference panel, as well as the algorithm’s ability to 

leverage it (fig. S30). Beyond SVs, 12,283,650 SNVs (79%) and 705,893 indels (68%) met 

strict filter criteria (note: given this larger fraction, we did not define a lenient set for these 

variant classes).

Added value from graph-based genotyping into short read WGS data.

To determine the value added by PanGenie genotyping, we next focused on an integrated 

comparison of long-read SV discovery (PAV), state-of-the-art short-read SV discovery, and 

the set of genotypable SVs by PanGenie. Consistent with our previous analyses (43), we 

observed that most SVs specific to long-read discovery localized to highly repetitive 

sequences, which collectively harbored 95.8% of long-read-specific deletions, and 85.7% of 
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long-read-specific insertions (table S30). We also discovered variation that was uniquely 

detected (although not sequence-resolved) and genotyped by sequencing read-depth from 

short reads. On average, there are 167 large CNVs (>5 kbp) per sample – 88.2% of which 

are not captured by long-read assemblies (Fig 5C, figs. S11, S31). A large fraction of these 

calls maps to large repetitive regions such as segmental duplications that are not fully 

sequence-resolved. Remarkably, we find that 42.5% (strict) and 59.9% (lenient) of 

PanGenie-genotypable SVs are absent from the short-read callset. We examined the 

distribution of common long-read SVs genotyped at >5% AF across all the 3,202 Illumina 

genomes against the short-read SVs from large population studies, including the Centers for 

Common Disease Genomics (CCDG, (6)) and Genome Aggregation Database (gnomAD, 

(5)) (Fig. 5D, fig. S12). The ability to genotype variation typically not detected in Illumina 

callsets is reflected in increased numbers of common SVs (AF>5%), particularly deletions 

below 250 bp and insertions under 1 kbp, genotyped by PanGenie but not seen in CCDG and 

gnomAD-SV, while also emphasizing the overall value of large-scale short-read datasets to 

capture rare variation and large CNVs in the population (fig. S31).

QTL analyses.

We applied PanGenie genotypes (strict set) to systematically discover quantitative trait loci 

(eQTL) associated with structural variation. First, we performed deep RNA-seq (>200M 

fragments) of the corresponding 34 lymphoblastoid cell lines and integrated these data with 

397 transcriptomes of 1000GP samples from GEUVADIS (44). We pursued cis expression 

quantitative trait loci (eQTL) and cis splicing quantitative trait loci (sQTL) mapping across 

the merged set of 427 donors, using a window of 1 Mbp centered around the gene or splice 

cluster, respectively, testing all variants with a minor allele frequency of ≥1% and at Hardy-

Weinberg equilibrium (HWE exact test p-value ≥ 0.0001). We considered 23,953 expressed 

genes (15,504 of which were protein-coding) and 36,100 splicing clusters (linked to 11,278 

genes).

Using this design, we identify 58,152 indel-eQTLs (linked to 6,748 unique genes) and 2,109 

SV-eQTLs (linked to 1,526 unique genes; table S31) at an FDR of 5%. The set includes 819 

lead indel-eQTLs and 38 lead SV-eQTLs at distinct genes, respectively (table S31). In the 

sQTL analysis we identified 3,382 SV-sQTLs (FDR 5%, linked to 758 unique genes; table 

S32) of which 65 SV-sQTLs at distinct genes were the lead association at the locus (18). In 

line with prior studies (23, 45), the lead variants are enriched for SVs (Fisher’s exact eQTL 

p-value = 1.0e-6, OR = 1.2; sQTL p-value = 1.6e-4, OR = 1.2) as well as smaller indels 

(Fisher’s exact eQTL: p-value = 8.8e-113, OR = 1.2; sQTL: p-value = 3.5e-72, OR = 1.2), 

whereas they are depleted for SNVs (Fisher’s exact eQTL p-value = 1.8-e118, OR = 0.84; 

sQTL: p-value = 1.2e-75, OR = 0.84). Among SVs, deletions show the greatest effect when 

compared to insertion events (table S33, (18)).

We overlapped lead SV-eQTLs with our Illumina-based discovery callset (18) and a recent 

large-scale SV study of 17,795 genomes (6) and find that 42% (16 out of 38 SVs) of the lead 

eQTL associations reported here are novel. Of these previously inaccessible SVs, 12 (75%) 

correspond to insertions (2 Alu MEIs, 3 tandem duplications, and 7 repeat expansions)—SV 

classes typically under-ascertained in short-read datasets (1). For example, one of our top 
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novel lead SVs is an 89 bp VNTR insertion in the terminal intron of the mitochondrial 

ribosome-associated GTPase 1 gene (MTG1; Fig. 5E) and is seen in conjunction with 

decreased expression. Similarly, we identify a 186 bp insertion in an ENCODE enhancer for 

B-cell lymphomas, which is associated with reduced expression of the immunoglobulin 

superfamily gene embigin (EMB; Fig. 5F). In contrast, we sequence resolve a 1,069 bp 

deletion located in an SD region downstream of the Lipase I gene (LIPI; Fig. 5G) and find 

that it is associated with increased gene expression of LIPI. Single-nucleotide 

polymorphisms at this locus have been linked to heart rate in patients with heart failure with 

reduced ejection fraction in a previous genome-wide association study (GWAS, p-value 

9.0e-06 reported in (46)).

Ancestry and population genetic analyses.

The availability of haplotype-phased assemblies provides an opportunity to explore the 

ancestry and population genetic properties of the genomes and SVs at multiple levels. We 

applied a machine-learning method (47) and developed a hidden Markov model to identify 

ancestry-informative SNVs and to assign ancestral segments per block based on population 

genetic data from the Simons Genome Diversity Project (SGDP, (48)) (18). The two 

methods, as well as the different sequencing platforms, produce highly concordant results 

(>90%, fig. S32). At the family level, we can accurately assign paternal and maternal 

haplotypes and distinguish recombination crossover events in the child compared to parental 

haplotypes (Fig. 6A).

At the population level, on average 87.2% of the assembled sequence can be assigned 

ancestry. 1000GP samples originating from the African continent show the largest tracts of 

uniform ancestry (mean length = 23.6 cM, Fig. 6B, fig. S33) in contrast to North and South 

American populations (mean length=2.65 cM, Fig. 6B, fig. S33) and South Asians (mean 

length=4.38 cM, Fig. 6B), consistent with recent and more ancient admixture. For example, 

the African American, African Caribbean, and Admixed American 1000GP samples show 

the greatest diversity of ancestral segments (Fig. 6B, figs. S33, S34) most likely as a result of 

the transatlantic slave trade and colonial era migration (49).

Focusing on our more comprehensive genotyping of SVs into WGS data, we searched for 

population-stratified variants since these are potential candidates for local adaptation (50, 

51) that could not have been characterized in the original study of 1000GP populations (15). 

Using Fst as a metric, we find that the number of such population-stratified variants varies 

widely among different groups likely as a consequence of ancestral diversity (Africans), 

population bottlenecks (East Asians), and admixture (South Asians) (Fig. 6C). Restricting 

our analysis to SVs located within 5 kbp of genes and applying population branch statistics 

(PBS) (51), we identify 117 stratified SVs (PBS >3 s.d., tables S34, S35) and further 

characterize these by the number of base pairs deleted or inserted per locus (Fig. 6D). The 

greatest outlier is a 4.0 kbp insertion within the first intron of LCT (lactase gene) originally 

reported based on fosmid sequencing from European samples (52). We determine that the 

corresponding insertion is ancestral (i.e., the human reference genome carries the derived 

deleted allele), the insertion harbors 11 predicted transcription factor binding sites, and the 
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deletion likely occurred as a result of an Alu-mediated NAHR event ~520,000 years ago 

(fig. S35).

LCT variation is one of the most well-known genes under adaptive evolution among 

Europeans. Notably, the reported causal, derived allele of lactase persistence in Europeans 

(−13910*T; rs4988235) is in complete linkage disequilibrium (D′=1) with the reference 

allele of this SV, and it will be interesting to determine the functional roles of these two 

mutations in lactase persistence (53). In other cases, the population-stratified variants are 

nested among known regulatory elements or intersect them directly, such as a 76 bp tandem 

repeat expansion in a PLEC intron, a cytoskeleton component, seen only in Africans 

(AF=0.82) and Admixed Americans (AF=0.06). Similarly, we identify a 2.8 kbp insertion 

mapping near potential repressor-binding sites in a CLEC16A intron, a gene associated with 

type 1 diabetes when disrupted (54). This variant shows a high frequency in American 

populations (AF=0.28), with the highest PBS signal among Peruvians (AF=0.39), but is 

rarely observed in other populations (AF≤0.04). Further studies are needed to confirm 

functional effect; however, it is interesting to note that type 1 diabetes in Peruvians is among 

the highest in the world (55).

