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An order independent algorithm 
for inferring gene regulatory 
network using quantile value 
for conditional independence tests
Sayyed Hadi Mahmoodi1, Rosa Aghdam1,2* & Changiz Eslahchi1,2* 

In recent years, due to the difficulty and inefficiency of experimental methods, numerous 
computational methods have been introduced for inferring the structure of Gene Regulatory Networks 
(GRNs). The Path Consistency (PC) algorithm is one of the popular methods to infer the structure of 
GRNs. However, this group of methods still has limitations and there is a potential for improvements 
in this field. For example, the PC-based algorithms are still sensitive to the ordering of nodes i.e. 
different node orders results in different network structures. The second is that the networks inferred 
by these methods are highly dependent on the threshold used for independence testing. Also, it is still 
a challenge to select the set of conditional genes in an optimal way, which affects the performance 
and computation complexity of the PC-based algorithm. We introduce a novel algorithm, namely 
Order Independent PC-based algorithm using Quantile value (OIPCQ), which improves the accuracy of 
the learning process of GRNs and solves the order dependency issue. The quantile-based thresholds 
are considered for different orders of CMI tests. For conditional gene selection, we consider the 
paths between genes with length equal or greater than 2 while other well-known PC-based methods 
only consider the paths of length 2. We applied OIPCQ on the various networks of the DREAM3 and 
DREAM4 in silico challenges. As a real-world case study, we used OIPCQ to reconstruct SOS DNA 
network obtained from Escherichia coli and GRN for acute myeloid leukemia based on the RNA 
sequencing data from The Cancer Genome Atlas. The results show that OIPCQ produces the same 
network structure for all the permutations of the genes and improves the resulted GRN through 
accurately quantifying the causal regulation strength in comparison with other well-known PC-based 
methods. According to the GRN constructed by OIPCQ, for acute myeloid leukemia, two regulators 
BCLAF1 and NRSF reported previously are significantly important. However, the highest degree nodes 
in this GRN are ZBTB7A and PU1 which play a significant role in cancer, especially in leukemia. OIPCQ 
is freely accessible at https://​github.​com/​haamm​im/​OIPCQ-​and-​OIPCQ2.

Identifying regulations between genes is an important issue for better understanding the biological processes1–4. It 
provides information on what genes of particular interest are over-expressed or under-expressed by different envi-
ronmental conditions. Experimental methods for inference of Gene Regulatory Networks (GRN) are expensive, 
tedious, time-consuming and sometimes not reproducible. Recently, gene expression data is accessible through 
high-throughput sequencing technologies, which provides an insight on the regulatory mechanism1,3,5–7. In GRN, 
genes are denoted as nodes while the goal is to detect interactions between them, referred to as edges. Compu-
tational methods developed to reconstruct GRNs are generally categorized in either machine-learning-based or 
model-based methods8–35. In literature, Pearson correlation coefficients36,37 and information theory5,16,19–27,29–32 are 
widely used to measure the regulation strength between genes. Both information theory and Pearson correlation 
coefficient can infer large-scale networks, but Mutual Information (MI) has the capability to measure non-linear 
dependencies which is a suitable measure to distinguish the relation between genes36,38. The Path Consistency 
(PC) method and its improvements (PC-based methods) are used for inferring the structure of GRN. PC-based 
methods such as Fast Causal Inference (FCI), Really Fast Causal Inference (RFCI), PC Algorithm based on Con-
ditional Mutual Information (PCA-CMI) and their modifications25,39–46 have two common drawbacks. The first 
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is that these methods are not consistent for different sequential node orders47. The second is that the networks 
inferred by these methods are highly dependent on the threshold used for independence testing. Consensus 
Network (CN)16, introduced Sequential ORDERing (SORDER) algorithm to selects a suitable sequential order-
ing of genes. It also improves the accuracy of the obtained results by taking the consensus of different networks. 
Zhang et al.19 introduced Conditional Mutual Inclusive Information (CMI2), which improves the GRN skeleton 
by utilizing interventional probability and Kullback–Leibler (KL) divergence. One of the issues so far unresolved 
in the literature is the order-dependency restriction of the algorithms, which the current work aims to address. 
Also, in conditional-independent tests, the proper selection of a collection of nodes which contains the separator 
sets significantly influences the performance of constraint-based methods. In the proposed method, a strategy for 
an effective selection of nodes based on existing paths between any pair of genes is devised in order to improve 
the network results. Also, our method is an order independent algorithm to reconstruct GRNs from gene expres-
sion data to overcome restrictions of order-dependent algorithms. The rest of the paper is organized as follows: 
Section Preliminaries is related to the details of MI, CMI, CMI2, PCA-CMI, and CMI2NI algorithm. In section 
Results, the results of OIPCQ on the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 
challenges and the SOS DNA network in Escherichia coli were compared with the results of three state-of-the-art 
approaches including PCA-CMI, CN and CMI2NI. Finally, a case study was provided to evaluate the performance 
of OIPCQ for inferring a network of Acute Myeloid Leukemia (AML). The gene expression data is available in 
The Cancer Genome Atlas (TCGA) website at http://​cance​rgeno​me.​nih.​gov/. The discussion and some possible 
further works are presented in Section Discussion. In section Methods, the drawbacks of PC-based algorithms 
and the details of OIPCQ Algorithm are presented.

