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Dopamine transporter function fluctuates across sleep/wake
state: potential impact for addiction

I. P. Alonso', J. A. Pino?, S. Kortagere @?, G. E. Torres® and R. A. Espaia

The dopamine transporter (DAT) has been implicated in a variety of arousal-related processes including the regulation of motor
activity, learning, motivated behavior, psychostimulant abuse, and, more recently, sleep/wake state. We previously demonstrated
that DAT uptake regulates fluctuations in extracellular dopamine (DA) in the striatum across the light/dark cycle with DA levels at
their highest during the dark phase and lowest during the light phase. Despite this evidence, whether fluctuations in DA uptake
across the light/dark cycle are associated with changes in sleep/wake has not been tested. To address this, we employed a
combination of sleep/wake recordings, fast scan cyclic voltammetry, and western blotting to examine whether sleep/wake state
and/or light/dark phase impact DA terminal neurotransmission in male rats. Further, we assessed whether variations in plasma
membrane DAT levels and/or phosphorylation of the threonine 53 site on the DAT accounts for fluctuations in DA
neurotransmission. Given the extensive evidence indicating that psychostimulants increase DA through interactions with the DAT,
we also examined to what degree the effects of cocaine at inhibiting the DAT vary across sleep/wake state. Results demonstrated a
significant association between individual sleep/wake states and DA terminal neurotransmission, with higher DA uptake rate,
increased phosphorylation of the DAT, and enhanced cocaine potency observed after periods of sleep. These findings suggest that
sleep/wake state influences DA neurotransmission in a manner that is likely to impact a host of DA-dependent processes including

a variety of neuropsychiatric disorders.

Neuropsychopharmacology (2021) 46:699-708; https://doi.org/10.1038/s41386-020-00879-2

INTRODUCTION

The dopamine (DA) system has been implicated in a variety of
arousal-related processes including the regulation of motor
activity, learning, motivated behavior, psychostimulant abuse,
and sleep/wake activity. Although numerous observations high-
light the importance of DA neuron activity in regulating striatal DA
levels [1, 2], recent advances highlight the influence of the axonal
dopamine transporter (DAT) in controlling the intensity and
duration of DA actions in the striatum [3-8].

The DAT is commonly regarded as a homeostatic regulator that
governs extracellular DA in response to acute and long-term
physiological demands. Increases in DAT function and phosphor-
ylation have been observed in attention deficit hyperactivity
disorder and substance use disorders while decreases in DAT
binding has been observed in Parkinson’s disease, presumably to
compensate for sustained dysregulation of DA neurotransmission
[5, 9-11]. High fat diet and stress significantly decrease DAT
function over extended periods of time [12-14]. In addition
to these long-term alterations in function, DATs can also undergo
rapid changes in response to environmental and extracellular
challenges [15-17]. DAT substrates, blockers, and presynaptic
receptor ligands, for example, can rapidly regulate DAT function
by altering either cell surface expression or posttranslational
modifications of the transporter [12, 18-22]. Together, these
observations suggest that DATs behave in a malleable fashion

on both long and short time scales to tightly control DA’s
actions [23].

We previously demonstrated in rodents that DA uptake in the
striatum fluctuates in a diurnal manner across the light/dark cycle
with the least efficient uptake occurring in the dark phase and
most efficient uptake during the light phase [24]. Importantly,
these DAT fluctuations were inversely related to extracellular DA
levels which could not be accounted for by variations in DA
metabolism, tyrosine hydroxylase (TH) activity, or DA D2 receptor
(D2R)/D3 receptor (D3R) function, suggesting that extracellular DA
cycling was governed by fluctuations in rates of DA uptake [24].

Upon initial consideration, these prior observations could
appear to suggest that DAT function may be tracking time of
day and/or light/dark conditions. However, the 24 h light/dark
cycle is comprised of recurring sequences of distinct sleep/wake
states that integrate as greater time spent asleep during the light
phase and greater time spent awake during the dark phase.
Consequently, it is possible that instead of tracking time of day or
light/dark phase, fluctuations in DA uptake observed in our prior
work are associated with distinct patterns of sleep/wake
architecture that occur across the 24 h cycle.

Here we hypothesize that DAT function tracks sleep/wake state
activity such that higher uptake rates occur during periods of
sleep and lower uptake rates occur during wakefulness. To test
this hypothesis, we performed a series of experiments in rats to
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examine the degree to which sleep/wake state and light/dark
cycle impact DA terminal neurotransmission and phosphorylation
of DAT at Thr53 site using a combination of sleep/wake
recordings, fast scan cyclic voltammetry (FSCV), and western
blotting. Further, given that psychostimulants increase DA
through interactions with the DAT, and since there is evidence
that DA-dependent behaviors—including psychostimulant self-
administration—are strongly influenced by diurnal cycles [25-29],
we examined whether the degree of DA uptake inhibition
produced by cocaine (cocaine potency) also varies across sleep/
wake state. We predicted that sleep/wake state influences DA
uptake regardless of light/dark phase via phosphorylation of the
DAT at Thr53, and that these fluctuations impact cocaine potency.