DISCUSSION

We have generated a diversity panel of phased long-read human genome assemblies that has 

significantly improved SV discovery and will serve as the basis to construct new population-

specific references. Previous large-scale efforts have largely been inferential and biased 

when it comes to the detection of SVs. Here, we develop a method to discover all forms of 

genetic variation (PAV) directly by comparison of assembled human genomes. In contrast, 

SV discovery from the 1000GP was indirect and limited given the frequent proximity of SVs 

to repeat sequences inaccessible to short reads (15, 23). The 1000GP, for example, reported 

69,000 SVs based on the analysis of 2,504 short-read sequenced genomes. In contrast, our 

analysis of 32 genomes (64 unrelated haplotypes) recovers 107,136 SVs, more than tripling 

the rate of discovery when compared to short-read Illumina SV analyses on the same 

samples (Fig. 2D). Recent large-scale short-read sequencing studies (5, 6), interrogating tens 

of thousands of samples, show even lower SV sensitivity reporting 5,000 to 10,000 SVs per 

sample, when compared to our phased-assembly approach, which identifies 23,000 to 

28,000 SVs per sample. This lack of sensitivity for SV discovery from short reads also 

affects common variation (AF>5%) and we increase the amount of common SVs by 2.6-

fold. The predominant source of this increase in sensitivity was among small SVs (<250 bp) 

localized to SDs and simple repeat sequences, where we observed a dramatic 8.4-fold 

increase in variant discovery (12,109 SVs per genome from long-read assembly, 1,444 per 

genome from Illumina short-read alignment; Fig. 5C). Notably, all discovered genetic 

variation is physically phased and therefore SVs are fully integrated with their flanking 

SNVs.

Compared to previous reports based on short-read sequencing (25–27), a surprising finding 

has been the larger fraction of SVs (63%) now assigned to homology-based (>50 bp) 

mutation mechanisms, including HDR, NAHR and VNTR. Breakpoint characterization with 

short-read data apparently biased early reports toward relatively unique regions concluding 
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that <30% of SVs were driven by homology-based mutational mechanisms (25–27). Since a 

majority of unresolved structural variation still maps to large repeats, including centromeres 

and SDs subject to NAHR, we conclude that homology-based mutational mechanisms will 

contribute even further and are, therefore, the most predominant mode shaping the SV 

germline mutational landscape. Notwithstanding, access to fully assembled retrotransposons 

and their flanking sequence provides the largest collection of annotated source elements for 

both L1 and SVA mobile elements. We find that 14% of SVA insertions are associated with 

transductions compared to 8% of L1s—a difference driven in part by the proclivity of SVAs 

to transduce sequences at their 5′ and 3′ ends. We find a surprisingly large number of L1 

source elements (19%) with defective ORFs suggesting either trans-complementation (56) or 

polymorphisms leading to the recent demise of these active source elements. Of note, some 

of the youngest L1 copies (e.g., 6p22.1-1 and 2q24.1) have been reported to be rare 

polymorphisms able to mediate massive bursts of somatic retrotransposition in cancer 

genomes (57). This suggests that recently acquired hot L1s, which have not yet reached an 

equilibrium with our species, contribute disproportionately to disease-causing variation (58).

Genome-wide QTL scans can bridge the gap between molecular and clinical phenotypes and 

serve as a proxy for functional effects mediated by genetic variant classes (23, 44, 59). 

Taking advantage of the fully phased sequence-resolved genetic variation, we demonstrate 

this by applying PanGenie, a new pangenome-based genotyping method, to 3,202 1000GP 

genomes, resulting in reliable genotype calls for 705,893 indels and up to 50,340 SVs 

(lenient genotype set). Of these, 59.9% are presently missed in multi-algorithm short-read 

discovery callsets and the majority (68.2%) of these novel SVs are insertions. Our work, 

thus, provides a framework for the discovery of eQTLs and disease-associated variants with 

the potential to discriminate among SNVs, indels, and SVs as the most likely causal variants 

(lead variants) associated with human genetic traits. The fact that 31.9% of SV-eQTLs and 

48% of lead SV-eQTLs are rendered accessible to short reads only through the availability of 

our panel of haplotype-resolved assemblies testifies to the importance of this resource for 

future GWAS. Once again, among the lead SV-eQTLs, 75% are insertions, although there 

are also promising deletion eQTLs. For example, we identify a 1,069 bp deletion eQTL near 

LIPI, a GWAS disease locus for cardiac failure (46). Indeed, Summary-data-based 

Mendelian Randomization analysis (SMR, (60)) suggests that this SV-eQTLs of LIPI may 

be driving this association (SMR p-value adj.: 5.6e-4).

Haplotype-resolved SVs with accurate genotypes will also facilitate evolutionary and 

population genetic studies of SVs, including estimations of the rates of recurrent mutation, 

population stratification, and selective sweeps. As part of this analysis, we identify 117 loci 

associated with genes where allele frequencies differ radically between populations and are 

candidates for local adaptation (50, 51). Ancestral reconstructions of haplotype-resolved 

SVs can be further extended to identify introgressed SVs from Neanderthals and Denisovans 

(61). While archaic SNV haplotypes have been identified in modern-day humans, little is 

known regarding SV content given the degraded nature of ancient DNA. Combined with 

coalescent estimates of evolutionary age, it should now be possible to systematically identify 

associated introgressed SVs and assess them for signatures of adaptive evolution as was 

recently demonstrated (62). Even though we estimate that 96% of SVs with an allele 

frequency above 2% have been theoretically discovered (63), a greater diversity of human 
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genomes are required to adequately account for population differences, effects of selection, 

as well as archaic introgression. Our findings clearly indicate that genomes of African 

ancestry represent the deepest reservoir of untapped structural variation. Ongoing efforts 

from the HGSVC, All of Us, and the Human Pangenome Reference Consortium (HPRC, 

https://humanpangenome.org) exploring the normal pattern of structural variation using 

long-read sequences over the next few years will be critical to better understand human 

genetic variation.

Currently, our understanding of the full spectrum of structural variation is not yet complete, 

despite the advances presented here. There are two important limitations. First, comparison 

with optical mapping data identifies hundreds of gene-rich regions near and within SDs 

harboring more complex forms of SVs that are still not fully resolved by long-read 

assembly. The remaining gaps in human genomes cluster and a subset represent complex SV 

differences between human haplotypes. Second, only ~50% of our long-read discovery set of 

SVs can, at present, be reliably genotyped in short-read data using PanGenie. Expanding the 

number of assembly-based haplotypes available as pangenomic reference will likely mitigate 

this, but multiallelic VNTRs/STRs as well as SVs embedded in larger repeats such as SDs 

and centromeres are particularly problematic and novel methods are needed to characterize 

these. Recent advances coupling both HiFi and ultra-long-read Oxford Nanopore data show 

promise in resolving the sequence of these more complex regions from both haploid (64) 

and diploid human genome assemblies (65). Once a larger number of such complex regions 

are haplotype resolved across diversity panels of human genomes—and algorithms continue 

to evolve to exploit this information—we expect larger portions (fig. S36) of the human 

genome to become amenable to genotyping and association with human traits.

METHODS (short)

Libraries were prepared from high-molecular-weight DNA from lymphoblast lines (Coriell 

Institute). Long-read CLR and HiFi sequencing data (25-50X) were generated on the Sequel 

II platform (Pacific Biosciences) using 15-hour (CLR) or 30-hour (HiFi) movie times. 

Strand-seq data were produced from the same samples and used to identify and phase 

heterozygous SNVs (LongShot (66) and DeepVariant (67)) from the squashed genome 

assemblies (Peregrine (68) or Flye (69)). StrandphaseR (70), SaaRclust (71) and WhatsHap 

(72, 73) partitioned long reads into haplotypes to generate phased genome assemblies 

(PGAS (3)). MAPQ60 phased assembly contig coverage is estimated for autosomes (chr 

1-22) and the X chromosome to balance male and female comparisons, excluding regions of 

heterochromatin (Giemsa pos./var. staining) and unresolved reference sequence (N-gaps). 

We generated optical maps for 30 of the 32 samples based on DLE1 digestion (Bionano 

Genomics).

PAV was used to characterize SNVs, indels, and SVs compared to the human reference 

GRCh38. Inversions were detected using Strand-seq (1, 9, 38), optical mapping data 

(Bionano Solve v3.5) and PAV (88), which detects inversion signatures using a novel k-mer 

density approach to identify inner and outer breakpoints of flanking repeats without relying 

on alignment truncation. The diploid callset is created by merging two independent haploid 

callsets. We removed variants in collapses by SDA (74) and misaligned contig clusters, then 
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merged variants from all samples to create a nonredundant callset that was subsequently 

filtered by additional support (18). SVs required support from at least one of seven other 

sources, including read-based callers (MELT, PBSV, PALMER) (33, 75), optical mapping 

data, breakpoint k-mer analysis, and PAV replication with LRA (76). Indels required support 

from at least two of four sources and SNVs required support from at least two of five 

sources. MEIs were primarily discovered using PAV which were then annotated using 

MEIGA-PAV (89). In addition, Illumina and PacBio alignments were processed using MELT 

and PALMER, respectively, in order to increase sensitivity for MEI discovery. Finally, MEI 

calls across different platforms were merged into an integrated callset.

