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Abstract

Background: Opioid abuse poses significant risk to individuals in the United States and 

epigenetic changes are a leading potential biomarker of opioid abuse. Current evidence, however, 

is mostly limited to candidate gene analysis in whole blood. To clarify the association between 

opioid abuse and DNA methylation, we conducted an epigenome-wide analysis of DNA 

methylation in brain samples of individuals who died from acute opioid intoxication and group-

matched controls.

Methods: Tissue samples were extracted from the dorsolateral prefrontal cortex of 153 deceased 

individuals (Mage = 35.42; 62% male; 77% European ancestry). The study included 72 opioid 

samples, 53 psychiatric controls, and 28 normal controls. The epigenome-wide analysis was 

implemented using the Illumina MethylationEPIC BeadChip; analyses adjusted for 

sociodemographic characteristics, negative control principal components, ancestry principal 

components, cellular composition, and surrogate variables. Horvath’s epigenetic age and Levine’s 

PhenoAge were calculated, and gene set enrichment analyses were performed.

Results: Although no CpG sites survived false-discovery rate correction for multiple testing, 13 

sites surpassed a relaxed significance threshold (p < 1.0 x 10−5). One of these sites was located 

within Netrin-1, a gene implicated in kappa opioid receptor activity. There was an association 

between opioid use and accelerated PhenoAge (b = 2.24, se = 1.11, p = .045). Gene set enrichment 
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analyses revealed enrichment of differential methylation in GO and KEGG pathways broadly 

related to substance use.

Conclusions: Netrin-1 may be associated with opioid overdose, and future research with larger 

samples across stages of opioid use will elucidate the complex genomics of opioid abuse.
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1. Introduction

Opioid use continues to pose significant risk to individuals throughout the globe, especially 

in the United States. Data from population-based epidemiological surveys from 2002-2016 

in the United States revealed that approximately 30% of individuals who started heroin use 

met DSM-IV criteria for opioid dependence within one year of initiation (Santiago Rivera et 

al., 2018). In addition, the most recent estimates from the Global Burden of Diseases, 

Injuries, and Risk Factors Study revealed that the global prevalence of opioid dependence 

was 510 people per population of 100,000, and the United States had the highest prevalence 

rate among all countries (1,347 persons per 100,000 population) (Degenhardt et al., 2019). 

These data are alarming given the preponderance of evidence demonstrating robust 

associations between opioid dependence and harmful physical and psychosocial outcomes 

such as decreased quality of life, contact with the criminal justice system, increased risk for 

HIV (among injection drug users), and fatal and non-fatal overdoses (Degenhardt et al., 

2019). Given the individual and societal burden of opioid dependence, it is necessary to 

characterize the biological pathways to dependence. Doing so will aid in identification of 

specific pathways that can be targeted for treatment and intervention.

Epigenetic changes have emerged as a leading potential biological marker of drug 

dependence given their implications for transcription regulation and cellular reprogramming 

(Jaenisch and Bird, 2003). Among these changes, DNA methylation (DNAm) at 

cytosineguanine (CpG) sites has received the most attention in substance use research 

(Vanyukov and Tarter, 2019). Studies in animal models provide robust evidence that 

substance abuse causes changes in gene expression through changes in DNAm (Nestler, 

2014). Baker-Andersen et al. (Baker-Andresen et al., 2015) conducted an epigenome-wide 

study of DNAm in the medial prefrontal cortex (mPFC) of cocaine-using mice, finding that 

cocaine use was associated with differential methylation in 29 regions of the mPFC and 

subsequent changes in gene expression. Moreover, enrichment analyses revealed that 

differentially methylated genes in these regions were associated with known memory and 

addiction pathways in the brain. Results from human studies yield similar findings (Nielsen 

et al., 2012). Hagerty et al. (Hagerty et al., 2016) examined epigenome-wide methylation 

patterns in buccal cells between alcohol use disorder (AUD) cases and controls, finding 561 

hypomethylated CpG sites and 485 hypermethylated CpG sites among AUD cases compared 

to controls; A majority of these sites were located in genes involved in lipid metabolism, 

immune response, and inflammatory disease pathways. Additionally, in a second cohort of 

brain tissue samples, 432 of these sites (244 hypomethylated and 188 hypermethylated) were 

significantly correlated between buccal and brain samples, suggesting some overlap in 

Shu et al. Page 2

Drug Alcohol Depend. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methylation patterns across tissue type. Altogether, current evidence suggests that DNAm is 

a potential biomarker of substance use and has implications for broader biological 

functioning.