METHODS

Animal housing and conditions

Experiments were conducted in adult male Sprague-Dawley rats
(325-3509, Envigo, Frederick, MD, USA). Rats were pair-housed
prior to surgery and subsequently single-housed in a temperature-
controlled room (24 °C) on a 12 h light/dark cycle. To collect brains
at the same time of the workday, but at different light/dark phases,
lights were on from 3:00 a.m. to 3:00 p.m. for animals sacrificed at
zeitgeber time 6 (ZT6; six h into the light phase) and lights were on
from 3:00 p.m. to 3:00 a.m. for animals sacrificed at zeitgeber time
18 (ZT18; six h into the dark phase). Rats were given ad libitum
access to food, water, and enrichment material. All protocols and
animal procedures were conducted in accordance with the National
Institutes of Health (NIH) Guide for the Care and Use of Laboratory
Animals under the supervision of the Institutional Animal Care and
Use Committee at Drexel University College of Medicine.

Surgical procedures

All surgical procedures were performed stereotaxically under
aseptic conditions, as described previously [30-32]. Rats were
implanted  with  electroencephalographic/electromyographic
(EEG-EMG) electrodes to determine sleep/wake state prior to
assessing DA release and uptake via ex vivo FSCV or tissue
quantification of key DA proteins. To obtain differential recordings
of EEG activity, one screw electrode (Plastics One, Roanoke, VA,
USA) was implanted above the frontal cortex (+1.3 mm A/P, +1.3
mm M/L, and —1.0mm D/V) and a second electrode was
implanted ipsilaterally over hippocampus (+2.4mm A/P, +3.2
mm M/L, and —1.0mm D/V). A third screw electrode was
implanted in contralateral cortex (+1.3mm A/P, —1.3 mm M/L,
and —1.0 mm D/V) and served as an isolated ground. Additionally,
two EMG wire electrodes were implanted into the dorsal neck
muscle for recording EMG activity. EMG electrodes consisted of
100 mm insulated stainless-steel wires (Cooner Wire, Charsworth,
CA, USA) with 2mm of exposed wire in contact with muscle.
Electrodes were routed through a connector (Plastics One) and
cemented into place on the skull. Ketoprofen (5 mg/kg s.c. of 5
mg/ml) and Baytril (5 mg/kg s.c. of 5 mg/ml) were provided at the
time of surgery and a second dose 12h later. In addition,
antibiotic/analgesic powder (Neopredef, Kalamazoo, MI) was
applied around the cranial implant immediately after surgery.
Rats recovered for 7 days before sleep recordings began.

Sleep recordings

Rats were placed in an acrylic testing chamber (14 x 14 %20
inches) housed in a sound-attenuated outer chamber containing
an LED light and a fan. Rats were supplied with food and water
available ad libitum and connected to recording lines via a
commutator which allowed unrestricted movement. After a 16 h
acclimation period, EEG-EMG signals were recorded for 24 h. EEG
(0.3-100 Hz bandpass) and EMG signals (1-50 Hz bandpass) were
amplified, filtered, and recorded using Labchart 7 (AD Instruments,
Colorado Springs, CO, USA; Fig. 1). Data were analyzed manually
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Fig. 1 Sleep/wake state across a 24 h period is organized into
recurring bouts during which sleep primarily occurs during the
light phase and wakefulness during the dark phase. A Rats were
implanted with EEG/EMG electrodes. After 7 days of recovery, rats
were acclimated to recording chambers for 16 h prior to recording of
sleep/wake activity for 24 h. Following sleep recordings, rats were
sacrificed 6 h into the light phase (ZT6) or 6 h into the dark-phase
(ZT18) and brains were prepared for FSCV recordings in the NAc core.
A separate group of rats was subjected to the same sleep recording
procedures except that after sacrifice, the NAc was dissected for
western blot analysis of plasma membrane fractions of DAT and
phosphorylated DAT. B Representative EEG and EMG recordings.
C Example hypnogram across a 24 h period. White bar represents the
light phase and the black bar represents the dark phase. D Mean
percentage of time rats spent in Wake, NREM, and REM during the
light and dark phase for the full 24 h recording (n = 18 rats).

using Sirenia Sleep Pro (Pinnacle Technology, Lawrence, KS, USA)
to determine the number of bouts, bout length, and percentage of
time spent in wakefulness (Wake), rapid eye movement (REM) and
non-REM (NREM) sleep, as previously described [30-32]. Briefly,
EEG signals were scored in 10s bins and sorted into individual
frequency bands (Delta =0.5-4.0 Hz; Theta =5.5-8.5 Hz; Alpha,
Beta, and Gamma = 8-44 Hz). NREM sleep was defined as high-
voltage EEG consisting of >50% delta and low-voltage EMG; REM
sleep was defined as low-voltage EEG consisting of >50% theta,
combined with EMG activity of ~50% lower amplitude than that
observed in NREM sleep; and Wake was defined as low-voltage
EEG consisting of <40% delta and <20% theta with EMG activity of
an average amplitude twice that observed in NREM. To be scored
as a distinct epoch, the appropriate EEG and EMG activity patterns
were required to persist for a minimum of three bins (30 ).