We estimated functional element depletion for SVs by simulation permuting SVs within 

their 1 Mbp bin 100,000 times and recording functional element hits for insertions and 

deletions for each functional category (CDS, 5′ UTR, 3′ UTR, promoter, proximal 

enhancer, distal enhancer, CTCF, and intron). SV hotspots were defined by searching for 

regions of increased SV density using kernel density estimation implemented with the 

‘hotspotter’ function from the primatR package (38, 77). Illumina WGS short reads (250 bp 

paired end) were generated (34.5-fold) (18) from 1000GP samples (2,504 unrelated 

individuals and additional samples from children to form 602 trios). SVs were called from 

an ensemble of three methods: GATK-SV (5), SVTools (6) and Absinthe (88) and detailed 

comparisons between long- and short-read data were performed for the 31 matched samples 

(18).

We genotyped all 3,202 genomes using PanGenie (42), which determines k-mer abundances 

from an input set of unaligned short reads and infers the genotypes of this short-read sample 

at all loci represented in the reference set. The method exploits both the linkage 

disequilibrium structure inherent to the reference haplotypes and the sequence resolution 

they provide and, hence, makes full use of the haplotype resource provided. RNA-seq data 

QC was conducted with Trim Galore! (78) and mapped to the reference genome using STAR 

(79), followed by gene-level quantification using FeatureCounts (80) and quantification of 

splice events using leafCutter (81). We mapped the effect of genetic variation on both 

expression levels and splicing ratios using a QTL mapping pipeline based on a linear mixed 

model implemented in LIMIX (82–84). We combined our QTL statistics with published 

GWAS results to assess the link among genetic variation, GWAS traits, and either gene 

expression or splicing ratios using SMR (60). To identify population-stratified SVs in the 26 

populations, we computed the FST-based PBS (18). For each focal population, we 

constructed population triplets by choosing sister- and out-groups inside and outside the 

continent where the focal population resides, respectively. For each focal population, we 

selected the maximum PBS per gene for all possible PBS triplets and selected the subset that 

are at least three standard deviations (Z transformation) beyond the PBS mean as potential 

targets of selection. Detailed descriptions of materials and methods are available in the 

supplementary materials (18).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Ebert et al. Page 15

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Authors 

Peter Ebert*,1, Peter A. Audano*,2, Qihui Zhu*,3, Bernardo Rodriguez-Martin*,4, 
David Porubsky2, Marc Jan Bonder4,5, Arvis Sulovari2, Jana Ebler1, Weichen 
Zhou6, Rebecca Serra Mari1, Feyza Yilmaz3, Xuefang Zhao7,8, PingHsun Hsieh2, 
Joyce Lee9, Sushant Kumar10, Jiadong Lin11, Tobias Rausch4, Yu Chen12, Jingwen 
Ren13, Martin Santamarina14,15, Wolfram Höps4, Hufsah Ashraf1, Nelson T. 
Chuang16, Xiaofei Yang17, Katherine M. Munson2, Alexandra P. Lewis2, Susan 
Fairley18, Luke J. Tallon16, Wayne E. Clarke19, Anna O. Basile19, Marta Byrska-
Bishop19, André Corvelo19, Uday S. Evani19, Tsung-Yu Lu13, Mark J.P. Chaisson13, 
Junjie Chen20, Chong Li20, Harrison Brand7,8, Aaron M. Wenger21, Maryam 
Ghareghani1,22,23, William T. Harvey2, Benjamin Raeder4, Patrick Hasenfeld4, 
Allison A. Regier24, Haley J. Abel24, Ira M. Hall25, Paul Flicek18, Oliver Stegle4,5, 
Mark B. Gerstein10, Jose M.C. Tubio14,15, Zepeng Mu26, Yang I. Li27, Xinghua 
Shi20, Alex R. Hastie9, Kai Ye11,28, Zechen Chong12, Ashley D. Sanders4, Michael 
C. Zody19, Michael E. Talkowski7,8, Ryan E. Mills6, Scott E. Devine16, Charles 
Lee3,28,#,@, Jan O. Korbel4,18,#,@, Tobias Marschall1,#,@, Evan E. Eichler2,29,#,@

Affiliations
1.Heinrich Heine University, Medical Faculty, Institute for Medical Biometry and 
Bioinformatics, Moorenstr. 20, 40225 Düsseldorf, Germany

2.Department of Genome Sciences, University of Washington School of Medicine, 
3720 15th Ave NE, Seattle, WA 98195-5065, USA

3.The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 
06032, USA

4.European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 
Meyerhofstr. 1, 69117 Heidelberg, Germany

5.Division of Computational Genomics and Systems Genetics, German Cancer 
Research Center (DKFZ), 69120 Heidelberg, Germany

6.Department of Computational Medicine & Bioinformatics, University of Michigan, 
500 S. State Street, Ann Arbor, MI 48109, USA

7.Center for Genomic Medicine, Massachusetts General Hospital, Department of 
Neurology, Harvard Medical School, Boston, MA 02114, USA

8.Program in Medical and Population Genetics and Stanley Center for Psychiatric 
Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

9.Bionano Genomics, San Diego, CA 92121, USA

10.Program in Computational Biology and Bioinformatics, Yale University, BASS 
432&437, 266 Whitney Avenue, New Haven, CT 06520, USA

11.School of Automation Science and Engineering, Faculty of Electronic and 
Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China

Ebert et al. Page 16

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12.Department of Genetics and Informatics Institute, School of Medicine, University 
of Alabama at Birmingham, Birmingham, AL 35294, USA

13.Department of Quantitative and Computational Biology, University of Southern 
California, Los Angeles, CA 90089, USA

14.Genomes and Disease, Centre for Research in Molecular Medicine and Chronic 
Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de 
Compostela, Spain

15.Department of Zoology, Genetics and Physical Anthropology, Universidade de 
Santiago de Compostela, Santiago de Compostela, Spain

16.Institute for Genome Sciences, University of Maryland School of Medicine, 670 W 
Baltimore Street, Baltimore, MD 21201, USA

17.School of Computer Science and Technology, Faculty of Electronic and 
Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China

18.European Molecular Biology Laboratory, European Bioinformatics Institute, 
Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom

19.New York Genome Center, New York, NY 10013, USA

20.Department of Computer & Information Sciences, Temple University, Philadelphia, 
PA 19122, USA

21.Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA

22.Max Planck Institute for Informatics, Saarland Informatics Campus E1.4, 66123 
Saarbrücken, Germany

23.Saarbrücken Graduate School of Computer Science, Saarland University, 
Saarland Informatics Campus E1.3, 66123 Saarbrücken, Germany

24.Washington University, St. Louis, MO 63108, USA

25.Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 
06510 USA

26.Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 
60637 USA

27.Section of Genetic Medicine, Department of Medicine, University of Chicago, 
Chicago, IL 60637 USA

28.Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong 
University, 277 West Yanta Rd., Xi’an, 710061, Shaanxi, China

29.Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, 
USA

Acknowledgements:

We thank T. Brown for assistance in editing this manuscript and K. Hoekzema and C. Baker for the preparation of 
cell line DNA. We also recognize the computational support (P.H. Rehs and C. Siebert) and infrastructure provided 

Ebert et al. Page 17

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by the Centre for Information and Media Technology (ZIM) at the University of Düsseldorf, the EMBL IT Services, 
and additional computational analyses (C. Alkan, F. Hormozdiari, D.S. Gordon and S. Murali). We thank M. 
Paulsen from the EMBL Flow Cytometry Core Facility, as well as J. Zimmermann and V. Benes from the EMBL 
Genomics Core Facility for assisting in Strand-seq sample preparation and sequencing. We thank the Human 
Pangenome Reference Consortium (HPRC) for use of the publicly available GIAB sequence data for the 
Ashkenazim benchmark sample HG002/NA24385. We are grateful to the people who generously contributed 
samples as part of the 1000 Genomes Project (1000GP). We thank the Pan-UKB project and UK Biobank for 
making the GWAS results available.