To date, epigenetic studies of opioid use have focused on candidate genes, namely OPRM1, 

which encodes for the μ-opioid receptor (Chorbov et al., 2011; Ebrahimi et al., 2018; 

Nielsen et al., 2009; Sandoval-Sierra et al., 2020). This receptor plays a role in the tolerance 

and physical dependence of opiates (Martini and Whistler, 2007). Candidate-epigenetic 

studies generally find hypermethylation of CpG sites in various regions of OPRM1, 

including promoter regions (Ebrahimi et al., 2018). Although these studies provide evidence 

for a potential pathway to opioid dependence in humans, they focus on a single gene, often 

in small sample sizes, increasing the likelihood of false positive results and limiting the 

detection of other genomic regions relevant to opioid use.

In the first epigenome-wide association study of DNAm of heroin users, Kozlenkov et al. 

(Kozlenkov et al., 2017) found three genome-wide significant differentially methylated sites 

in the brains of individuals who died from heroin intoxication (n = 37) compared to controls 

(n = 28) in tissue from the medial orbital frontal cortex (mOFC), a subregion of the mPFC 

that aids in goal-directed behavior and decision-making processes implicated in drug 

addiction (Gansler et al., 2011). Recently, Montalvo-Ortiz et al. (Montalvo-Ortiz et al., 

2019) conducted a genome-wide analysis of DNAm levels in whole-blood samples of 

opioid-dependent women and matched controls. Results revealed three significantly 

hypomethylated CpG sites in the PARG, RERE, and CFAP77 genes, which are involved in 

chromatin remodeling, DNA binding, and cell survival and projection. Notably, PARG and 

RERE are highly expressed in multiple brain regions, and single nucleotide polymorphisms 

(SNPs) within RERE have been linked to psychiatric disorders including schizophrenia, 

attention deficit-hyperactivity disorder, major depressive disorder, and bipolar disorder 

(Smoller et al., 2013). Although neither of these studies detected differential methylation in 

the OPRM1 gene, they provide insight into DNAm patterns in separate tissue types (i.e., 

brain, blood) and elucidate the functional relevance of DNAm.

Although current evidence suggests that opioid use is associated with DNAm, several 

questions and issues remain. First, the majority of epigenetic studies focused on a single 

candidate gene, OPRM1, yet there are undoubtedly other potential genes and pathways 

through which opioid use contributes to dependence. Second, the majority of studies 

examined DNAm levels in blood or saliva, assuming that DNAm patterns in these tissues 

mirror levels in the brain. Although overlap in patterns of DNAm across tissues may occur, 

there is ample evidence suggesting that DNAm levels differ substantially by tissue type and 

brain region (Davies et al., 2012; Lister et al., 2013). The goal of the present study was to 

address these issues by assessing epigenome-wide DNAm in postmortem brain tissue from 

individuals who died of acute opioid intoxication and group-matched controls. The current 

study builds upon similar work by Kozlenkov et al. by assessing epigenome-wide 

methylation using the Illumina MethylationEPIC BeadChip, which contains over 400,00 

more CpG sites than the Illumina HumanMethylation450 BeadChip, and other 

improvements such as the inclusion of CpG sites located in enhancers (Pidsley et al., 2016). 

This study also benefits from a larger sample and examination of a separate brain region, as 
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prior work suggests that patterns of DNAm vary across regions of the brain (Ladd-Acosta et 

al., 2007). In sum, these epigenome-wide data allow for the detection of numerous CpG sites 

possibly related to opioid use and dependence, and the examination of brain tissue allows us 

to test whether methylation patterns in the brain mirror evidence from other tissues, further 

clarifying the functional relevance of DNAm in regions of the brain implicated in addiction 

(i.e., PFC).