To confirm that recordings were representative of normal sleep/
wake patterns and consistent with prior reports, the mean
percentage of time spent in Wake, NREM and REM during the
light and dark phases was analyzed for the full 24 h recording (n =
18 rats; Fig. 1B-D).

Ex vivo slice FSCV procedures

Following sleep recordings, rats were anesthetized with 2.5%
isoflurane for 5min and then decapitated. These anesthesia
procedures have been shown previously to have no effect on DA
uptake [33]. To control for the effect of light/dark condition, one
group of rats was decapitated 6 h into the light phase (ZT6; n=
14) and the other group was decapitated 6 h into the dark-phase
(ZT18; n = 16). Animals remained in their corresponding light/dark
phase during isoflurane anesthesia prior to decapitation. Brains
were rapidly dissected and transferred to oxygenated, ice-cold
artificial cerebral spinal fluid (aCSF) containing NaCl (126 mM), KCL
(2.5 mM), NaH,PO, (1.2mM), CaCl, (24 mM), MgCl, (1.2 mM),
NaHCO; (25 mM), glucose (11 mM), L-ascorbic acid (0.4 mM), and
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pH adjusted to 7.4. A vibrating microtome was used to produce
400 um-thick sections containing the nucleus accumbens (NAc)
core. Slices rested at room temperature for 45 min before being
transferred into a recording chamber flushed with aCSF (32 °C).

A bipolar stimulating electrode (Plastics One) was placed on the
surface of the tissue and a carbon fiber microelectrode was
implanted between stimulating electrode leads. DA release was
evoked every 3 min using a single electrical pulse (~400 pA, 4 ms,
monophasic) and measured using Demon Voltammetry and
Analysis software [34]. Baseline DA release and uptake recordings
were obtained for the subset of rats in which only single slices were
recorded (ZT6, n=6 slices from six rats; ZT18, n=7 slices from
seven rats) and the subset of rats in which two slices were recorded
(ZT6, n =14 slices from seven rats; ZT18, n=18 slices and from
nine rats). For rats in which two slices were recorded, DA release
and uptake measures were averaged to obtain a single data point
for those rats. Therefore, we analyzed and report baseline DA
release and uptake data for 13 rats at ZT6 and 16 rats at ZT18. Once
stable baselines were obtained for all slices (three stimulations with
<10% variation), a subset of slices was then exposed to five
concentrations of either cocaine (0.3-30 uM; ZT6, n = 9 slices from 9
rats; ZT18 n=14 slices from 14 rats) or the D2R/D3R agonist
quinpirole (3-300nM; ZT6, n =12 slices from 12 rats; ZT18 n=
12 slices from 12 rats) as previously described [13, 21, 33, 35-39]. In
some cases, one slice was recorded shortly after rats were sacrificed
(n=26) and a second slice was recorded up to 7 h post sacrifice
(n=19). Supplementary Figure 1 demonstrates that the time of
recording post sacrifice did not affect DA release or uptake.

DA concentrations were calculated by comparing currents at
the peak oxidation potential for DA in consecutive voltammo-
grams with electrode calibrations determined using an in situ
calibration method as described previously [40, 41]. To determine
if sleep/wake state influences DA terminal neurotransmission, we
assessed stimulated DA release, DA uptake rate (Vinax), cOcaine-
induced DA uptake inhibition (app K.), and the effects of
quinpirole on stimulated DA release across various sleep/wake
states using a Michaelis-Menten based model [30, 33, 35, 42].
Baseline uptake was determined by setting K;,, values to 0.18 uM
and all cocaine-induced alterations in uptake were attributed to
changes in apparent K,. Cocaine inhibition constants (K;) were
determined to calculate the necessary cocaine concentration to
produce 50% of DA uptake inhibition. Reductions in stimulated DA
release following varying concentrations of quinpirole were
expressed as a percent of baseline.

Subcellular fractionation and western blotting

Following sleep recordings, a separate cohort of rats was sacrificed
for western blot analysis (ZT6; 13 rats and ZT18; 14 rats). Rats were
decapitated, brains extracted, flash frozen in liquid nitrogen, and
stored at —80 °C until the day of the assay. Briefly, the NAc core
was dissected and subjected to subcellular fractionation methods
according to previous work [43, 44]. Between 0.10 and 0.15 g of
tissue was homogenized in 1.5mL of ice-cold PBS containing
sucrose (0.32 M) and HEPES (20 mM), EGTA (1 mM), EDTA (1 mM),
and protease inhibitors. The homogenate was centrifugated at
1000 x g for 10 min and the pellet discarded. The supernatant
(total protein extract) was spun at 12,500 x g for 20 min at 4 °C.
Synaptosomes were lysed in hypotonic media on ice for 45 min
and centrifuged at 2000 x g for 20 min to obtain the enriched
plasma membrane fraction. Previous work using this subcellular
fractionation protocol has shown high DAT levels, as well as other
membrane proteins including Na*/K™ ATPase in the enriched
plasma membrane fraction [43]. Thus, in the current western blot
studies, we used the enriched plasma membrane fraction and
refer to this fractions as plasma membrane DAT [43]. Protein
concentrations were measured using the DC™ protein assay (Bio-
Rad), and equal amounts of total protein were loaded on a 10%
SDS PAGE gel and immunoblotted for specific antigens: rabbit
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anti-DAT polyclonal antibody (1:1000, AB2231, EMD Millipore
Corp, RRID:AB_1586991), rabbit anti phospho-DAT polyclonal
antibody (1:1000, P435-53, PhosphoSolutions, RRID:AB_2492078),
and peroxidase-conjugated goat anti-rabbit 1gG (H 4 L) (1:5000,
Jackson Immuno Research, RRID:AB_2313586). GAPDH was used
as a marker for plasma membrane in the same blots using rabbit
anti GAPDH polyclonal antibody (1:5000, PA1-987, Invitrogen,
RRID: AB_2107311). GAPDH has been validated as an ideal
reference due to a lack of fluctuations in levels across sleep/wake
states [45]. Western blot data were quantified by densitometry
with ImageQuant LAS4000 (GE Healthcare Bio-Science) and
presented as the ratio of total DAT over GAPDH, phosphorylated
DAT (pDAT) over GAPDH, or pDAT/GAPDH over DAT/GAPDH [21].