Funding:

Funding for this research project by the Human Genome Structural Variation Consortium (HGSVC) came from the 
following grants: National Institutes of Health (NIH) U24HG007497 (to C.L., E.E.E., J.O.K., T.M., M.E.T., A.B., 
M.B.G., S.E.D., I.H., S.A.M., R.E.M., M.J.P.C., and K.C.J.S.), NIH R01HG002898 (to S.E.D.), NIH 
R01HD081256 (to M.E.T.), NIH 1R01HG007068-01A1 (to R.E.M.), NIH R01HG002385 (to E.E.E.), 
R01MH115957 (to M.E.T.), NIH R15HG009565 (to X.S.), NIH 1U01HG010973 (to M.J.P.C., T.M., and E.E.E.), 
NIH 1R35GM138212 and a subaward from 1OT3HL147154 (to Z.C.), NIH/NHGRI Pathway to Independence 
Award K99HG011041 (to PH.H.), the German Research Foundation (391137747 and 395192176 to T.M.), the 
European Research Council (Consolidator grant 773026 to J.O.K. and Starting Grant 716290 to J.M.C.T.), the 
German Federal Ministry for Research and Education (BMBF 031L0184 to J.O.K. and T.M. and BMBF 
031L0181A to J.O.K), the Spanish Ministry of Economy, Industry and Competitiveness (SAF2015-66368-P to 
J.M.C.T.), the Wellcome Trust grants WT085532 and WT104947/Z/14/Z and the European Molecular Biology 
Laboratory (to S.F., L.C., E.L., H.Z.-B., P.F., J.O.K.), National Science Foundation of China (32070663 to K.Y., 
61702406 to X.Y.), National Key R&D Program of China (2017YFC0907500 to K.Y., 2018YFC0910400 to K.Y., 
2018ZX10302205 to X.Y.). This work was supported by the BMBF-funded de.NBI Cloud within the German 
Network for Bioinformatics Infrastructure (de.NBI) (031A537B, 031A533A, 031A538A, 031A533B, 031A535A, 
031A537C, 031A534A and 031A532B). E.E.E. is an investigator of the Howard Hughes Medical Institute. J.O.K. 
and J.M.C.T. are European Research Council (ERC) investigators. C.L. was a distinguished Ewha Womans 
University Professor supported, in part, by an Ewha Womans University research grant for 2019–2020. Also, this 
study was supported, in part, by funds from The First Affiliated Hospital of Xi’an Jiaotong University (to C.L.). 
A.C., W.E.C., and M.C.Z. were supported in part by a Centers for Common Disease Genomics (CCDG) grant from 
the National Human Genome Research Institute (UM1HG008901). M.S.G. is supported by a PhD fellowship from 
Xunta de Galicia (Spain). Illumina sequencing data from the 1000GP samples were generated at the New York 
Genome Center with funds provided by NHGRI Grants 3UM1HG008901-03S1 and 3UM1HG008901-04S2.

References and Notes

1. Chaisson MJP et al. Multi-platform discovery of haplotype-resolved structural variation in human 
genomes. Nat. Commun 10, 1784 (2019). [PubMed: 30992455] 

2. Garg S et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat. Biotechnol 
(2020), doi:10.1038/s41587-020-0711-0.

3. Porubsky D et al. Fully phased human genome assembly without parental data using single-cell 
strand sequencing and long reads. Nat. Biotechnol (2020), doi:10.1038/s41587-020-0719-5.

4. Audano PA et al. Characterizing the Major Structural Variant Alleles of the Human Genome. Cell. 
176, 663–675.e19 (2019). [PubMed: 30661756] 

5. Collins RL et al. A structural variation reference for medical and population genetics. Nature. 581, 
444–451 (2020). [PubMed: 32461652] 

6. Abel HJ et al. Mapping and characterization of structural variation in 17,795 human genomes. 
Nature. 583, 83–89 (2020). [PubMed: 32460305] 

7. Wenger AM et al. Accurate circular consensus long-read sequencing improves variant detection and 
assembly of a human genome. Nat. Biotechnol 37, 1155–1162 (2019). [PubMed: 31406327] 

8. Sulovari A et al. Human-specific tandem repeat expansion and differential gene expression during 
primate evolution. Proc. Natl. Acad. Sci. U. S. A 116, 23243–23253 (2019). [PubMed: 31659027] 

9. Sanders AD et al. Characterizing polymorphic inversions in human genomes by single-cell 
sequencing. Genome Res. 26, 1575–1587 (2016). [PubMed: 27472961] 

10. Xing J et al. Emergence of primate genes by retrotransposon-mediated sequence transduction. 
Proc. Natl. Acad. Sci. U. S. A 103, 17608–17613 (2006). [PubMed: 17101974] 

11. Damert A et al. 5’-Transducing SVA retrotransposon groups spread efficiently throughout the 
human genome. Genome Res. 19, 1992–2008 (2009). [PubMed: 19652014] 

Ebert et al. Page 18

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Computational Pan-Genomics Consortium, Computational pan-genomics: status, promises and 
challenges. Brief. Bioinform 19, 118–135 (2018). [PubMed: 27769991] 

13. Paten B, Novak AM, Eizenga JM, Garrison E, Genome graphs and the evolution of genome 
inference. Genome Res. 27, 665–676 (2017). [PubMed: 28360232] 

14. Eizenga JM et al. Pangenome Graphs. Annu. Rev. Genomics Hum. Genet (2020), doi:10.1146/
annurev-genom-120219-080406.

15. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature. 
526, 68–74 (2015). [PubMed: 26432245] 

16. Zody MC, 3,202 Illumina cohort dummy. bioRxiv (2 5., 2021), doi:10.1101/2021.02.05.000000.

17. Zook JM et al. An open resource for accurately benchmarking small variant and reference calls. 
Nat. Biotechnol 37, 561–566 (2019). [PubMed: 30936564] 

18. Materials and methods are available as supplementary materials.

19. Huddleston J et al. Discovery and genotyping of structural variation from long-read haploid 
genome sequence data. Genome Res. 27, 677–685 (2017). [PubMed: 27895111] 

20. Shi L et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat. Commun 7, 
12065 (2016). [PubMed: 27356984] 

21. Seo J-S et al. De novo assembly and phasing of a Korean human genome. Nature. 538, 243–247 
(2016). [PubMed: 27706134] 

22. ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and 
mouse genomes. Nature. 583, 699–710 (2020). [PubMed: 32728249] 

23. Sudmant PH et al. An integrated map of structural variation in 2,504 human genomes. Nature. 526, 
75–81 (2015). [PubMed: 26432246] 

24. Carvalho CMB, Lupski JR, Mechanisms underlying structural variant formation in genomic 
disorders. Nat. Rev. Genet 17, 224–238 (2016). [PubMed: 26924765] 

25. Conrad DF et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. 
Nat. Genet 42, 385–391 (2010). [PubMed: 20364136] 

26. Lam HYK et al. Nucleotide-resolution analysis of structural variants using BreakSeq and a 
breakpoint library. Nat. Biotechnol 28, 47–55 (2010). [PubMed: 20037582] 

27. Mills RE et al. Mapping copy number variation by population-scale genome sequencing. Nature. 
470, 59–65 (2011). [PubMed: 21293372] 

28. Chaisson MJP et al. Resolving the complexity of the human genome using single-molecule 
sequencing. Nature. 517, 608–611 (2015). [PubMed: 25383537] 

29. Hancks DC, Kazazian HH Jr, Roles for retrotransposon insertions in human disease. Mob. DNA. 7, 
9 (2016). [PubMed: 27158268] 

30. Scott EC, Devine SE, The Role of Somatic L1 Retrotransposition in Human Cancers. Viruses. 9 
(2017), doi:10.3390/v9060131.

31. Brouha B et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. 
Natl. Acad. Sci. U. S. A 100, 5280–5285 (2003). [PubMed: 12682288] 

32. Beck CR et al. LINE-1 retrotransposition activity in human genomes. Cell. 141, 1159–1170 
(2010). [PubMed: 20602998] 

33. Gardner EJ et al. The Mobile Element Locator Tool (MELT): population-scale mobile element 
discovery and biology. Genome Res. 27, 1916–1929 (2017). [PubMed: 28855259] 

34. Rodriguez-Martin B et al. Pan-cancer analysis of whole genomes identifies driver rearrangements 
promoted by LINE-1 retrotransposition. Nat. Genet 52, 306–319 (2020). [PubMed: 32024998] 

35. Jung H, Choi JK, Lee EA, Immune signatures correlate with L1 retrotransposition in 
gastrointestinal cancers. Genome Res. 28, 1136–1146 (2018). [PubMed: 29970450] 

36. Tubio JMC et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by 
L1 retrotransposition in cancer genomes. Science. 345, 1251343 (2014). [PubMed: 25082706] 

37. Wang H et al. SVA elements: a hominid-specific retroposon family. J. Mol. Biol 354, 994–1007 
(2005). [PubMed: 16288912] 

38. Porubsky D et al. Recurrent inversion toggling and great ape genome evolution. Nat. Genet 52, 
849–858 (2020). [PubMed: 32541924] 

Ebert et al. Page 19

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Zody MC et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet 40, 
1076–1083 (2008). [PubMed: 19165922] 

40. Locke DP et al. Large-scale variation among human and great ape genomes determined by array 
comparative genomic hybridization. Genome Res. 13, 347–357 (2003). [PubMed: 12618365] 

41. Ballif BC et al. Expanding the clinical phenotype of the 3q29 microdeletion syndrome and 
characterization of the reciprocal microduplication. Mol. Cytogenet 1, 8 (2008). [PubMed: 
18471269] 

42. Ebler J et al. Pangenome-based genome inference. Cold Spring Harbor Laboratory (2020), p. 
2020.11.11.378133.

43. Zhao X et al. Expectations and blind spots for structural variation detection from short-read 
alignment and long-read assembly. Cold Spring Harbor Laboratory (2020), p. 2020.07.03.168831.