2. Materials and Methods

2.1. Sample Description

Human postmortem brain samples were donated to the Lieber Institute for Brain 

Development from the Offices of the Chief Medical Examiner of the State of Maryland 

(MDH protocol #12-24) and of Western Michigan University Homer Stryker School of 

Medicine, Department of Pathology (WIRB protocol #1126332), and one brain sample was 

acquired via material transfer agreement from the NIMH (donated through the Office of the 

Chief Medical Examiner of the District of Columbia (protocol NIMH#90-M-0142), all with 

the informed consent of legal next-of-kin at the time of autopsy. The present study used 

tissue from the dorsolateral prefrontal cortex (dlPFC) of 160 deceased individuals (Mage = 

35.15, SD = 9.42 years; 62% male; 78% European ancestry). Tables 1 and 2 provide detailed 

information on the study samples, which consisted of 73 individuals who died of acute 

opioid intoxication, 59 group-matched psychiatric controls, and 28 group-matched normal 

controls.

At the time of donation, a 36-item next-of-kin informant telephone screening was conducted 

to obtain medical, social, demographic, and psychiatric history. Macroscopic and 

microscopic neuropathological examinations were conducted on every case by a board-

certified neuropathologist to exclude for neurological problems, neuritic pathology, or 

cerebrovascular accidents. Postmortem interval (PMI) was a calculation of hours between a 

donor’s time of death and the time of brain freezing. A retrospective clinical diagnostic 

review was conducted on every brain donor, consisting of the telephone screening, 

macroscopic and microscopic neuropathological examinations, autopsy and forensic 

investigative data, forensic toxicology data, extensive psychiatric treatment, substance abuse 

treatment, and/or medical record reviews, and whenever possible, family informant 

interviews.

All data were compiled into a comprehensive psychiatric narrative summary that was 

reviewed by two board-certified psychiatrists in order to arrive at lifetime DSM-5 

psychiatric diagnoses (including substance use disorders/intoxication) and medical 

diagnoses. Non-psychiatric healthy controls were free from psychiatric and substance use 

diagnoses, and their toxicological data was negative for drugs of abuse. Every brain donor 

had forensic toxicological analysis, which typically covered ethanol and volatiles, opiates, 

cocaine/metabolites, amphetamines, and benzodiazepines. Some donors also received 

supplemental directed toxicological analysis using National Medical Services, Inc., 

including nicotine/cotinine testing, cannabis testing, and the expanded forensic panel in 

postmortem blood (or, in rare cases, in postmortem cerebellar tissue) in order to cover any 

substances not tested. The following substances were considered opioids: codeine, 
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morphine, oxycodone, hydrocodone, oxymorphone, hydromorphone, methadone, fentanyl, 

6-monoacetylmorphine, and tramadol. Subsequent epigenomics profiling of DNA derived 

from human postmortem brain tissue is exempt from institutional ethics committees as 

research conducted on postmortem tissue is not considered Human Subjects Research by the 

Department of Health and Human Services.

2.2. DNA Methylation Measurement and Preprocessing

Genomic DNA was extracted from 100mg of dlFPC tissue and isolated with the Qiagen 

DNeasy kit; bisulfite conversion of 600ng of genomic DNA was then performed with Zymo 

EZ methylation gold kit at the Johns Hopkins University Center for Inherited Disease 

Research. Bisulfite-treated DNA was then run on the Illumina Infinium MethylationEPIC 

BeadChip (Pidsley et al., 2016). Briefly, the EPIC BeadChip contains over 850,000 CpG 

sites, including >90% of the CpG sites included in the previous 450K BeadChip. Notable 

improvements in this array include the assessment of an additional ~400,000 CpG sites and 

inclusion of more than 350,000 CpG sites at regions identified as potential enhancers 

(Pidsley et al., 2016). Individual-level microarray data are available in the Gene Expression 

Omnibus (GEO Accession Number: GSE164822).

All quality control and inferential analyses were conducted in R version 3.6.1 (Team, 2018). 

The minfi package was used to process raw red and green channel intensity files into noob 

(normal-exponential out-of-band) preprocessed methylation beta values (Aryee et al., 2014). 