Statistical analyses

Data were analyzed using IBM SPSS Statistics 24 (SPSS Inc, Chicago,
IL). Prior in vitro studies indicate that the DAT can undergo rapid
posttranslational modifications and trafficking on the order of
seconds to minutes [16, 19, 20, 46, 47]. Together with the fast
transitions from sleep to awake throughout the day (Fig. 1C), we
hypothesized that relatively brief periods of specific sleep/wake
states prior to sacrifice would predict differences in DA release and
uptake rate. We used linear regressions to examine whether the
percentage, bout number, or bout length of Wake, NREM or REM
sleep that occurred in the 5, 15, and 30 min prior to sacrifice
significantly predicted ex vivo FSCV measures of DA release and
uptake (Fig. 2C-E, G-I and Supplementary Tables 1, 2). We refer to
these periods of wakefulness and sleep prior to sacrifice as the 5-,
15-, and 30 min time periods (see Supplementary Fig. 2).

Based on our finding that sleep/wake activity during the 30 min
prior to sacrifice (i.e., the 30min time period) was strongly
correlated with measures of DA release and/or uptake, we used
a median split to dichotomize sleep/wake data into separate Wake
and Sleep groups based on percentage of time spent awake. The
median and any value above it was designated as the “Wake”
group and every value below the median was designated as the
“Sleep” group for each of the light/dark phases (light=ZT6,
dark =ZT18). Two-way ANOVAs were then used to determine
differences in DA release and uptake with time of day and sleep/
wake state as between-subjects variables (Fig. 2F, J). Following the
two-way ANOVAs, Sidak’s post hoc tests were used to determine
whether DA release, DA uptake, and the effects of cocaine varied
across sleep/wake state. Because of our a priori hypothesis that
DAT function would vary with sleep/wake states regardless of light/
dark phase, a subset of Sidak’s post hoc tests were conducted even
though no significant interaction was observed in the two-way
ANOVA. When no significant main effect was observed for a
variable (e.g., time of day for DA uptake rate) data were collapsed
across that variable and Student's t tests were used to assess
differences between the Wake and Sleep groups (Fig. 2K).

To examine if the effects of cocaine or quinpirole differed
between Wake and Sleep groups, two-way mixed design ANOVAs
were conducted with cocaine or quinpirole concentration as the
within-subjects variable and sleep/wake state as the between-
subjects variable. Cocaine K; was determined by plotting the linear
uptake inhibition effect of the 5 cumulative concentrations of
cocaine and determining the slope of the linear regression. K;
values were calculated by the equation K.,,/slope [13, 48, 49]. K; was
compared between the Wake and Sleep groups using a Students’ t
test. Differences in DAT and pDAT between the Wake and Sleep
groups were assessed using a Students’ t tests (Fig. 4C-E).

RESULTS

Sleep/wake activity is organized into bouts occurring on the time
scale of minutes

To confirm that sleep/wake activity consists of recurring bouts of
Wake, NREM, and REM during both the light- (ZT6) and dark-phase
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Fig.2 Dopamine release and uptake fluctuate across sleep/wake state. A Average current versus time plots and (B) example color plots for
the Wake and Sleep groups during the light (ZT6) and dark (ZT18) phases. Shaded areas in current versus time plots represent SEM.
Correlations between DA release and (C) REM bouts, (D) % of Wake, or (E) % of REM during the 30-min time period. F DA release for rats
categorized into Wake and Sleep groups for ZT6 and ZT18 based on sleep/wake state during the 30 min time period. Correlations between DA
uptake and (G) % of Wake, (H) % of NREM, or (I) % of REM during the 30 min time period. J DA uptake rate for rats categorized into Wake and
Sleep groups for ZT6 and ZT18 based on sleep/wake state during the 30 min time period. K DA uptake rate for rats categorized into Wake and
Sleep groups collapsed across ZT6 and ZT18. Wake (ZT6) n =5 rats, Wake (ZT18) n =9 rats, Sleep (ZT6) n = 8 rats, and Sleep (ZT18) n =7 rats.
Correlation coefficients associated p values, and black regression lines represent analyses on data collapsed across ZT6/ZT18. Yellow dashed
lines depict regression lines for ZT6 data, and red dotted lines depict regression lines for ZT18 data. Note: data points in correlations appear
different across panels due to overlaying of symbols. Data are shown as mean + SEM. *p < 0.05; **p < 0.01; ***p < 0.001.