Preliminaries
Mutual information and conditional mutual information.  Both MI and CMI are proven to be effec-
tive for inferring GRNs due to their capability to measure nonlinear dependencies between variables48. MI and 
CMI between the variables X and Y, given the vector of variables Z, are defined as follows49,50:

where p is the dimension of vector Z and p(x, y), p(x) and p(y) represent the joint distribution of X and Y, mar-
ginal distribution of X, marginal distribution of Y, respectively. p(x, y, z) , p(x, y|z) , p(x|z) and p(y|z) indicate 
joint distribution of X, Y and Z , the conditional density distribution of X and Y given Z , the conditional density 
distribution of X given Z and the conditional density distribution of Y given Z , respectively. Under the assump-
tion that gene expression data follows a Gaussian distribution, MI for two continuous variables X and Y can be 
calculated as:

where σ 2
X , σ 2

Y and σXY indicate the variance of X, the variance of Y and the covariance between X and Y, respec-
tively. When X and Y are independent, then MI(X,Y) = 0 . Similarly, CMI(X,Y |Z) is defined as:

where C is the covariance matrix and |.| is the determinant of matrix C. In which C(X,Y) and C(X,Y, Z) denote 
the covariance matrix of variables X and Y and variables X,Y and Z, respectively. When X and Y are conditionally 
independent given Z, then CMI(X,Y |Z) = 0.

Conditional mutual inclusive information (CMI2).  The CMI2 uses both KL divergence and interven-
tional and is defined as:

where p(x,  y,  z) is the joint probability distribution of X, Y and Z, PX→Y = PX→Y (X,Y ,Z) and 
PY→X = PY→X(X,Y ,Z) are the interventional probability distributions of X, Y and Z for removing edges X → Y  
and Y → X , respectively. DKL(P�PX→Y ) and DKL(P�PY→X) are KL divergences from P to PX→Y , and from P 
to PY→X , respectively. Similar to CMI, the order of CMI2 is equal to the size of Z (|Z|).

PC algorithm based on conditional mutual information (PCA‑CMI).  In PCA-CMI25, a network is 
initiated with a completely undirected graph. Then, through an iterative process, the skeleton gets updated as 

(1)MI(X,Y)=

∫

R

∫

R
p(x, y) log

p(x, y)

p(x) p(y)
dx dy,

(2)CMI(X,Y |Z)=

∫

Rp

∫

R

∫

R
p(x, y, z) log

p(x, y|z)

p(x|z) p(y|z)
dx dy dz,

(3)MI(X,Y) =
1

2
log

σ 2
Xσ

2
Y

σXY
,

(4)CMI(X,Y |Z) =
1

2
log

|C(X,Z)||C(Y ,Z)|

|C(Z)||C(X,Y ,Z)|
,

(5)
CMI2(X,Y |Z) =

DKL(P�PX→Y )+ DKL(P�PY→X)

2

=
∑
x,y,z

p(x, y, z) ln
p(x, y, z)

p(x, z)
∑

x p(y|z, x)p(x)+ p(y, z)
∑

y p(x|z, y)p(y)
,

http://cancergenome.nih.gov/


3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7605  | https://doi.org/10.1038/s41598-021-87074-5

www.nature.com/scientificreports/

edges are removed based on the results of the independent tests between adjacent nodes. Finally, the algorithm 
makes the skeleton which is fully undirected.

Let Si be a skeleton of ith order with i starting from −1 . So, S−1 denotes a completely undirected graph from 
which the algorithm starts. For two adjacent nodes X and Y in Si−1 , a set VXY = ADJ(X)

⋂
ADJ(Y) is defined 

where ADJ(X) being a set of adjacent vertices of X in Si−1 . CMI(X,Y |M) is calculated for each i-subset M of 
VXY . For calculating MI(X, Y) and CMI(X,Y |M) , Eqs. (3) and (4) are used respectively. For removing the edge 
between two adjacent nodes X and Y in Si−1 , CMImax(X,Y |Z) as maxM CMI(X,Y |M) and θ as the threshold for 
independent test are considered. The edges for which CMImax(X,Y |Z) < θ are removed from Si−1.

CMI2NI: GRN inference method based on CMI2.  Given an expression dataset with n genes and m 
samples, CMI2NI infers its underlying GRN. In CMI2NI, after obtaining MI and CMI2 with Eqs. (3) and (5), 
the PCA-CMI algorithm was used to remove the (conditional) indirect edges from the complete graph. GRN 
inference is performed by removing those edges without strong causal regulations recursively until there is no 
change in the network topology. For more details of the CMI2NI algorithm, see19.