Specifically, we used the ‘preprocessNoob‘ function, which corrects for dye-bias in the raw 

intensities. Because cell type proportions can confound the association between DNAm and 

outcomes of interest, we estimated neuronal cell type proportions to control for cellular 

heterogeneity. Specifically, estimates of the percentage of neurons in each sample were 

calculated using the ‘estimateCellCounts()‘ function with the ‘compositeCellType = 

“DLPFC”‘ argument in the minfi R/Bioconductor package (Aryee et al., 2014), which uses 

the Houseman statistical method (Houseman et al., 2012). Samples were tested for low 

intensity (n = 0) and inconsistency between predicted and observed sex (n = 2; one opioid 

user, one psychiatric control) and those failing were removed for quality control. Probes 

with low methylation intensity also were excluded (n = 1,208) since these probes mostly 

consisted of background noise rather than true biological signal. Five additional psychiatric 

controls were dropped due to testing positive for an opioid in the toxicology report. The final 

analysis consisted of 153 samples and 864,883 probes. Principal components (PCs) from 

negative control probes were extracted to control for technical variations (Gagnon-Bartsch 

and Speed, 2012), and surrogate variable analysis (Leek and Storey, 2007) was conducted to 

account for unknown sources of heterogeneity and remove batch effects in the data.

2.3. Statistical Methods

2.3.1. Epigenome-wide association analysis.—Prior to epigenome-wide analyses, 

beta values were converted to M-values. Although beta values provide easier biological 

interpretation since they are on a scale of 0-1, reflecting percentage of methylation at each 

CpG site, the use of the log-transformed M-value provides a distribution that closer satisfies 

the assumption of normality in subsequent models, and the use of M-values usually leads to 

a better detection and true positive rate compared to the beta value (Du et al., 2010). We also 
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collapsed the psychiatric and healthy control samples and created a covariate where 

individuals were coded as either having been (or not having been) diagnosed with a 

psychiatric diagnosis other than a substance use disorder (SUD). We then used limma 
(Ritchie et al., 2015) to run single-site association analyses by linear regression with opioid 

use status (yes/no) across the epigenome for the 864,883 CpG sites, adjusting for the 

following covariates: diagnosis of a psychiatric disorder (yes/no), age of death, sex, 

postmortem interval (PMI), cell composition (i.e., % positive neurons), four negative control 

PCs, the top four ancestry PCs, and 13 surrogate variables detected using sva in R. The four 

negative control PCs were reflective of background noise such as batch effects, and the 13 

surrogate variables represented unmeasured confounding factors besides known confounders 

adjusted in the model. Ancestry PCs were estimated from the 59 SNP probes profiled on the 

EPIC array. Multiple testing correction was applied using the false discovery rate (FDR) 

procedure (Benjamini and Hochberg, 1995). This method controls the expected proportion 

of false positives among all statistical tests. It is less conservative than the commonly used 

Bonferroni correction, which controls for any expected false positive, but benefits from 

increased statistical power. Statistical significance was determined by an FDR adjusted p 
< .05 (unadjusted p < 1.0 x 5−8).

2.3.2 Epigenetic and phenotypic age.—In order to understand the cumulative 

epigenetic consequence of opioid abuse, we calculated Horvath’s epigenetic, or DNAm, age 

and Levine’s phenotypic age (a.k.a. PhenoAge) using the ENmix package (Xu et al., 2016). 

Briefly, Horvath’s DNAm age is an estimate of the cumulative effect of an epigenetic 

maintenance system and is strongly correlated with chronological age (Horvath, 2013). DNA 

methylation age is calculated using data from 353 CpG sites that are correlated with 

chronological age, irrespective of tissue or cell type. Similarly, Levine’s PhenoAge (Levine 

et al., 2018) is an estimate of accelerated aging, but is derived from biomarkers related to 

clinical phenotypes (e.g., physical functioning, all-cause mortality), and is thought to better 

reflect epigenetic aging in response to specific environmental exposures (e.g., opioid abuse). 

PhenoAge is calculated using 513 CpG sites (41 of which overlap with Horvath’s method) 

that are correlated with chronological age. Although developed using whole blood (as 

opposed to 51 different tissue and cell types in Horvath’s method), PhenoAge correlates 

strongly with chronological age across tissue and cell types.