44. Lappalainen T et al. Transcriptome and genome sequencing uncovers functional variation in 
humans. Nature. 501, 506–511 (2013). [PubMed: 24037378] 

45. Chiang C et al. The impact of structural variation on human gene expression. Nat. Genet 49, 692–
699 (2017). [PubMed: 28369037] 

46. Evans KL et al. Genetics of heart rate in heart failure patients (GenHRate). Hum. Genomics. 13, 22 
(2019). [PubMed: 31113495] 

47. Maples BK, Gravel S, Kenny EE, Bustamante CD, RFMix: a discriminative modeling approach for 
rapid and robust local-ancestry inference. Am. J. Hum. Genet 93, 278–288 (2013). [PubMed: 
23910464] 

48. Mallick S et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse 
populations. Nature. 538, 201–206 (2016). [PubMed: 27654912] 

49. Mathias RA et al. A continuum of admixture in the Western Hemisphere revealed by the African 
Diaspora genome. Nat. Commun 7, 12522 (2016). [PubMed: 27725671] 

50. Nielsen R et al. Darwinian and demographic forces affecting human protein coding genes. Genome 
Res. 19, 838–849 (2009). [PubMed: 19279335] 

51. Yi X et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 329, 75–
78 (2010). [PubMed: 20595611] 

52. Kidd JM et al. Characterization of missing human genome sequences and copy-number 
polymorphic insertions. Nat. Methods. 7, 365–371 (2010). [PubMed: 20440878] 

53. Bersaglieri T et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. 
Hum. Genet 74, 1111–1120 (2004). [PubMed: 15114531] 

54. Soleimanpour SA et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 157, 
1577–1590 (2014). [PubMed: 24949970] 

55. Seclen SN, Rosas ME, Arias AJ, Medina CA, Elevated incidence rates of diabetes in Peru: report 
from PERUDIAB, a national urban population-based longitudinal study. BMJ Open Diabetes Res 
Care. 5, e000401 (2017).

56. Wei W et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. 
Biol 21, 1429–1439 (2001). [PubMed: 11158327] 

57. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, Pan-cancer analysis of whole 
genomes. Nature. 578, 82–93 (2020). [PubMed: 32025007] 

58. Cordaux R, Batzer MA, The impact of retrotransposons on human genome evolution. Nat. Rev. 
Genet 10, 691–703 (2009). [PubMed: 19763152] 

59. Consortium GTEx, The GTEx Consortium atlas of genetic regulatory effects across human tissues. 
Science. 369, 1318–1330 (2020). [PubMed: 32913098] 

60. Zhu Z et al. Integration of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat. Genet 48, 481–487 (2016). [PubMed: 27019110] 

61. Sankararaman S et al. The genomic landscape of Neanderthal ancestry in present-day humans. 
Nature. 507, 354–357 (2014). [PubMed: 24476815] 

62. Hsieh P et al. Adaptive archaic introgression of copy number variants and the discovery of 
previously unknown human genes. Science. 366 (2019), doi:10.1126/science.aax2083.

63. Eberle MA, Kruglyak L, An analysis of strategies for discovery of single-nucleotide 
polymorphisms. Genet. Epidemiol 19 Suppl 1, S29–35 (2000). [PubMed: 11055367] 

Ebert et al. Page 20

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



64. Miga KH et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 585, 
79–84 (2020). [PubMed: 32663838] 

65. Logsdon GA et al. The structure, function, and evolution of a complete human chromosome 8. 
Cold Spring Harbor Laboratory (2020), p. 2020.09.08.285395.

66. Edge P, Bansal V, Longshot enables accurate variant calling in diploid genomes from single-
molecule long read sequencing. Nat. Commun 10, 333 (2019). [PubMed: 30659178] 

67. Poplin R et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. 
Biotechnol 36, 983–987 (2018). [PubMed: 30247488] 

68. Chin C-S, Khalak A, Human Genome Assembly in 100 Minutes. Cold Spring Harbor Laboratory 
(2019), p. 705616.

69. Kolmogorov M, Yuan J, Lin Y, Pevzner PA, Assembly of long, error-prone reads using repeat 
graphs. Nat. Biotechnol 37, 540–546 (2019). [PubMed: 30936562] 

70. Porubsky D et al. Dense and accurate whole-chromosome haplotyping of individual genomes. Nat. 
Commun 8, 1293 (2017). [PubMed: 29101320] 

71. Ghareghani M et al. Strand-seq enables reliable separation of long reads by chromosome via 
expectation maximization. Bioinformatics. 34, i115–i123 (2018). [PubMed: 29949971] 

72. Patterson M et al. WhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing 
Reads. J. Comput. Biol 22, 498–509 (2015). [PubMed: 25658651] 

73. Martin M et al. WhatsHap: fast and accurate read-based phasing. Cold Spring Harbor Laboratory 
(2016), p. 085050.

74. Vollger MR et al. Long-read sequence and assembly of segmental duplications. Nat. Methods. 16, 
88–94 (2019). [PubMed: 30559433] 

75. Zhou W et al. Identification and characterization of occult human-specific LINE-1 insertions using 
long-read sequencing technology. Nucleic Acids Res. 48, 1146–1163 (2020). [PubMed: 31853540] 

76. Ren J, Chaisson MJP, lra: the Long Read Aligner for Sequences and Contigs. Cold Spring Harbor 
Laboratory (2020), p. 2020.11.15.383273.

77. Bakker B et al. Single-cell sequencing reveals karyotype heterogeneity in murine and human 
malignancies. Genome Biol. 17, 115 (2016). [PubMed: 27246460] 

78. Krueger F, Trim Galore: a wrapper tool around Cutadapt and FastQC. Trim Galore! (2012), 
(available at http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).

79. Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29, 15–21 (2013). 
[PubMed: 23104886] 

80. Liao Y, Smyth GK, Shi W, The Subread aligner: fast, accurate and scalable read mapping by seed-
and-vote. Nucleic Acids Res. 41, e108 (2013). [PubMed: 23558742] 

81. Li YI et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet 50, 151–
158 (2018). [PubMed: 29229983] 

82. Casale FP, Rakitsch B, Lippert C, Stegle O, Efficient set tests for the genetic analysis of correlated 
traits. Nat. Methods. 12, 755–758 (2015). [PubMed: 26076425] 

83. Mirauta BA et al. Population-scale proteome variation in human induced pluripotent stem cells. 
Elife. 9 (2020), doi:10.7554/eLife.57390.

84. Bonder MJ et al. Systematic assessment of regulatory effects of human disease variants in 
pluripotent cells. Cold Spring Harbor Laboratory (2019), p. 784967.

85. García MS, Multiple sequence alignments of full-length L1 elements with evidence of 
retrotransposition activity (2021), , doi:10.5281/zenodo.4475905.

86. Audano PA, HGSVC Key Callset Resources (2020), , doi:10.5281/zenodo.4268828.

87. Bonder MJ, HGSVC2 full eQTL results (2020), , doi:10.5281/zenodo.4271574.

88. Ebert P, HGSVC2 project code contributions (2021), , doi:10.5281/zenodo.4482026.

89. Martín BR, MEIGA-tk/MEIGA-PAV: MEIGA-PAV (2021), , doi:10.5281/zenodo.4487121.

90. Zook JM et al. Extensive sequencing of seven human genomes to characterize benchmark 
reference materials. Scientific Data. 3, 1–26 (2016).

Ebert et al. Page 21

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


91. Fairley S, Lowy-Gallego E, Perry E, Flicek P, The International Genome Sample Resource (IGSR) 
collection of open human genomic variation resources. Nucleic Acids Res. 48, D941–D947 
(2020). [PubMed: 31584097] 

92. Gong L, Wong C-H, Idol J, Ngan CY, Wei C-L, Ultra-long Read Sequencing for Whole Genomic 
DNA Analysis. J. Vis. Exp (2019), doi:10.3791/58954.

93. Sanders AD, Falconer E, Hills M, Spierings DCJ, Lansdorp PM, Single-cell template strand 
sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc 12, 
1151–1176 (2017). [PubMed: 28492527] 

94. Falconer E et al. DNA template strand sequencing of single-cells maps genomic rearrangements at 
high resolution. Nat. Methods. 9, 1107–1112 (2012). [PubMed: 23042453] 

95. Sanders AD et al. Single-cell analysis of structural variations and complex rearrangements with tri-
channel processing. Nat. Biotechnol 38, 343–354 (2020). [PubMed: 31873213] 

96. Quinlan AR, Hall IM, BEDTools: a flexible suite of utilities for comparing genomic features. 
Bioinformatics. 26, 841–842 (2010). [PubMed: 20110278] 

97. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D, BigWig and BigBed: enabling browsing 
of large distributed datasets. Bioinformatics. 26, 2204–2207 (2010). [PubMed: 20639541] 

98. Holley G, Melsted P, Bifrost – Highly parallel construction and indexing of colored and compacted 
de Bruijn graphs. Cold Spring Harbor Laboratory (2019), p. 695338.