(ZT18), we monitored sleep/wake state for 24 h using EEG-EMG NREM and REM bouts during the 15min time period and
recordings in freely moving rats (Fig. 1). As a group, rats spent magnitude of DA release (Supplementary Table 2). However, the
~44.9% of the time awake (633.31+67.5min), 46.7% in NREM number of REM bouts (r = 0.683, p < 0.001) during the 30 min time
sleep (658.14 + 68.30 min) and 8.3% in REM sleep (117.61 +21.10 period resulted in the strongest predictor of DA release,
min) over the 24 h period; 65.27% of NREM and 60.39% of REM accounting for 46.6% of the variability (Fig. 2C; Supplementary
occurred during the light phase while 65.33% of Wake occurred Table 2). Although a significant relationship was observed
during the dark phase (Fig. 1B-D). Wake, NREM, and REM were between the percentage of Wake (r=0.459, p =0.012) and REM
organized into numerous bouts over the 24 h period indicating (r=0.526, p=0.003) during the 30min time period and
that sleep/wake states undergo several transitions across the day magnitude of DA release, this effect was comparatively modest,
and within each light/dark phase (Fig. 1B-D; Supplementary accounting for only 21.1% and 27.7% of the variability,
Table 1). Importantly, the distribution of sleep/wake state respectively (Fig. 2D, E; Supplementary Table 2).

percentages, bout number, and bout length were similar to Despite these observations, the relationship between sleep/
published observations in adult rats [50-54]. wake state and DA release appeared to be driven primarily by data

obtained during the light phase (Fig. 2A-E). To test for this
Dopamine release fluctuates across sleep/wake state only during possibility, we separated our data into “Wake” and “Sleep” groups
the light phase using a median split for the 30 min time period, during which we

To examine whether sleep/wake state predicts DA release, we had observed the strongest relationship with DA release. Two-way
analyzed EEG-EMG signals 5, 15, and 30 min prior to sacrificing ANOVA with sleep/wake state and light/dark phase as between-
rats and then assessed DA dynamics using FSCV in rat NAc slices subjects variables revealed a significant effect of sleep/wake state
obtained during the light (ZT6) or dark phase (ZT18; Figs. 1A, (Fa,25y=8.193, p=0.008) and a significant interaction between
2A-F). While no significant relationships were observed between sleep/wake state and light/dark phase on DA release (F( .5 =
bout length and DA release for any of the sleep/wake states, we 4507, p=0.044), but no significant effect of light/dark phase
did observe a significant relationship between the number of (Fa25y=1.149, p=0.294). Sidak's post hoc analysis revealed
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significantly greater DA release in the Sleep group during the light
phase (ZT6; F(; 25y=11.096, p =0.003), but not during the dark
phase (ZT18; F(; 5y =0.307, p = 0.585; Fig. 2F). Additionally, there
was significantly greater DA release in the Sleep group during the
light phase (ZT6) compared to the dark phase (ZT18; F(1 25 =
5.530, p = 0.027), but no differences in DA release between light/
dark phase in the Wake group (F(; 5y = 0.522, p = 0.477; Fig. 2F).
These data suggest that DA release differs across sleep/wake state
depending on the light/dark phase, with REM sleep as the best
predictor of DA release.

Dopamine uptake varies across sleep/wake state regardless of
light/dark phase

To examine whether sleep/wake state predicts DA uptake rate
(Vinaxs MUM/s), we analyzed EEG-EMG signals for the 5, 15, and 30
min prior to sacrificing rats and then assessed DA dynamics using
FSCV in rat NAc slices obtained during the light (ZT6) or dark
phase (ZT18; Figs. 1A, 2G-K). Significant relationships were
observed between the percentage of time in each sleep/wake
state during the 5-, 15-, and 30 min time periods and the rate of
DA uptake (Supplementary Table 3). However, the percentage of
Wake (r=0.657, p <0.001) and NREM (r = 0.624, p < 0.001) at the
30 min time period resulted in the strongest predictor of DA
uptake, accounting for 43.2% and 39.0% of the variability,
respectively (Fig. 2G, H; Supplementary Table 3). Although a
significant relationship between percentage of REM at the 30 min
time period and DA uptake was also observed (r=0.448, p=
0.015), this effect was comparatively modest (Fig. 2I; Supplemen-
tary Table 3). Neither the number of bouts nor bout length of any
sleep/wake state were robust predictors of DA uptake at any time
period (Supplementary Table 3).