Results
In this section, the performance of OIPCQ and OIPCQ2 are benchmarked against other well-known methods 
(PCA-CMI, CN and CMINI) using both simulated (DREAM project) and real data (SOS DNA and AML). 
The DREAM project is an in silico network challenge introduced in 2006. In this work, we used DREAM3 and 
DREAM4 datasets. DREAM3 contains three sub-challenges of size 10, 50 and 100 genes. Each sub-challenge 
contains five gold standard networks (Ecoli1, Ecoli2, Yeast1, Yeast2 and Yeast3) and for each, there are three gene 
expression sets (heterozygous knockdown, null-mutants (steady state) and trajectories (time courses)). Among 
these sets, Yeast1, which is a steady-state dataset, is used. DREAM4 contains three sub-challenges of size 10, 100 
and 100-multifactorial, among which, we have used all five networks of the 100-multifactorial sub-challenge. The 
five gold standard networks of the 100-multifactorial sub-challenge have 100 genes and they have 176, 249, 195, 
211 and 193 gold standard links, respectively. To benchmark the performance of OIPCQ and OIPCQ2 against 
well-known algorithms, True Positive (TP), False Positive (FP), True Positive Rate (TPR), Positive Predictive 
Value (PPV), False Positive Rate (FPR), False Discovery Rate (FDR), overall ACCuracy (ACC), F-measure and 
Matthews Correlation Coefficient (MCC) are calculated. They are defined as follows:

Results for DREAM3.  On the DREAM3 datasets, OIPCQ with two thresholds ( θ1 for MI and θ2 for CMI) 
were implemented and compared with PCA-CMI, CN and CMI2NI. For OIPCQ and OIPCQ2 the same param-
eters ( θ1 and θ2 ) are considered. For PCA-CMI and CMI2NI algorithms one parameter is considered. CN algo-
rithm requires two thresholds, one for producing a consensus network ( CNConsensus ) and interval threshold 
for independent tests ( CNInd.Test ). The selected thresholds for the mentioned methods are selected based on 
receiver operating characteristic (ROC) curve. These thresholds are shown in Table 1. The benchmark results 
for DREAM3 are summarized in Tables 2, S1 and S2 in Supplementary file. The F-measure values for mentioned 
algorithms are illustrated in Fig. 1. The results show that OIPCQ and OIPCQ2 consistently perform better than 
all other algorithms in terms of PPV, ACC, MCC and F-measure criteria. OIPCQ and OIPCQ2 algorithms were 
benchmarked with CMI2NI using DREAM3 datasets with sizes 10, 50 and 100. In all sizes, OIPCQ and OIPCQ2 
had better performance compared to CMI2NI in terms of F-measure criteria. For size 10, FP was improved from 
1 to 0 with no change in TP. For size 50, FP was decreased from 40 to 30 and TP was increased from 39 to 40. For 
size 100, FP was changed from 38 to 34 and TP was improved from 64 to 75. 

We evaluated the performance of OIPCQ and OIPCQ2 algorithms in three orders (order 0, order 1 and order 
2). The results suggest that a higher-order network has higher accuracy (ACC) and F-measure with a lower FPR 

TPR=
TP

TP + FN
, FDR =

FP

FP + TP
, FPR =

FP

FP + TN

ACC=
TP + TN

TP + FP + TN + FN
, F −measure = 2

PPV × TPR

PPV + TPR
,

PPV =
TP

TP + FP
, MCC =

TP × TN − FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Table 1.   Threshold values for methods used on three sets of DREAM3-Yeast1-null-mutant dataset.

Algorithm

Dataset

10 genes, 10 edges 50 genes, 77 edges 100 genes, 166 edges

PCA-CMI 0.03 0.03 0.05

CNConsensus 0.6 0.6 0.6

CNInd.Test (0.02 , 0.05) (0.02 , 0.05) (0.03 , 0.05)

CMI2NI 0.03 0.04 0.06

OIPCQθ1 0.05 0.02 0.03

OIPCQθ2 0.01 0.05 0.05
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than that of a lower order network. This observation demonstrates that both OIPCQ and OIPCQ2 methods can 
construct the true network step by step, and are effective and efficient in inferring GRNs in order 2. The results 
of different orders of OIPCQ and OIPCQ2 algorithms for DREAM3 are shown in Tables 3 and 4, respectively.

Results for DREAM4.  Similar to the DREAM3 case, for DREAM4, OIPCQ and OIPCQ2 with two thresh-
olds ( θ1 for MI and θ2 for CMI) were implemented and compared with PCA-CMI, CN and CMI2NI. The selected 
thresholds for the mentioned methods are shown in Table S3 in Supplementary file. The benchmark results for 
DREAM4 for five networks of the 100-multifactorial sub-challenge are summarized in Tables S4 through S8 and 
Fig. 2. Similar to DREAM3, the results show that OIPCQ and OIPCQ2 consistently perform better than all other 
algorithms in terms of PPV, ACC, MCC and F-measure metrics.