99. Song L, Florea L, Langmead B, Lighter: fast and memory-efficient sequencing error correction 
without counting. Genome Biol. 15, 509 (2014). [PubMed: 25398208] 

100. Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek PR, The ensembl regulatory build. 
Genome Biol. 16, 56 (2015). [PubMed: 25887522] 

101. Kent WJ et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002). 
[PubMed: 12045153] 

102. Karolchik D et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–6 
(2004). [PubMed: 14681465] 

103. Haeussler M et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 47, 
D853–D858 (2019). [PubMed: 30407534] 

104. Schneider VA et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates 
the enduring quality of the reference assembly. Genome Res. 27, 849–864 (2017). [PubMed: 
28396521] 

105. 1000 Genomes Project Consortium et al. A map of human genome variation from population-
scale sequencing. Nature. 467, 1061–1073 (2010). [PubMed: 20981092] 

106. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A, Versatile genome assembly 
evaluation with QUAST-LG. Bioinformatics. 34, i142–i150 (2018). [PubMed: 29949969] 

107. Seppey M, Manni M, Zdobnov EM, in Gene Prediction: Methods and Protocols, Kollmar M, Ed. 
(Springer New York, New York, NY, 2019), pp. 227–245.

108. Frankish A et al. GENCODE reference annotation for the human and mouse genomes. Nucleic 
Acids Res. 47, D766–D773 (2018).

109. Sheffield NC, Bock C, LOLA: enrichment analysis for genomic region sets and regulatory 
elements in R and Bioconductor. Bioinformatics. 32, 587–589 (2016). [PubMed: 26508757] 

110. Vollger MR et al. Improved assembly and variant detection of a haploid human genome using 
single-molecule, high-fidelity long reads. bioRxiv, 635037 (2019).

111. Li H et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods. 
15, 595–597 (2018). [PubMed: 30013044] 

112. Heller D, Vingron M, SVIM-asm: Structural variant detection from haploid and diploid genome 
assemblies. Bioinformatics (2020), doi:10.1093/bioinformatics/btaa1034.

113. Nurk S et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants 
from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020). [PubMed: 32801147] 

114. Cheng H, Concepcion GT, Feng X, Zhang H, Li H, Haplotype-resolved de novo assembly with 
phased assembly graphs. arXiv [q-bio.GN] (2020), (available at http://arxiv.org/abs/2008.01237).

115. Porubsky D, Ebert P, Audano PA, Vollger MR, A fully phased accurate assembly of an individual 
human genome. bioRxiv (2019) (available at 10.1101/855049v1.abstract).

Ebert et al. Page 22

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/2008.01237


116. Miller DE et al. Targeted long-read sequencing resolves complex structural variants and identifies 
missing disease-causing variants. Cold Spring Harbor Laboratory (2020), p. 2020.11.03.365395.

117. Hiatt SM et al. Long-read genome sequencing for the diagnosis of neurodevelopmental disorders. 
Cold Spring Harbor Laboratory (2020), p. 2020.07.02.185447.

118. Li H, A statistical framework for SNP calling, mutation discovery, association mapping and 
population genetical parameter estimation from sequencing data. Bioinformatics. 27, 2987–2993 
(2011). [PubMed: 21903627] 

119. Li H, Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34, 3094–3100 
(2018). [PubMed: 29750242] 

120. Ruan J, Li H, Fast and accurate long-read assembly with wtdbg2. Nat. Methods. 17, 155–158 
(2020). [PubMed: 31819265] 

121. Regier AA et al. Functional equivalence of genome sequencing analysis pipelines enables 
harmonized variant calling across human genetics projects. Nat Commun. 9 (2018), 
doi:10.1101/269316.

122. McKenna A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). [PubMed: 20644199] 

123. Poplin R et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Cold 
Spring Harbor Laboratory (2017), p. 201178.

124. Delaneau O, Marchini J, Zagury J-F, A linear complexity phasing method for thousands of 
genomes. Nat. Methods. 9, 179–181 (2011). [PubMed: 22138821] 

125. O’Connell J et al. A general approach for haplotype phasing across the full spectrum of 
relatedness. PLoS Genet. 10, e1004234 (2014). [PubMed: 24743097] 

126. Loh P-R et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. 
Genet 48, 1443–1448 (2016). [PubMed: 27694958] 

127. Chen X et al. Manta: rapid detection of structural variants and indels for germline and cancer 
sequencing applications. Bioinformatics. 32, 1220–1222 (2016). [PubMed: 26647377] 

128. Kronenberg ZN et al. Wham: Identifying Structural Variants of Biological Consequence. PLoS 
Comput. Biol 11, e1004572 (2015). [PubMed: 26625158] 

129. Layer RM, Chiang C, Quinlan AR, Hall IM, LUMPY: a probabilistic framework for structural 
variant discovery. Genome Biol. 15, R84 (2014). [PubMed: 24970577] 

130. Abyzov A, Urban AE, Snyder M, Gerstein M, CNVnator: an approach to discover, genotype, and 
characterize typical and atypical CNVs from family and population genome sequencing. Genome 
Res. 21, 974–984 (2011). [PubMed: 21324876] 

131. Rausch T et al. DELLY: structural variant discovery by integrated paired-end and split-read 
analysis. Bioinformatics. 28, i333–i339 (2012). [PubMed: 22962449] 

132. Becker T et al. FusorSV: an algorithm for optimally combining data from multiple structural 
variation detection methods. Genome Biol. 19, 38 (2018). [PubMed: 29559002] 

133. Ke G et al. in Advances in Neural Information Processing Systems 30, Guyon I, Luxburg UV, 
Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, Eds. (Curran Associates, Inc., 
2017), pp. 3146–3154.

134. Collins RL et al. An open resource of structural variation for medical and population genetics. 
bioRxiv (2019), p. 578674.

135. Klambauer G et al. cn.MOPS: mixture of Poissons for discovering copy number variations in 
next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 40, e69 
(2012). [PubMed: 22302147] 

136. R Core Team, R: A Language and Environment for Statistical Computing (2020), (available at 
http://www.R-project.org/).

137. Babadi M et al. Abstract 2287: Precise common and rare germline CNV calling with GATK. 
Cancer Res. 78, 2287–2287 (2018).

138. Zhao X, Weber AM, Mills RE, A recurrence-based approach for validating structural variation 
using long-read sequencing technology. Gigascience. 6, 1–9 (2017).

139. Chen S et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. 
Genome Biol. 20, 291 (2019). [PubMed: 31856913] 

Ebert et al. Page 23

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org/


140. Katoh K, Standley DM, MAFFT multiple sequence alignment software version 7: improvements 
in performance and usability. Mol. Biol. Evol 30, 772–780 (2013). [PubMed: 23329690] 

141. Larson DE et al. svtools: population-scale analysis of structural variation. Bioinformatics. 35, 
4782–4787 (2019). [PubMed: 31218349] 

142. Anantharaman TS, Mysore V, Mishra B, Fast and cheap genome wide haplotype construction via 
optical mapping. Pac. Symp. Biocomput, 385–396 (2005). [PubMed: 15759644] 

143. Porubsky D et al. breakpointR: an R/Bioconductor package to localize strand state changes in 
Strand-seq data. Bioinformatics. 36, 1260–1261 (2020). [PubMed: 31504176] 

144. Lander ES et al. Initial sequencing and analysis of the human genome. Nature. 409, 860–921 
(2001). [PubMed: 11237011] 

145. Smit AF, Interspersed repeats and other mementos of transposable elements in mammalian 
genomes. Curr. Opin. Genet. Dev 9, 657–663 (1999). [PubMed: 10607616] 

146. Hancks DC, Kazazian HH Jr, Active human retrotransposons: variation and disease. Curr. Opin. 
Genet. Dev 22, 191–203 (2012). [PubMed: 22406018] 

147. Muotri AR et al. Somatic mosaicism in neuronal precursor cells mediated by L1 
retrotransposition. Nature. 435, 903–910 (2005). [PubMed: 15959507] 

148. Batzer MA, Deininger PL, Alu repeats and human genomic diversity. Nat. Rev. Genet 3, 370–379 
(2002). [PubMed: 11988762] 

149. Zook JM et al. A robust benchmark for detection of germline large deletions and insertions. Nat. 
Biotechnol (2020), doi:10.1038/s41587-020-0538-8.

150. Koren S et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and 
repeat separation. Genome Res. (2017), doi:10.1101/gr.215087.116.