In the present analysis, we first estimated DNAm age and PhenoAge, respectively. We then 

calculated accelerated DNAm age and PhenoAge by taking the difference between each 

individual’s DNAm age and PhenoAge and their age of death (i.e., positive values indicated 

accelerated aging). Since Horvath’s DNAm age is based upon CpG sites spanning across 

numerous tissue types (including brain tissue), we conducted an independent samples t-test 

to examine if DNAm age acceleration differed by opioid intoxication status. Although 

correlated with chronological age across most tissue and cell types, we used a multiple linear 

regression to examine the association between opioid intoxication status and PhenoAge 

acceleration, adjusting for cellular composition, since this estimate was originally developed 

in whole blood only. Significance was determined using p < .05 for both analyses.
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2.3.3 Gene set enrichment analyses.—Gene set enrichment analyses (GSEA) were 

performed on probes with an FDR adjusted p-value < .05; however, if no probes survived 

FDR correction for multiple testing, GSEA was performed on all probes with an unadjusted 

p < .05. Analyses were conducted using the “methylgometh” function in the R package 

methylGSA (Ren and Kuan, 2019). This function calls the “gometh” function in missMethyl 
(Phipson et al., 2016), which adjusts for the number of CpG sites within each gene. We 

tested for enrichment of differential methylation across GO, KEGG, and Reactome 

pathways, selecting gene sets containing at least 25 genes and no more than 500 genes. 

Significant enrichment was determined using an FDR adjusted p-value < 0.05.

3. Results

3.1. Epigenome-Wide Association Analysis

First, we conducted epigenome-wide analysis to determine if there were significant 

differences in methylation at individual CpG sites between opioid and control samples. 

Figure 1 illustrates the quantile-quantile (QQ) plot of p-values for the association between 

DNAm and opioid intoxication. There was no evidence of inflation (λ = 1.02). As can be 

seen in Figure 2, no CpG sites survived FDR correction for multiple testing (red line; p < 5.0 

x 10−8); however, 13 CpG sites surpassed a relaxedp-value threshold (blue line; p < 1.0 x 

10−5). As can be seen in Table 3, which contains these top 13 CpG sites, six of the sites were 

hypomethylated and the other seven sites were hypermethylated in opioid samples. Among 

the CpG sites listed in Table 3, only cg24060527, located within Netrin-1 (NTN1), has 

published evidence demonstrating a potential link to opioid use. Specifically, evidence has 

linked Netrin-1 activity to stimulation of the kappa opioid receptor (Tsai et al., 2007, 2006), 

which is implicated in opioid dependence (Laurence Lalanne et al., 2014). Lastly, we 

examined the effect of the psychiatric diagnosis covariate, as the sample included psychiatric 

controls and some opioid samples had a primary psychiatric diagnosis other than a substance 

use disorder. There was no evidence of an association between psychiatric diagnosis and 

DNAm (all adj. p > .05).

3.2. Epigenetic and Phenotypic Age

Next, we tested the association between opioid use status and DNAm age and PhenoAge. 

Tests of bivariate correlations revealed that age of death was associated with DNAm age (r 
= .90, p < .001) and PhenoAge (r = .69, p < .001) ages. DNAm age and PhenoAge also were 

correlated (r = .69, p < .001). Results from an independent samples t-test did not reveal 

evidence of an association between opioid intoxication status and accelerated DNAm age, 

t(146.45) = .20, p = .84. There was evidence of an association between opioid intoxication 

status and accelerated PhenoAge (b = 2.24, se = 1.11, p = .045), adjusting for cell 

composition. Specifically, opioid samples were, on average, two years epigenetically older 

compared to control samples. To ensure results were not affected by combining psychiatric 

and health controls, we tested whether psychiatric and healthy controls differed in 

accelerated DNAm age and PhenoAge. Results did not provide evidence for an association 

between type of control sample and either accelerated DNAm age [t(67.02) = −1.09, p 
= .28)] or PhenoAge (b = 1.96, se = 1.56, p = .21).
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3.3. Gene Set Enrichment Analyses

In order to test for case-control methylation differences at the biological system level, GSEA 

were conducted for all probes with unadjusted p-values < .05. This resulted in GSEA using 