To examine whether the relationship between sleep/wake state
and DA uptake differs between the light (ZT6) and dark (ZT18)
phase. We again used a median split to separate our data into
Wake and Sleep groups for the 30 min time period. Two-way
ANOVA with sleep/wake state and light/dark phase as between-
subjects variables revealed a significant effect of sleep/wake state
on DA uptake rate (F(; 25 = 37.300, p <0.001) but no significant
effect of light/dark phase (F25=0.511, p=0.481), nor sleep/
wake state and light/dark phase interaction (F( 25 = 1.456, p=
0.239). Because of our a priori hypothesis that DAT function would
vary with sleep/wake state regardless of light/dark phase, we used
a Sidak’s post hoc to test for differences in DA uptake across the
Wake and Sleep groups at both the light and dark phases. As
shown in Fig. 2J, DA uptake rate was significantly faster in the
Sleep group during both the light (F(; 25 = 23.823, p <0.001) and
dark phases (F( 25y = 13.689, p <0.001). Further, a t test showed
significantly faster DA uptake in the Sleep group when collapsed
across light/dark phase (t,; = —6.005, p < 0.001; Fig. 2K). Together,
these results suggest that DA uptake is more efficient after periods
of sleep, independent of the light/dark phase.
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DAT phosphorylation state likely accounts for fluctuations in
dopamine uptake

DAT trafficking and posttranslational modifications such as
phosphorylation at the Thr53 site on the DAT (i.e, pDAT) can
influence DA uptake through putative alterations in DAT
conformational state [12, 22, 55-59]. To examine whether
fluctuations in DA uptake across sleep/wake state could be a
consequence of alterations in DAT protein levels, we conducted a
western blot experiment in a separate cohort of rats. We analyzed
EEG-EMG activity in the 30 min immediately prior to collecting
NAc tissue for western blot analysis of plasma membrane DAT and
pDAT during the light (ZT6) or dark phases (ZT18; Fig. 3). We again
used a median split to separate our data into Wake and Sleep
groups for the 30 min time period. A t test revealed that plasma
membrane DAT did not differ across sleep/wake state, (tj9979 =
0.779, p = 0.445; Fig. 3B). However, pDAT levels were significantly
higher in the Sleep group (t,5s =2.21, p = 0.036; Fig. 3C). Further,
plasma membrane pDAT/DAT ratio showed a strong trend (t5 =
2.033, p =0.053; Fig. 3D) for a significant difference between the
Wake and Sleep groups, indicating the possibility that the
proportion of transporters that are phosphorylated varies across
sleep/wake state. These results are consistent with the higher DA
uptake rate observed following periods of sleep, suggesting that
fluctuations in DA uptake across sleep/wake state may be driven,
in part, by levels of pDAT.

Cocaine potency fluctuates across sleep/wake state

In addition to enhancing basal DA uptake rate, phosphorylation of
the DAT at Thr53 has been shown to enhance DAT sensitivity to
cocaine analogs [22, 55, 60, 61], suggesting that fluctuations in
PDAT could impact the effects of cocaine. To examine whether
cocaine potency at the DAT fluctuates across sleep/wake state, we
analyzed EEG-EMG signals in the 30 min prior to sacrificing rats
and then examined cocaine-induced DA uptake inhibition using
FSCV in rat NAc slices obtained during the light (ZT6) or dark
period (ZT18; Figs. 1A, 4A-C). We used a median split to separate
our data into Wake and Sleep groups for the 30 min time period.
Two-way repeated measures ANOVA with sleep/wake state as the
between-subjects variable and cocaine concentration as a within-
subjects measures variable revealed a significant effect of sleep/
wake state (F(110)=5.63, p=0.039), and cocaine concentration
(Greenhouse-Geisser correction; F(1 08210818 = 128.210, p < 0.005),
but no significant sleep/wake state X cocaine concentration
interaction (Greenhouse-Geisser correction; F g341034) = 3.998,
p =0.072). Because of our a priori hypothesis that DAT function
would vary with sleep/wake state, we used Sidak’s post hoc tests
to examine whether the effects of cocaine would differ across the
Wake and Sleep groups. As shown in Fig. 4A, B, cocaine was
significantly more effective at inhibiting DA uptake in the Sleep
group at the 30 uM cocaine concentration compared to the Wake
group (F 6y = 8.293, p = 0.018; Fig. 4A, B). Consistent with this, the
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Fig.4 Cocaine potency is higher after periods of sleep. A Average current versus time plots and example color plots for rats categorized into
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cocaine concentration needed to inhibit 50% of uptake (Ki) was
lower in the Sleep group indicating a significant increase in
cocaine potency at the DAT (t,p=—2.512), p=0.044; Fig. 4Q).
These results are consistent with our observations that both DA
uptake rate and pDAT levels are enhanced after periods of sleep,
suggesting the likelihood that underlying changes in DAT function
are responsible for the observed fluctuations in cocaine potency.