Table 2.   Results for DREAM3-size10-Yeast1. Best results are indicated in bold.

Algorithm TP FP PPV TPR ACC​ F-measure FPR FDR MCC

PCA-CMI 9 1 0.9 0.9 0.95556 0.9 0.02857 0.1 0.87143

CN 9 1 0.9 0.9 0.95556 0.9 0.02857 0.1 0.87143

CMI2NI 9 1 0.9 0.9 0.95556 0.9 0.02857 0.1 0.87143

OIPCQ 9 0 1 0.9 0.97778 0.94737 0 0 0.93541

OIPCQ2 9 0 1 0.9 0.97778 0.94737 0 0 0.93541

Figure 1.   Comparison of F-measure values of OIPCQ and OIPCQ2 algorithms with other methods for 
learning DREAM3 Challenge with 10 genes, DREAM3 Challenge with 50 gene and DREAM3 Challenge with 
100 genes.

Table 3.   Results for different orders of OIPCQ algorithm for DREAM3-Yeast1 of size10, 50 and 100. Best 
results are indicated in bold.

TP FP PPV TPR ACC​ F-measure FPR FDR MCC

Size10-Order 0 9 1 0.9 0.9 0.955556 0.9 0.028571 0.1 0.871429

Size10-Order 1  9 0  1  0.9 0.977778 0.947368 0  0  0.935414

Size10-Order 1  9 0  1  0.9 0.977778 0.947368 0  0  0.935414

Size50-Order 0 57 156 0.267606 0.74026 0.856327 0.393103 0.135889 0.732394 0.387026

Size50-Order 1 43 57 0.43 0.558442 0.925714 0.485876 0.049652 0.57 0.451002

Size50-Order 2 40 30  0.571429  0.519481  0.945306 0.544218  0.026132 0.428571  0.515858

Size100-Order 0 98 161 0.378378 0.590361 0.953737 0.461176 0.033654 0.621622 0.450085

Size100-Order 1 77 64 0.546099 0.463855 0.969091 0.501629 0.013378 0.453901 0.487513

Size100-Order 2 75 34  0.688073  0.451807 0.974747 0.545455 0.007107 0.311927  0.545552
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Range of the variation of TP and FP values.  In the Materials and methods section, the order depend-
ency of PC-based Algorithms is discussed. To illustrate the order dependency of PC-based algorithms, we imple-
mented the PCA-CMI on the DREAM3 dataset with 10, 50 and 100 genes. For each of these sets, 1000 different 
gene order permutations were generated and tested. The threshold was set as θ = 0.05 for CMI tests. Figure 3 
parts (a), (b) and (c) show the TP against FP for each randomly-generated permutation for DREAM3 dataset 
with 10, 50 and 100 genes, respectively. Figure 3 part (d) shows the F-measure values for these datasets. The study 
on different sequential node ordering resulted in different TP and FP. It is concluded that, by considering differ-
ent sequential node ordering, the resulted networks are also different. Figure 3d illustrates that the larger the net-
works are, the more they are affected by the order of the input genes. The order dependency is less of a concern 
in networks with fewer variables (networks with less that 10 genes). Also, 1000 random sequences of genes for 
DREAM4 dataset are generated and the range of the variation of TP and FP are calculated. Figure 4 illustrates the 
range of values for DREAM4 datasets resulted by PCA-CMI and CMI2NI algorithms. It is concluded that, the 
range of variation of the values is significant and indicates the importance of using order-independent algorithm 
or selecting an appropriate order of genes as the algorithm input. The standard deviations for TPs and FPs are 
approximately equal to 2 and 3, respectively.

Results for SOS‑DNA and AML.  The efficiency of OIPCQ and OIPCQ2 algorithms are also tested on real 
datasets E. coli(SOS-DNA) and AML. The real network for SOS-DNA consists of a network with 9 genes and 24 
edges. Thresholds used for the implemented algorithms are listed in Table S9 in Supplementary file. The bench-
mark results on the SOS-DNA dataset are presented in Fig. 5 and Table S10 in Supplementary file.

The results show that OIPCQ performs consistent with the benchmark algorithms. The AML network contains 
81 genes, of which 65 are target and 16 are regulatory genes. RACER algorithm, presented in51, was developed 
to infer the GRN in AML dataset and is referred to as a Golden Standard for this dataset. Zhang’s CMI2NI 
algorithm19 produced a network with 549 edges, of which 113 are common with RACER. In order to compare 
the networks constructed by OIPCQ and OIPCQ2 with CMI2NI, we have selected thresholds such that the 
constructed network has equal edges to the CMI2NI’s network. Hence, the produced network contains 549 
edges from which 114 are in common with RACER. The results of OIPCQ and OIPCQ2 on AML dataset are 

Table 4.   Results for different orders of OIPCQ2 algorithm for DREAM3-Yeast1 of size10, 50 and 100. Best 
results are indicated in bold.