46,139 CpG sites. Regarding GO terms, 351 terms survived FDR correction for multiple 

testing. Among the top enriched pathways were “glutamatergic synapse” (cellular 

component; adj. p = 3.23 x 10−6) and “learning or memory” (biological process; adj. p = 

6.99 x 10−3). The complete list of significant GO terms can be found in Supplementary 

Table 1. Since a large number of GO terms surpasses our significance threshold, we also 

plotted the results using REVIGO (Supek et al., 2011) to identify themes across the 

biological process, cellular component, and molecular function ontologies. These results can 

be found in Supplementary Figures 1–3, but no notable patterns or themes emerged.

Regarding KEGG pathways, 38 pathways survived FDR correction for multiple testing. As 

can be seen in Supplementary Table 2, “dopaminergic synapse” (adj. p = 3.46 x 10−2) was 

among the significant pathways, but no other significant pathways were notable. Lastly, we 

tested for enrichment in differential methylation among Reactome pathways. Twenty-two 

pathways survived FDR correction for multiple testing; however, no pathways were relevant 

to opioid use (see Supplementary Table 3).

4. Discussion

The present analysis builds upon emerging literature on epigenome-wide markers of opioid 

abuse (Kozlenkov et al., 2017; Montalvo-Ortiz et al., 2019) by examining DNAm in the 

brains of individuals who died of acute opioid intoxication compared to group-matched 

controls. Specifically, the present findings inform our understanding of potential epigenetic 

mechanisms through which opioid use may affect pathways within brain regions involved in 

addiction. We observed no single-locus significant results after FDR correction for multiple 

testing; however, a CpG site within NTN-1 surpassed a relaxed significance threshold and 

NTN-1 has been implicated in the stimulation of the kappa opioid receptor, which is linked 

to addiction and other psychiatric disorders (Laurence Lalanne et al, 2014). Accelerated 

methylation-age testing via the widely used Horvath clock did not reveal evidence of an 

association with opioid intoxication status; however, analyses of Levine’s PhenoAge 

revealed accelerated aging among opioid samples versus controls. Biological pathway 

analysis yielded several pathways involved in glutamatergic and dopaminergic synapse 

functioning, but the results were largely nondescript. Moreover, these were very broad 

pathways with limited specificity for opioid use disorder.

The detection of differential methylation of a CpG within NTN-1 was unexpected, as it has 

not been identified within prior epigenetic studies of opioid use, nor does it appear to be 

directly related to opioid use. Moreover, it has not been detected in prior genome-wide 

association studies (GWAS) of opioid use and dependence. For example, Polimanti et al. 

(Polimanti et al., 2020) recently conducted a GWAS among ~41,000 individuals that were 

either diagnosed with opioid dependence, had used opioids at least once in their lifetime, or 

had reported no lifetime use of opioids. The authors detected a variant, rs9291211, that was 

associated with lifetime exposure to opioids and regulates transcriptomic profiles of 

SLC30A9 and BEND4 in brain tissue. Interestingly, no CpG sites within either of these 
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genes was among the top 10,000 probes in our analysis. Similarly, another recent GWAS by 

Zhou et al. (Zhou et al., 2020) of ~10,000 individuals revealed a functional variants in 

OPRM1 (rs1799971) associated with opioid use disorder. No CpG sites within OPRM1 were 

detected among the top 10,000 hits in the present analysis. It is possible that tissue type 

contributes to some of these disparate findings, although sample size likely plays a role as 

well. Additional analyses of postmortem brains are needed to validate the current findings.

The association detected between opioid use and older phenotypic age supports evidence 

that opioid use is a risk factor for age-related negative health outcomes ranging from 

physical and cognitive ailments, to mortality (Degenhardt et al., 2019). It was unexpected to 

not detect an association between opioid use status and accelerated Horvath epigenetic age, 

although Montalvo-Ortiz et al. (Montalvo-Ortiz et al., 2019) also failed to detect this 

association among a sample of women diagnosed with opioid dependence. Conversely, 

Kozlenkov et al. (Kozlenkov et al., 2017) found that heroin users were epigenetically 

younger compared to controls in their sample. Neither study assessed accelerated PhenoAge 

between opioid users and controls. It is possible that the divergent epigenetic age findings 

are due to differing samples (e.g., women only vs. men and women), examination of 

different tissues (whole blood vs. brain), or sampling from different brain regions, in the 

case of Kozlenkov et al. (Kozlenkov et al., 2017) (mOFC vs. dlPFC). Additional studies 

examining opioid dependence, and both accelerated epigenetic and phenotypic ages among 

larger samples in similar brain regions will clarify these findings.