151. Li H, Durbin R, Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics. 25, 1754–1760 (2009). [PubMed: 19451168] 

152. Boissinot S, Chevret P, Furano AV, L1 (LINE-1) retrotransposon evolution and amplification in 
recent human history. Mol. Biol. Evol 17, 915–928 (2000). [PubMed: 10833198] 

153. Kearse MG, Wilusz JE, Non-AUG translation: a new start for protein synthesis in eukaryotes. 
Genes Dev. 31, 1717–1731 (2017). [PubMed: 28982758] 

154. Jukes TH, Osawa S, Evolutionary changes in the genetic code. Comp. Biochem. Physiol. B. 106, 
489–494 (1993). [PubMed: 8281749] 

155. Osawa S, Jukes TH, Watanabe K, Muto A, Recent evidence for evolution of the genetic code. 
Microbiol. Rev 56, 229–264 (1992). [PubMed: 1579111] 

156. Skowronski J, Fanning TG, Singer MF, Unit-length line-1 transcripts in human teratocarcinoma 
cells. Mol. Cell. Biol 8, 1385–1397 (1988). [PubMed: 2454389] 

157. The UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, 
D158–D169 (2017). [PubMed: 27899622] 

158. Edgar RC, MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res. 32, 1792–1797 (2004). [PubMed: 15034147] 

159. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ, Jalview Version 2--a multiple 
sequence alignment editor and analysis workbench. Bioinformatics. 25, 1189–1191 (2009). 
[PubMed: 19151095] 

160. Paradis E, Claude J, Strimmer K, APE: Analyses of Phylogenetics and Evolution in R language. 
Bioinformatics. 20, 289–290 (2004). [PubMed: 14734327] 

161. Schliep KP, phangorn: phylogenetic analysis in R. Bioinformatics. 27, 592–593 (2011). [PubMed: 
21169378] 

162. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ, IQ-TREE: a fast and effective stochastic 
algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol 32, 268–274 (2015). 
[PubMed: 25371430] 

163. Marchani EE, Xing J, Witherspoon DJ, Jorde LB, Rogers AR, Estimating the age of 
retrotransposon subfamilies using maximum likelihood. Genomics. 94, 78–82 (2009). [PubMed: 
19379804] 

164. Salem AH et al. LINE-1 preTa elements in the human genome. J. Mol. Biol 326, 1127–1146 
(2003). [PubMed: 12589758] 

Ebert et al. Page 24

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



165. Hancks DC, Kazazian HH Jr, SVA retrotransposons: Evolution and genetic instability. Semin. 
Cancer Biol 20, 234–245 (2010). [PubMed: 20416380] 

166. Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr, SVA elements are nonautonomous 
retrotransposons that cause disease in humans. Am. J. Hum. Genet 73, 1444–1451 (2003). 
[PubMed: 14628287] 

167. Mills RE, Bennett EA, Iskow RC, Devine SE, Which transposable elements are active in the 
human genome? Trends Genet. 23, 183–191 (2007). [PubMed: 17331616] 

168. Roy-Engel AM et al. Active Alu element “A-tails”: size does matter. Genome Res. 12, 1333–
1344 (2002). [PubMed: 12213770] 

169. Bennett EA et al. Active Alu retrotransposons in the human genome. Genome Res. 18, 1875–
1883 (2008). [PubMed: 18836035] 

170. Flasch DA et al. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity 
with Replication. Cell. 177, 837–851.e28 (2019). [PubMed: 30955886] 

171. Jurka J, Sequence patterns indicate an enzymatic involvement in integration of mammalian 
retroposons. Proc. Natl. Acad. Sci. U. S. A 94, 1872–1877 (1997). [PubMed: 9050872] 

172. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD, Human L1 retrotransposon encodes a conserved 
endonuclease required for retrotransposition. Cell. 87, 905–916 (1996). [PubMed: 8945517] 

173. Chaisson MJP et al. Multi-platform discovery of haplotype-resolved structural variation in human 
genomes. bioRxiv (2017), p. 193144.

174. Lu T-Y, The Human Genome Structural Variation Consortium, Chaisson M, Profiling variable-
number tandem repeat variation across populations using repeat-pangenome graphs. Cold Spring 
Harbor Laboratory (2020), p. 2020.08.13.249839.

175. Benson G, Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 
573–580 (1999). [PubMed: 9862982] 

176. Marçais G et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol 
14, e1005944 (2018). [PubMed: 29373581] 

177. Khelik K, Lagesen K, Sandve GK, Rognes T, Nederbragt AJ, NucDiff: in-depth characterization 
and annotation of differences between two sets of DNA sequences. BMC Bioinformatics. 18, 338 
(2017). [PubMed: 28701187] 

178. Li H et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078–2079 
(2009). [PubMed: 19505943] 

179. Chikhi R, Limasset A, Medvedev P, Compacting de Bruijn graphs from sequencing data quickly 
and in low memory. Bioinformatics. 32, i201–i208 (2016). [PubMed: 27307618] 

180. Rausch T, Fritz MH-Y, Untergasser A, Benes V, Tracy: basecalling, alignment, assembly and 
deconvolution of sanger chromatogram trace files. BMC Genomics. 21, 1–9 (2020).

181. Andrews S, Others, FastQC: a quality control tool for high throughput sequence data (2010).

182. Martin M, Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnet.journal. 17, 10–12 (2011).

183. Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics. 26, 139–140 (2010). 
[PubMed: 19910308] 

184. Jun G et al. Detecting and estimating contamination of human DNA samples in sequencing and 
array-based genotype data. Am. J. Hum. Genet 91, 839–848 (2012). [PubMed: 23103226] 

185. Cotto KC et al. RegTools: Integrated analysis of genomic and transcriptomic data for the 
discovery of splicing variants in cancer. Cold Spring Harbor Laboratory (2021), p. 436634.

186. Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet 81, 559–575 (2007). [PubMed: 17701901] 

187. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O, Fast and efficient QTL mapper for 
thousands of molecular phenotypes. Bioinformatics. 32, 1479–1485 (2016). [PubMed: 
26708335] 

188. Storey JD, Tibshirani R, Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. 
S. A 100, 9440–9445 (2003). [PubMed: 12883005] 

Ebert et al. Page 25

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



189. Gymrek M et al. Abundant contribution of short tandem repeats to gene expression variation in 
humans. Nat. Genet 48 (2016), doi:10.1038/ng.3461.

190. Gusev A et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 
common diseases. Am. J. Hum. Genet 95 (2014), doi:10.1016/j.ajhg.2014.10.004.

191. Yang J, Lee SH, Goddard ME, Visscher PM, GCTA: a tool for genome-wide complex trait 
analysis. Am. J. Hum. Genet 88 (2011), doi:10.1016/j.ajhg.2010.11.011.

192. Buniello A et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, 
targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019). 
[PubMed: 30445434] 

193. Kamat MA et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype 
associations. Bioinformatics. 35, 4851–4853 (2019). [PubMed: 31233103] 

194. Staley JR et al. PhenoScanner: a database of human genotype-phenotype associations. 
Bioinformatics. 32, 3207–3209 (2016). [PubMed: 27318201] 

195. Smigielski EM, Sirotkin K, Ward M, Sherry ST, dbSNP: a database of single nucleotide 
polymorphisms. Nucleic Acids Res. 28, 352–355 (2000). [PubMed: 10592272] 

196. Benjamini Y, Hochberg Y, Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol 57, 289–300 (1995).

197. Alexander DH, Novembre J, Lange K, Fast model-based estimation of ancestry in unrelated 
individuals. Genome Res. 19, 1655–1664 (2009). [PubMed: 19648217] 

198. Martin AR et al. Human Demographic History Impacts Genetic Risk Prediction across Diverse 
Populations. Am. J. Hum. Genet 100, 635–649 (2017). [PubMed: 28366442] 

199. Speidel L, Forest M, Shi S, Myers SR, A method for genome-wide genealogy estimation for 
thousands of samples. Nat. Genet 51, 1321–1329 (2019). [PubMed: 31477933] 

200. Gordon D et al. Long-read sequence assembly of the gorilla genome. Science. 352, aae0344–
aae0344 (2016). [PubMed: 27034376] 

201. Kronenberg ZN et al. High-resolution comparative analysis of great ape genomes. Science. 360 
(2018), doi:10.1126/science.aar6343.

202. Speidel L, Forest M, Shi S, Myers SR, A method for genome-wide genealogy estimation for 
thousands of samples. Nat. Genet 51, 1321–1329 (2019). [PubMed: 31477933] 

203. Human Genome Structural Variation Working Group et al. Completing the map of human genetic 
variation. Nature. 447, 161–165 (2007). [PubMed: 17495918] 

204. Regier AA et al. Functional equivalence of genome sequencing analysis pipelines enables 
harmonized variant calling across human genetics projects. Nat. Commun 9, 4038 (2018). 
[PubMed: 30279509] 

205. Eichler EE, in Proceedings of the sixth annual international conference on Computational biology 
(Association for Computing Machinery, New York, NY, USA, 2002), RECOMB ’02, p. 155.