TP FP PPV TPR ACC​ F-measure FPR FDR MCC

Size10-Order 0  9 1 0.9 0.9 0.955556 0.9 0.028571 0.1 0.871429

Size10-Order 1  9 0  1  0.9 0.977778 0.947368 0  0  0.935414

Size10-Order 2  9 0  1  0.9 0.977778 0.947368 0  0  0.935414

Size50-Order 0  57 156 0.267606 0.74026 0.856327 0.393103 0.135889 0.732394 0.387026

Size50-Order 1 40 52 0.434783 0.519481 0.927347 0.473373 0.045296 0.565217 0.436671

Size50-Order 2 39  35  0.527027  0.506494  0.940408 0.516556  0.030488  0.472973  0.484925

Size100-Order 0  99 166 0.373585 0.596386 0.952929 0.459397 0.034699 0.626415 0.449227

Size100-Order 1 80 64 0.555556 0.481928 0.969697 0.516129 0.013378 0.444444 0.501917

Size100-Order 2 75  43  0.635593  0.451807  0.972929 0.528169  0.008988  0.364407  0.522602

Figure 2.   Comparison of F-measure values of OIPCQ and OIPCQ2 algorithms with other methods for 
learning DREAM4 challenge for five networks of the 100-multifactorial sub-challenge.
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summarized in Table S11 in the supplementary file. Figures S1 and Fig S2 generated by Cytoscape52 show the 
GRN constructed by OIPCQ and OIPCQ2 on AML, respectively. The central nodes in these figures show the 
16 regulators. In these networks, the highest degrees belonged to ZBTB7A and PU1 regulators with respective 
values of 53 and 47 (see Table S12). Figure 6 generated by Cytoscape52 illustrates the resulted subnetwork by 
OIPCQ algorithm for the first 17 regulators and their targets of the AML dataset.

Figure 3.   True Positive against False Positive for 1000 randomly-generated permutations for DREAM3 dataset 
with (a) 10 genes, (b) 50 genes, and (c) 100 genes resulted by PCA-CMI. The F-measure values for DREAM3 
dataset with 10, 50 and 100 genes is represented in part (d).

Figure 4.   Range of the variation TP and FP values for 1000 randomly-generated permutation for DREAM3 and 
DREAM4 datasets resulted by PCA-CMI and CMI2NI algorithms.
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These values are significantly higher compared to that of RACER network with 12 and 9 degrees. Previous 
studies53,54 have shown that ZBTB7A functions as a transcriptional suppressor. ZBTB7A was also proven to play 
a critical role in AML as a transcription factor55. AML is also influenced by the slow decline of the transcript 
factor PU156,57. In addition to the mentioned two regulators, BCLAF1 and NRSF are reported by Zhang et al.19, 
as significant regulators with significant role in cancer. In both of our networks, BCLAF1 and NRSF (Figs. S1 
and Fig S2) had high degrees as well, which is consistent with the results of CMI2NI19 . In order to verify these 
findings, the pathway enrichment was done separately for each of the four regulators ZBTB7A, PU1, BCLAF1 and 
NRSF, along with their target genes. The pathway enrichment was done in the cancer annotation system CaGe 
(http://​mgrc.​kribb.​re.​kr/​cage/)58–61. The results of the pathway enrichments are presented in Tables S13 to S20, 
which include significant pathways. In these tables the obtained p-values related to the pathways correspond to 

Figure 5.   Comparison of F-measure values of OIPCQ and OIPCQ2 algorithms with other methods for 
learning SOS-DNA and AML.

Figure 6.   Subnetwork of GRN of AML that infer by OIPCQ.

http://mgrc.kribb.re.kr/cage/
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each of the four regulators and their target genes in the resulted networks from OIPCQ and OIPCQ2 algorithms 
are more meaningful than those of CMI2NI. In order to compare the importance of target genes of BCLAF1 
and NRSF in OIPCQ and OIPCQ2 with CMI2NI, three most significant pathways were selected and compared 
(Table 5). The result of Table 5 indicate that the relationship between genes in our networks are more related to 
LEUKEMIA cancer in comparison with CMI2NI’s network. In summary, based on the results obtained in this 
study, we can claim that the regulators ZBTB7A and PU1 beside to BCLAF1 and NRSF play a significant role in 
cancer, and especially in leukemia.

Summary: all cases.  For threshold-dependent methods, TPR and FPR are used to generate the Receiver 
Operating Characteristic (ROC) curve. The area under the ROC Curve (AUC) is calculated to measure the per-
formance of each method and benchmark them. To make a fair comparison, we referred to the algorithms’ refer-
ence articles and used their suggested thresholds that have produced the best results based on F-measure values.

We also ran these algorithms on additional datasets. If a better threshold than what was suggested in the ref-
erences was found, we included it in our paper for comparison. The rationale was to compare the best outcome 
of our algorithm with the best outcome of the benchmark algorithms in a fair manner.