D2R/D3R sensitivity does not account for the fluctuation in
dopamine release

D2R/D3R in the striatum have been demonstrated to modulate DA
release [13, 62-66] by hyperpolarization via voltage-dependent
potassium channels [67] and by inhibiting calcium entry [68]. D2R/
D3R are also known to regulate DA uptake via a direct interaction
with DAT or through activation of downstream signaling
molecules such as ERK1/2 and PKC which can regulate the surface
expression of DAT and hence DA uptake [69-71]. These
observations suggest the possibility that fluctuations in DA
release, uptake, or DAT sensitivity to cocaine could be influenced
by differences in D2R/D3R function. To test for this possibility, we
analyzed EEG-EMG signals for the 30 min prior to sacrificing rats
and then assessed the effects of the D2R/D3R agonist quinpirole
using FSCV recordings in rat NAc slices obtained during the light
(ZT6) or dark phase (ZT18; Figs. 1A, 4D, E). We used a median split
to separate our data into Wake and Sleep groups for the 30 min
time period. Two-way mixed design ANOVA with sleep/wake state
as the between-subjects variable and quinpirole concentration as
the within-subjects measures variable revealed a significant effect
of quinpirole concentration (F(; o) =424.389, p <0.0005), but no
significant effect of sleep/wake state (F; g)=1.571, p=0.242) nor
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significant sleep/wake state x quinpirole concentration interaction
(F1,0)=0.192, p=0.672). Given the observation that quinpirole
had a similar effect on DA release in the Wake and Sleep groups
(Fig. 4D, E), it appears that D2R/D3R sensitivity is not likely to be
the mechanism through which DA release and uptake fluctuate
across sleep/wake state.

DISCUSSION

The current experiments examined whether DA release and
uptake fluctuate across sleep/wake state using ex vivo FSCV
evaluation of DA dynamics and biochemical assessment of plasma
membrane DAT and pDAT levels in the NAc core. We demon-
strated that sleep/wake state predicts both DA release and uptake
rate, but that only DA uptake fluctuated exclusively across sleep/
wake activity and not light/dark phase. These variations in DA
release and uptake do not appear to be dependent on changes in
D2R/D3R, given that sensitivity to quinpirole did not fluctuate
across sleep/wake state. Western blotting demonstrated that
periods of sleep were associated with higher levels of phosphor-
ylation of the DAT at Thr53 and not an increase in DAT levels on
the plasma membrane. Consistent with this, the effects of cocaine
at inhibiting DA uptake were more potent after periods of sleep.

Fluctuations in dopamine release across sleep/wake state are
driven primarily by REM sleep

In the current studies, we observed that during the light phase
(ZT6), DA release was highest after periods of sleep and lowest
after periods of wakefulness. These findings are consistent with
variations in DA neuron activity and NAc DA levels across sleep/
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wake state that are also observed during the light phase [72-74].
In contrast, we found that DA release did not differ between
wakefulness and sleep during the dark phase (ZT18), which could
suggest that light/dark condition exerts an important influence on
DA release. This possibility does not appear likely given that (1)
there was no significant effect of light/dark phase on DA release
(Fig. 2F); and (2) previous evidence indicates that extracellular DA
tone in the NAc fluctuates across a 24 h period even when rats
were exposed to constant light or darkness—in other words
independent of the light/dark phase [75]. Rather, we suggest that
variations in DA release across sleep/wake state only during the
light phase may be associated with marked differences in sleep
architecture observed between the light and dark phases. In
particular, we note that we observed more frequent and longer
REM bouts during the light phase and few and brief REM bouts
during the dark phase. Given that REM sleep has been associated
with higher DA tone in the NAc and increased DA neuron activity
in the ventral tegmental area [72-74]—in addition to our finding
that REM is the best predictor of DA release—this increased REM
activity during the light phase, positions REM sleep as a potentially
critical participant in the regulation of DA release.

Dopamine uptake rate fluctuates across sleep/wake state,
regardless of light/dark phase

Recent observations demonstrate that DA metabolism, D2R/D3R
sensitivity, and TH expression are not the mechanisms driving
diurnal variation in extracellular DA tone [24, 76]. Importantly,
however, DAT function was shown to be a critical governor of this
fluctuation with higher uptake rate during the light phase when
animals are usually asleep and lower uptake during the dark phase
when animals are usually awake [24]. Consistent with this, we
observed that DATs are more efficient after periods of sleep
compared to periods of wakefulness regardless of light/dark
phase, suggesting that sleep/wake state is a stronger zeitgeber for
DA uptake efficiency than light/dark phase.

High pDAT levels are consistent with increased dopamine uptake
and exaggerated cocaine potency
DAT proteins are highly dynamic and continuously distributed
between the plasma membrane to intracellular endosomal compart-
ments [12]. This type of DAT trafficking can modulate DAT function
in response to physiological conditions on a time scale of seconds to
minutes [12, 16]. In spite of previous work showing higher total DAT
levels during the dark phase and lower during the light period in the
NAc [77], we observed no variations in plasma membrane DAT levels
in our studies indicating that DA uptake fluctuations across sleep/
wake state are likely not attributable to changes in DAT. This
discrepancy between studies could be related to the fact that we
measured plasma membrane DAT instead of total DAT number and
that we control for both sleep/wake state and light/dark phase.
Numerous observations suggest that enhanced phosphoryla-
tion of DAT at Thr53 promotes DA uptake efficiency and sensitivity
to psychostimulants [21, 55, 59, 60]. Consistent with these
findings, we observed that pDAT was significantly higher
following periods of sleep suggesting that the relationship
between sleep/wake state and DA uptake observed in our FSCV
experiments may be mediated by alterations in phosphorylation
of DAT at Thr53. In addition to the importance of DAT
phosphorylation state, numerous other mechanisms may be
involved in altered DAT function. Indeed, several studies indicate
that alterations in basal DA uptake rate may also be a product of
changes in the balance of inward/outward facing DAT [78],
changes in oligomer/monomer ratios [79, 80], dimerization with
sigma receptor [81], or differential DAT phosphorylation states on
serine sites [82, 83]. Thus, although our present findings indicate a
potentially critical link between pDAT fluctuations across sleep/
wake states that match alterations in DA uptake rate, other
mechanisms may also be involved.
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Emerging evidence posits that faster rates of DA uptake and
high levels of pDAT increase cocaine potency at the DAT, which is
manifested as higher cocaine-induced DA uptake inhibition
[21, 55, 59]. Consistent with these findings, we observed that
after periods of sleep—when DA uptake efficiency was at its
highest—cocaine potency was exaggerated. These findings
suggest the likelihood that fluctuations in DA uptake across
sleep/wake state are due to alterations in DAT state that impact its
ability to interact with cocaine, and possibly other
psychostimulants.