The present study has several strengths. The primary strength of this study is the use of brain 

tissue in the dlPFC. This allows for testing of epigenetic markers in regions of the brain 

where genes of interest within addiction pathways are expressed. Second, thoughtful 

sampling of group-matched controls allowed us to account for potential confounders in the 

association between opioid use and DNAm. Third, this analysis adds to a limited literature 

on epigenome-wide associations between opioid use and DNAm. Although these studies 

have limited sample sizes and sample different tissues, each has detected CpG sites within 

unique genes that may have functional relevance to opioid dependence. These findings 

underscore the need to look beyond candidate genes to elucidate the complex etiology of 

opioid use and dependence.

The primary limitation of this work is the sample size. As with other investigations into the 

genomics of complex human traits, including substance use disorders, large sample sizes are 

needed to detect the effect sizes expected for the anticipated architecture of the traits. As 

noted by Andersen et al. (Andersen et al., 2015), effect sizes for differences in DNAm 

between opioid users and controls are often fairly small (i.e., < 7% difference in 

methylation), and none of those studies used an array-based approach assessing thousands of 

CpG sites simultaneously, which requires larger samples to detect such small effects after 

correcting for multiple testing. Consequently, we and others are actively working to form 

consortia to analyze similar postmortem opioid brain tissues samples together. Another 

limitation of this study is the lack of validation samples. Kozlenkov et al. (Kozlenkov et al., 

2017) conducted the only other epigenome-wide analysis of DNAm in the brains of opioid 

users, examining DNAm in the mOFC. A comparison of the top 100 CpG sites from their 

analyses did not yield any overlapping sites. Given the dearth of studies looking at 
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epigenome-wide associations among opioid users, it is difficult to interpret the present 

findings, especially given the sample size and unique population. Lastly, the cross-sectional 

design does not allow for direct testing of a causal relationship between opioid use and 

DNAm. Larger, longitudinal studies are needed to clarify the effects of opioid use on 

DNAm, as well as important confounders such as polysubstance use.

It is important to consider, in light of the limitations, how these results can best be used to 

inform the field. There are several limitations of work on SUDs in postmortem brain tissue. 

First is the difficulty in distinguishing the causal role of any differentially methylated regions 

or pathways discovered in post-mortem tissue when compared to non-SUD control tissue 

since the tissue is frequently collected after years of chronic drug use. Thus, it is where in 

the etiologic pathways of the disorder those findings lie – causes of SUD risk or 

consequences of chronic opioid use disorder (OUD). One method to attempt to overcome 

this issue would be to follow a cohort of individuals with a drug use disorder [e.g., AIDS 

Linked to the IntraVenous Experience (ALIVE) Cohort; (Vlahov et al., 1991) and obtain 

consent to examine brains in the event of an individual’s death.] This is a rather challenging 

effort but presents one manner in which researchers could go beyond posthumous 

psychiatric interviews with immediate family to understand patterns of drug use. Second, the 

utility of such findings is relatively limited with respect to clinical translation. While these 

findings will help elucidate our understanding of the neurobiology underlying the clinical 

course of OUDs, inasmuch as these findings do not overlap with findings in peripheral 

tissue, their potential use as a clinical biomarker is limited. Although there are limitations in 

the clinical utility of this work, it is important to consider how postmortem brain SUD 

results can inform the field. As a clearer picture emerges from genetic studies of OUD risk 

and clinical course, it will be important to integrate the knowledge gained from this work.

4.1. Conclusions

This study adds to a growing literature on genome-wide associations between opioid use and 

DNAm and is the first to do so using brain tissue from the dlPFC. Although no sites reached 

significance after correction for multiple testing, opioid users were phenotypically older 

compared to controls. Future work with larger samples is needed to clarify these 

associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Epigenome-wide analysis of DNA methylation in human dorsolateral 

prefrontal cortex.