To study and illustrate the dependency of the four algorithms (PCA-CMI, CMI2NI, OIPCQ and OIPCQ2) 
on the threshold for MI and CMI tests, the standard deviation of TP and FP based on different threshold values 
are calculated and shown in Tables 6 and 7, respectively. Among the four algorithms, the smallest standard 
deviation values for TP and FP are from OIPCQ and OIPCQ2 algorithms. For the aforementioned algorithms, 
the 1000 threshold values for MI and CMI tests are selected in the range (0,1) with the incremental step of 0.001. 
For each data, approximately 1000 different TP and FP are obtained based on different thresholds and standard 
deviation of them are calculated. To calculate the standard deviation of the results for OIPCQ and OIPCQ2, 
1000 different threshold values for CMI(X, Y|Z) and CMI(X, Y|Z, W) are used. The standard deviations are cal-
culated by considering a constant quantile of 70 and a constant value for the MI(X, Y). In addition, for OIPCQ 
and OIPCQ2, the standard deviation of the TP and FP are also calculated based on different values for quantile 
CMI(X, Y|Z) and CMI(X, Y|Z, W). For this purpose, the range of a quantile was (0.5, 0.9) with steps of 0.001 
(400 steps) and fixed value of 0.05 for MI and CMI tests. The standard deviation of TP and FP based on different 
values for quantiles are shown in two last columns (OIPCQq and OIPCQ2q ) of Tables 6 and 7, respectively. In 

Table 5.   Comparison of CMI2NI, OIPCQ and OIPCQ2 methods based on the three important pathways 
resulted by KEGG. Best results are indicated in bold. Among the significant pathways, three most significant 
ones were selected. The pathway enrichment was done separately for each of the four regulators ZBTB7A, PU1, 
BCLAF1 and NRSF. Column 1 indicates the name of pathways and number of genes in pathways. The name 
of regulators and algorithms are in columns 2 and 3, respectively. The overlap between resulted sets and genes 
in pathways are represented in columns 4. The related p values and q-values are collected in columns 5 and 6, 
respectively.

No. Pathway (number of genes in pathways) Regulator Method Genes overlapped p value q-value

1 CHRONIC MYELOID LEUKEMIA (73 
genes) BCLAF1 CMI2NI/OIPCQ/OIPCQ2 22/25/25 2.90e-35/2.17e−41/2.17e−41 2.41e−32/1.80e−38/1.80e−38

2 ACUTE MYELOID LEUKEMIA (60 
genes) BCLAF1 CMI2NI/OIPCQ/OIPCQ2 18/20/20 1.94e−28/3.03e−32/ 3.03e−32 5.38e−26/8.41e−30/ 8.41e−30

3 PATHWAYS IN CANCER ( 328 genes) BCLAF1 CMI2NI/OIPCQ/OIPCQ2 28/31/31 5.05e−30/2.41e−34/2.41e−34 2.10e−27/1.00e−31/1.00e−31

1 CHRONIC MYELOID LEUKEMIA (73 
genes) NRSF CMI2NI/OIPCQ/OIPCQ2 18/26/26 2.94e−29/8.90e−44/8.90e−44 2.45e−26/7.42e−41/ 7.42e−41

2 ACUTE MYELOID LEUKEMIA (60 
genes) NRSF CMI2NI/OIPCQ/OIPCQ2 15/14/14 3.32e−24/6.78e−20/6.78e−20 1.38e−21/1.88e−17/1.88e−17

3 PATHWAYS IN CANCER (328 genes) NRSF CMI2NI/OIPCQ/OIPCQ2 22/28/28 1.02e−23/5.47e−29/ 5.47e−29 2.83e−21/2.28e−26/2.28e−26

Table 6.   Standard deviation for true positive based on different thresholds.

PCA-CMI CMI2NI OIPCQ OIPCQ2 OIPCQq OIPCQ2q

DREAM3-size10 3.1476 3.3372 0 0 0 0

DREAM3-size50 9.7928 9.8719 3.1112 1.6733 4.5769 3.3982

DREAM3-size100 20.8978 21.6884 3.4808 0.9072 6.1006 5.1318

DREAM4-Net1 12.9749 12.7407 0.7739 0.8604 1.2504 1.1699

DREAM4-Net2 19.7166 20.9606 2.0103 5.0361 3.843 6.6629

DREAM4-Net3 19.1421 19.6161 1.7407 1.07 2.39 2.7508

DREAM4-Net4 19.7112 20.724 3.4289 2.5650 5.16 3.0038

DREAM4-Net5 21.9107 22.6012 1.6316 1.7157 2.4411 2.3825

SOS-DNA 3.881 3.927 0 0.3457 0 0.8439

AML 20.6249 18.0287 4.5840 3.9921 6.5335 6.1059
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addition, to investigate the dependence of algorithms on sample values and evaluate the stability of the results 
by removing a percentage of samples, 10% of the samples are removed and new F-measure values are calcu-
lated. These steps are repeated 200 times and the standard deviations for resulted F-measure values are shown 
in Table 8. Results indicate that the algorithms are robust and have a relatively similar performance according 
to the standard deviation of F-measure values. In summary, by removing a small percentage of the samples, the 
results do not change significantly.