206. Sudmant PH et al. Global diversity, population stratification, and selection of human copy number 
variation. Science. 349, aab3761 (2015). [PubMed: 26249230] 

Ebert et al. Page 26

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Trio-free phased diploid genome assembly using Strand-seq (PGAS).
(A) A schematic of the PGAS pipeline (3): (a) generation of a non-haplotype-resolved 

(“squashed”) long-read assembly; (b) clustering of assembled contigs into “chromosome” 

clusters based on Strand-seq Watson/Crick signal; (c) calling of single-nucleotide variants 

(SNVs) relative to the clustered squashed assembly; (d) integrative phasing combines local 

(SNV) and global (Strand-seq) haplotype information for chromosome-wide phasing; (e) 

tagging of input long reads by haplotype; (f) phased genome assembly based on haplotagged 

long reads and subsequent variant calling (18). (B) Genomic coverage (y-axis) as a function 

of the long-read length (x-axis). (C) Fraction of reads that can be assigned (“haplotagged”) 

to either haplotype 1 (semitransparent) or haplotype 2 for HiFi (hatched) and CLR (solid) 

datasets. (D) Contig-level N50 values for squashed (x-axis) and haploid assemblies (y-axis) 

for CLR (black diamonds) and HiFi (red circles) samples. (E) Haploid assembly QV 

estimates computed from unique and shared k-mers (x-axis) based on homozygous Illumina 

variant calls (y-axis). Samples colored according to the 1000GP population color scheme 

(15) with exception of the added Ashkenazim individual NA24385/HG002 (Coriell family 

ID 3140) (ASK/dark blue).
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Fig. 2. Variant discovery and distribution.
(A) Size distribution of indels and SVs from 64 unrelated reference genomes shows a 2 bp 

periodicity for indels, 300 bp peak for Alu insertions (second row), and 6 kbp peak for L1 

MEIs. (B) The number of SVs intersecting functional elements (horizontal axis) compared 

to randomly permuting SV locations (box plots). Gray bars depict percent depletion (right 

axis scale). ELS: Enhancer-like signature. CTCF: CCCTC-binding factor. (C) Cumulative 

number of unique SVs when adding samples one-by-one, from left to right. The rate of SV 

discovery slows with each new haplotype (regression lines); however, the addition of 

haplotypes of African origin (dashed line) increases SV yield. Colors indicate SVs shared 

among all haplotypes and not present in GRCh38 (red), major allele variants (AF≥50%, 

purple), polymorphisms (≥2 haplotypes, blue) and singletons (teal). Asterisks indicate 

samples sequenced using PacBio HiFi. (D) Overlap between SVs detected by PacBio long-

read assemblies and Illumina short-read alignments on 31 matched samples (NA24835, 

HG00514, HG00733 and NA19240 excluded). Top bar shows overall SV sites across 31 

samples, while the bottom bar displays the average count of SVs per sample, with green 

stripes representing concordant SV calls between technologies. (E) Length distribution of 

SVs detected by PacBio long-read assemblies and Illumina short-read alignments across all 
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31 matched samples. (F) Genome-wide distribution of SV hotspots divided in three 

categories: last 5 Mbp of chromosomes (yellow), overlapping (light blue), and novel (red) 

when compared to short-read SV analysis of 1000GP (23). The total sequence length is 

represented by each hotspot category (inset). (G) Heatmap of seven selected SV haplotypes 

for 4 Mbp MHC region (chr6:28,510,120-33,480,577 dashed lines) comparing regions of 

high SNV (red) and low diversity (blue) regions based on the number of alternate SNVs 

compared to the reference (GRCh38; alignment bin size 10 kbp, step 1 kbp). Phased SV 

insertions (blue arrows) and deletions (red arrows) are mapped above each haplotype. The 

most diverse regions correspond to SV hotspots (red/blue bars top row) and cluster with 

HLA genes (red bottom track).

Ebert et al. Page 29

Science. Author manuscript; available in PMC 2021 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Mobile element insertions.
(A) Maximum-likelihood phylogenetic tree (85) for highly active sequence-resolved FL-L1s 

annotated by subfamily designation, presence/absence on the reference, ORF content, and 

hot activity profile (34–36) (bootstrap values ≥80% shown). Tree branch lengths are scaled 

according to the average number of substitutions per base position. Dashed lines map each 

L1 cytoband identifier to its corresponding branch on the tree. Pan troglodytes (L1Pt) is 

included as an outgroup. Heatmaps represent allele frequency (AF) based on the assembly 

discovery set, activity estimates based on in vitro assays (31, 32) and the number of 

transduction events detected in human populations (33) or cancer studies (34–36). (B) 

Enrichment and depletion in the number of FL-L1s belonging to the Ta-1 subfamily at age 

quartiles (Q1-Q4) compared with a random distribution. Same applies for the other features, 

including the number of FL-L1s with low allele frequency (MAF<5%), with two intact 

ORFs, or with evidence of activity. (C) Size distribution and number of 5′ and 3′ SVA-

mediated transductions (td) based on the analysis of flanking sequences. (D) Schematic and 

circos representation for serial SVA-mediated transduction events. Dashed arrows indicate 

SVA transcription initiation and end. Transduced sequences are shown as colored boxes with 

their length proportional to transduction size. (E) Distributions of VNTR length (x-axis: the 

minimum, y-axis: the maximum) of reference and non-reference SVA elements. Reference 

SVAs are shown as blue dots and non-reference SVAs as red dots. The dot size represents 

the sample frequency of SVAs among discovery samples in the HGSVC.
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Fig. 4. Complex patterns of structural variation.
(A) An inversion hotspot mapping to a 2.5 Mbp gene-rich region of chromosome 16p12 

(highlighted portion of ideogram). Haplotype structure of inversions (red arrows) are 

compared to the GRCh38 reference orientation (black lines) as well as additional inversions 

(gray), which could not be haplotype integrated because of uninformative markers. A barplot 

(right panel) enumerates the frequency of each distinct inversion configuration (n=22) by 

superpopulation for the 64 phased genomes. Bottom panels: Shows distribution of SDs 

(orange), assembly gaps (gray), and genes (black) in a given region. (B) A partially resolved 
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complex SV locus (HG00733 at chr1:108,216,144-108,516,144). Optical maps generated by 

DLE1 digestion predict a deletion (red bar, Bionano H1) and an inversion (blue bar, Bionano 

H2) when compared to GRCh38 (green bar). Haplotype structures are strongly supported by 

extracted single molecules (beige) and raw images (green dots). Phased assembly correctly 

resolves the hap1 deletion (purple top) and Strand-seq detects the inversion (blue) but misses 

the flanking SD, which is a gap in the H2 assembly (gap). (C) Haplotype structural 

complexity at chromosome 3q29. Optical mapping of a 410 kbp gene-rich region 

(chr3:195,607,154-196,027,006) predicts 18 distinct structural haplotypes (H1-H8) that vary 

in abundance (n=1 to 12) and differ by at least nine copy number SDs and associated 

inversion polymorphisms (see colored arrows). This hotspot leads to changes in gene copy 

and order (GENCODE v34 top panel): 26 haplotypes are fully resolved by phased assembly 

(21 CLR, 5 HiFi) and the median MAP60 contig coverage of the region is 96.1%.
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Fig. 5. SV genotyping and eQTL analysis.
(A) Distribution of heterozygous SV counts per diploid genome broken down by population, 

based on PanGenie genotypes passing strict filters. (B) Concordance of allele frequency 

(AF) estimates from the assembly-based PAV discovery callset and AF estimates from 

genotyping unrelated Illumina genomes (n=2,504) with PanGenie (strict genotype set of 

24,107 SVs); marginal histograms are in linear scale. (C) Count of short- and long-read SVs 

across variant class, size distribution, and genomic sequence localization. Blue bars 

represent the proportion of SVs genotyped by PanGenie with AF>0 and green stripes 

represent concordant SVs between technologies. SD: segmental duplications; SR: simple 

repeats; RM: repeat masked (not SD or SR); US: unique sequence. (D) Length distribution 

of common SVs sites (AF>5%) represented in assembly-based callset, including variants 

genotyped using PanGenie and all common variants from population-scale studies from the 

Genome Aggregation Database (gnomAD-SV) and the Centers for Common Disease 

Genetics (CCDG; insertions from CCDG omitted due to lack of data). Length distributions 

for all variants (not restricted to common) are provided in fig. S23. (E-G) Examples of lead 

SV-eQTLs (large symbols) in context of their respective genes, overlapping regulatory 

annotation, and other variants (small symbols). (E) An 89 bp insertion (chr10-133415975-

INS-89) is linked to decreased expression of MTGI (q-value = 4.10e-11, Beta = −0.55 

[−0.51 — −0.59]). (F) A 186 bp insertion (chr5-50299995-INS-186), overlapping an 

ENCODE enhancer mark (orange), is the lead variant associated with decreased expression 

of EMB (q-value = 2.92e-06, Beta = −0.44 [−0.39 — −0.49]). (G) A 1,069 bp deletion 

(chr21-14088468-DEL-1069) downstream of LIPI is linked to increased expression of LIPI 
(q-value = 0.0022, Beta = 0.44 [0.38 — 0.50]).
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Fig. 6. Ancestry and population differentiation inferences using haplotype-phased diploid 
assemblies.
(A) Inferred local ancestries (18) for maternal (upper) and paternal (bottom) haplotypes of 

HG00733 are compared to parental haplotypes (maternal: HG00732, paternal: HG00731). 

Ancestral segments are colored (African: yellow, Native American: red, and European: blue) 

and are consistent with the recent demographic history of the island (18). HG0733 SVs (≥50 

bp; insertion: green, deletion: purple), inferred recombination breakpoints (triangles), and 

transmission of recombinant parental haplotypes (dashed lines) are shown. (B) Length 

distribution (log10) of ancestry tracts among the 64 genomes assigned to five 

superpopulations shows evidence of recent (Admixed American) and more ancient (South 

Asian) admixture. (C) Top population-specific Fst variants (dark color) and top 

superpopulation-specific Fst variants (light color). The number of stratified SVs differs by 

orders of magnitude depending on population. (D) Top SV PBS (population branch statistic) 

values within 5 kbp of genes identify SV candidates for selection and disease. A high PBS 

statistic suggests AF differences among populations are a result of selection.
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