• Opioid overdose is marginally associated with methylation within the 

Netrin-1 gene.

• Opioid overdose is associated with accelerated phenotypic age.
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Figure 1. 
QQ Plot of p-values for the Association Between DNA Methylation and Opioid Use
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Figure 2. 
Manhattan Plot for Epigenome-Wide Association Analysis

Note. The red line indicates genome-wide significance (p < 5.0 x 10−8) and the blue line 

indicates suggestive significance (p < 1.0 x 10−5). Thirteen CpG sites reached suggestive 

significance.
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Table 1

Sample Demographic Information

Full Sample (n = 160) Analytic Sample (n = 153)

Demographic Categories n (%) Mean (SD) n (%) Mean (SD)

Sex

 Female 61 (38%) - 58 (38%) -

 Male 99 (62%) - 95 (62%) -

Race

 African American 35 (21.9%) - 35 (23%) -

 European American 124 (77.5%) - 118 (77%) -

 Multi-Racial 1 (0.6%) - - -

Diagnosis Type

 Normal Control 28 (17.5%) - 28 (17.5%) -

 Opioid User 73 (45.6%) - 72 (45.6%) -

 Psychiatric Control 59 (36.9%) - 53 (36.9%) -

Age of Death - 35.13 years (9.42) - 35.42 years (9.43)

Postmortem Interval - 27.35 hours (9.65) - 27.42 hours (9.60)
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Table 2

Primary Psychiatric Diagnosis by Study Group (n = 153)

Psychiatric Diagnosis Psychiatric Controls Opioid Users Normal Controls

 Attention-Deficit/Hyperactivity Disorder (ADHD) 0 2 -

 Anxiety 0 1 -

 Bipolar Disorder 19 17 -

 Unspecified Bipolar Disorder 0 1 -

 Unspecified Depressive Disorder 1 6 -

 Major Depressive Disorder 33 27 -

 Neurological Disorder 0 1 -

 Obsessive Compulsive Disorder (OCD) 0 2 -

 Eating Disorder 0 1 -

 Posttraumatic Stress Disorder (PTSD) 0 1 -

 Schizophrenia 0 3 -

 Substance Use Disorder (SUD) 0 10 -

Total (153) 53 72 28

Note. Two samples (one opioid user, one psychiatric control) were later removed due to mismatching predicted and observed sex, and five 
psychiatric controls were removed due to positive opioid tests in toxicology reports.
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Table 3

Top Differentially Methylated CpG Sites

CpG UCSC gene symbol Chr Position MMdiff t-statistic p-value Adjusted p-value

cg01032200 RUSC1; RUSC1-AS1 1 155290641 −.332 −5.053 1.46E-06 4.05E-01

cg16385330 LRBA; MAB21L2 4 151503878 −.216 −5.023 1.66E-06 4.05E-01

cg03228209 KIAA1688 8 145814162 .109 4.977 2.03E-06 4.05E-01

cg24060527 NTN1 17 9066156 .293 4.972 2.07E-06 4.05E-01

cg03674718 GATB 4 152593043 .140 4.917 2.63E-06 4.05E-01

cg25084741 -- 3 43115622 .143 4.863 3.31E-06 4.05E-01

cg21026257 PHACTR2 6 143998961 .225 4.820 3.98E-06 4.05E-01

cg25951285 LGR6 1 202182175 .110 4.807 4.21E-06 4.05E-01

cg15257765 MRPS11; MRPL46 15 89010459 .152 4.788 4.55E-06 4.05E-01

cg09935667 C12orf49 12 117164627 −.121 −4.751 5.33E-06 4.05E-01

cg03672997 TAF3 10 7859623 −.454 −4.749 5.37E-06 4.05E-01

cg10759972 -- 8 1971471 −.202 −4.738 5.61E-06 4.05E-01

cg26506680 -- 5 56820679 −0.090 −4.668 7.53E-06 5.01E-01

Note. Chr = Chromosome. MMdiff = difference in mean methylation between cases and controls. Adjusted p-value refers to the Benjamini-
Hochberg adjusted p-value.
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