Table 9 shows the performance of algorithms on each dataset according to the important measures. For 
DREAM3-size50-Yeast1 and DREAM4-Net1 datasets CN algorithm superior to OIPCQ based on FP and FDR 
measures. Based on F-measure, which considers TP, FN and FP together, OIPCQ outperforms other algorithms 
in learning the GRN structure in all the tested data sets.

The OIPCQ and OIPCQ2 algorithms have three parameters: θ1 (the threshold for MI test); θ2 (the threshold 
for CMI test), and k as kth percentile of all CMI(X,Y|Z) values. In order to benchmark our algorithms against 

Table 7.   Standard deviation for false positive based on different thresholds.

PCA-CMI CMI2NI OIPCQ OIPCQ2 OIPCQq OIPCQ2q

DREAM3-size10 1.1896 1.2965 0 0 0 0

DREAM3-size50 18.3173 24.27 9.0795 7.5631 10.551 8.1585

DREAM3-size100 44.3284 49.291 8.6476 6.4613 9.9375 7.8771

DREAM4-Net1 86.4018 91.0742 1.9737 1.3515 2.3155 2.0872

DREAM4-Net2 92.1005 95.4474 16.8821 31.3403 20.1067 33.2911

DREAM4-Net3 130.5841 140.8131 11.6187 8.1272 13.6606 10.914

DREAM4-Net4 128.34 137.1658 15.2308 10.1293 18.6175 13.1936

DREAM4-Net5 178.9869 189.3208 8.7945 7.2971 10.38 9.4407

SOS-DNA 1.0464 1.0947 0 0 0.1581 0.3616

AML 86.1101 77.3476 18.7795 16.3635 27.8585 25.7403

Table 8.   Standard Deviation for F-measure based on removing 10% of the samples. Best results are indicated 
in bold.

PCA-CMI CN CMI2NI OIPCQ OIPCQ2

DREAM3-size10 0.1126 0.1072 0.1021 0.1097 0.0943

DREAM3-size50 0.0237 0.0243 0.0237 0.0231 0.0211

DREAM3-size100 0.0184 0.0196 0.02 0.0177 0.0182

DREAM4-Net1 0.014 0.1262 0.0122 0.0098 0.0104

DREAM4-Net2 0.0121 0.012 0.0125 0.0111 0.0125

DREAM4-Net3 0.0156 0.0142 0.0133 0.0132 0.013

DREAM4-Net4 0.0116 0.0109 0.0148 0.0127 0.0099

DREAM4-Net5 0.0131 0.137 0.0142 0.0145 0.0119

SOS-DNA 0.0379 0.0336 0.034 0.0363 0.0326

AML 0.0091 0.0096 0.0111 0.0116 0.0073

Table 9.   Report Best algorithm for each data sets.

Dataset FP F-measure FDR MCC

DREAM3-size10-Yeast1 OIPCQ-OIPCQ2 OIPCQ-OIPCQ2 OIPCQ-OIPCQ2 OIPCQ-OIPCQ2

DREAM3-size50-Yeast1 CN OIPCQ CN OIPCQ

DREAM3-size100-Yeast1 OIPCQ OIPCQ OIPCQ OIPCQ

DREAM4-Net1 CN OIPCQ CN OIPCQ

DREAM4-Net2 OIPCQ OIPCQ OIPCQ OIPCQ

DREAM4-Net3 OIPCQ OIPCQ OIPCQ OIPCQ

DREAM4-Net4 OIPCQ OIPCQ OIPCQ OIPCQ

DREAM4-Net5 OIPCQ OIPCQ OIPCQ OIPCQ

SOS-DNA All algorithms All algorithms All algorithms All algorithms

AML OIPCQ OIPCQ2 OIPCQ2 OIPCQ2
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other methods, we set k = 70 and θ1 = θ2 = θ , and calculate AUC based on the θ parameter. In our algorithms, 
by keeping the parameters constant and θ1 and θ2 equal, the performance of the algorithms declines. Despite 
the decline, they still outperform the benchmarked algorithms. Since the OIPCQ and OIPCQ2 algorithms are 
similar, we just report the result of OIPCQ algorithm. Results of AUC for DREAM3 of sizes 10, 50 and 100 are 
shown in Table 10. As an example, the ROC curves of different methods for the DREAM3 challenge with 50 
nodes are shown in Fig. 7 which shows the better performance of the OIPCQ algorithm in comparison with the 
benchmarked methods (PCA-CMI, CMI2NI and CN).

Table 11 shows the results on DREAM4 data sets for different methods. The result of AUC values for OIPCQ 
algorithm is compared with that of PCA-CMI, CN and three best teams which participated on this challenge in 
http://​wiki.​c2b2.​colum​bia.​edu/​dream/​resul​ts/​DREAM4/. From Table 11, we can find that the proposed method 
(OIPCQ) performs as good as the best method in DREAM4 challenge. In Networks 1,3 and 4, the results of the 
OIPCQ algorithm are similar to the best team (TEAM415). In Network 5, our algorithm has the best performance 
and in Networks 2, the CN algorithm among the challenge participants has the best result.