Circadian and ultradian influences on dopamine
neurotransmission
In addition to sleep/wake state, it is also possible that circadian
oscillations may participate in the regulation of DA neurotransmis-
sion. For example, TH—the rate limiting step in DA synthesis—
varies in a circadian-like fashion with significantly higher expres-
sion and activity in the NAc during the dark phase [24, 84].
Consistent with this finding, mutant mice without a functional
circadian Clock gene show increased expression and phosphor-
ylation of TH which is associated with enhanced firing of ventral
tegmental area DA neurons [84, 85]. These influences on TH levels
and activity do not appear to coincide with our present findings,
however, given that we did not observe overall differences in DA
release or uptake across time of day. Nevertheless, we did observe
that DA uptake rate varied across sleep/wake state regardless of
the time of the day suggesting that DAT function may be
responsive to influences that occur on a shorter time scale.
Ultradian rhythms are repeated biological patterns that occur
with periods shorter than 24 h. Well-recognized ultradian rhythms
include sleep, body temperature, motor activity, heart rate,
feeding, and many others [86-90]. In the context of our findings,
observed fluctuations in DA uptake, and DAT phosphorylation are
consistent with ultradian regulation, including by sleep/wake state
as we propose here. However, the extent to which these DA
changes are directly attributable to sleep/wake state, or possibly
to other ultradian rhythms that closely follow sleep/wake patterns
(e.g., motor activity or body temperature), remains unclear.
Moreover, while we propose that fluctuations in sleep/wake state
influence DA release and uptake, it is also possible that the
relationship is reversed, with changes in DA responsible for
fluctuations in sleep/wake state. In fact, recent observations
indicate that DAT knockout mice have lengthened ultradian motor
activity periods and display increase time spent awake [8, 91], and
that chemogenetic or optogenetic activation of DA neuron activity
enhances motor activity and reduces sleep [73, 91].

Behavioral implications

Decades of research indicate that the expression of numerous
behaviors is exquisitely reliant on tight regulation of DA
neurotransmission across the neuroaxis [92-98]. Considering the
amassing evidence that dysregulation of DA-dependent processes
may be a contributing factor to a variety of neuropsychiatric
conditions [5, 9, 10, 99], the fluctuations in DA release and uptake
observed in our studies are likely to have profound impacts on
behavior in both normal and disease states.

In the context of goal-directed and reward-associated beha-
viors, evidence suggests that food and drug self-administration,
locomotor sensitization, conditioned place preference, and drug
craving are influenced by diurnal and/or circadian rhythms which
have been posited to involve DA signaling [76, 85, 100-103].
Further, in the case of cocaine, potency at the DAT is known to
influence behavior with high cocaine potency tied to increases in
cocaine self-administration [21, 35, 49, 59, 104, 105], and reduced
cocaine potency leading to reduced cocaine self-administration
[49, 106]. Thus, cocaine potency fluctuations across sleep/wake
state are expected to drive more pronounced cocaine intake after
extended periods of sleep. This finding may help to explain prior
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research showing that rats exposed to a discrete trials procedure
display nearly 100% probability of taking cocaine at the start of
the dark phase, when they would have just awakened from an
extended period of sleep [29]. Indeed, pharmacological manipula-
tions known to impact DA uptake and cocaine potency disrupt
cocaine intake under these discrete trial conditions [26].

When considered together, these observations suggest that the
relationship between sleep/wake state and DA neurotransmission
may be one explanation for why reward-associated behaviors
have marked diurnal oscillations [73, 101-103, 107, 108]. Future
work will attempt to disentangle the complex interactions
between sleep/wake activity, general arousal state, and motivation
for rewards, and the degree to which this involves dynamic
alterations in DA neurotransmission.

Summary

In conclusion, our studies demonstrate a robust association
between sleep/wake state and DA terminal neurotransmission,
with higher DA uptake rate, increased pDAT, and enhanced
cocaine potency after periods of sleep. In addition to providing a
possible link between DA neurotransmission and diurnal varia-
tions in goal-directed behaviors across the day, our observations
also suggest that fluctuations in DA neurotransmission may also
explain diurnal changes in a host of DA-dependent behaviors and
physiological processes. Finally, our findings also provide evidence
for the need to carefully consider the potential impacts that sleep/
wake state, time of day, and light/dark condition may have on
measures of both neurotransmission and behavior across many
areas of research.
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