Figure 7.   ROC curves of different methods for DREAM3 challenge with 50 nodes. The red line is related to the 
ROC curve of OIPCQ algorithm with a AUC of 0.8458 value which has a larger value than other methods.

Table 10.   Comparison of different methods for learning DREAM3. Best results are indicated in bold. 
AUCD10 AUC value for a 10-gene network in DREAM3, AUCD50 AUC value for a 50-gene network in 
DREAM3, AUCD100 AUC value for a 100-gene network in DREAM3.

Method PCA-CMI CN CMI2NI OIPCQ

AUCD10 0.9642 0.9734 0.956 0.9800

AUCD50 0.8101 0.8315 0.834 0.8458

AUCD100 0.8419 0.8558 0.855  0.8656

Table 11.   Comparison of different methods for Learning DREAM4 Challenge. TeamName is the name of the 
team which registered for this challenge. The best performer for the relative item is noted in bold.

Method Net1 Net2 Net3 Net4 Net5

Team415 0.75 0.69 0.76 0.77 0.76

Team549 0.73 0.70 0.74 0.74 0.74

Team395 0.69 0.64 0.72 0.72 0.71

PCA-CMI 0.70 0.69 0.74 0.74 0.74

CN 0.75 0.73 0.76 0.70 0.76

OIPCQ 0.75 0.71 0.76 0.77 0.77

http://wiki.c2b2.columbia.edu/dream/results/DREAM4/
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AUC values related to different algorithms for SOS is illustrated in Table 12. According to this table, the AUC 
values of CMI2NI and OIPCQ algorithms are larger than other those of methods.

According to Tables 10, 11 and 12, the AUC values of all algorithms are almost similar and AUC values of 
OIPCQ algorithm are larger than those of other methods.

Discussion
Survival of living organisms depends on the interaction between thousands of genes. GRN are schematic repre-
sentations of interactions among all gene pairs in a given cell. The functions and dynamics of various cells can 
be figured out through reconstructing the GRNs. In PC-based methods, the maximum of CMI values is used as 
a threshold for removing the network edges. Considering the distribution of the CMI values, the choice of the 
maximum value may not always be appropriate. For example, a single large value within a set of CMI values that 
are significantly lower, may result in high false positives. In our approach, the distribution of the CMI values is 
taken into account by choosing a certain quantile threshold. This quantile threshold is set based on the training 
process on DREAM3 dataset. This threshold is also applied to other datasets considered as independent data 
sets. In fact, this threshold can be adjusted for each dataset differently and better results can be obtained. In order 
to reduce the parameters and the computation time of the algorithm, this threshold is set based on the training 
process on DREAM3 dataset. In PC-based methods, the edges are removed in an iterative process until some 
criteria are met. In OIPCQ on the other hand, the edges are removed at the end of each order of algorithm, a 
threshold is determined and a number of edges are removed based on the selected threshold (Fig. 9).

The iterative process used in PC-based methods for removing edges from a network has two main drawbacks:
1-In each order of the PC-based algorithm and during each step in the iterative process, if an edge is removed 

in error, it will cause the error to propagate to the future steps at the same order of algorithm. In OIPCQ, on the 
other hand, the edges are removed at the end of each order of the algorithm. If an edge is removed in error at the 
end of each order, it will cause the error to propagate to the future orders of the algorithm and not the subsequent 
steps in each order of the algorithm. In other word, since in PC-based methods, UXY and VXY are updated in each 
iterative step (by removing edges in each iterative step, the size of UXY and VXY gets smaller), it is possible that 
the informative nodes in the separator sets are eliminated incorrectly. Subsequently, the test of independency 
considers the smallest set of vertices and therefore it is possible that an edge is retained by mistake (increasing 
FP). In OIPCQ, on the other hand, UXY and VXY are updated at the end of each order of the algorithm which 
mitigates this source of error.

2-The order of input variables has an impact on the final network constructed. In our simplified version of 
the algorithm, firstly, in each order set of neighbors of all adjacent nodes are determined. Then, the independ-
ence tests are performed and their test statistics are obtained as criteria for removing the edges. Such a process 
eliminates the chance for removing an edge in error that would cause an incorrect change in the set of neighbors. 
As a result, any order of inputs will result in the same network construction. The results we obtained on all tested 
datasets confirm that the number of FP’s are reduced in our approach compared to the iterative approach. The 
drawback of the OIPCQ algorithm compared to PC-based algorithms is the running time of the algorithm. In 
fact, by removing edges in each iteration of PC-based methods the size of VXY for the adjacent node X and Y can 
be decreased. So, the number of calculations for CMI tests is decreased. In the OIPCQ algorithm, first in each 
order of algorithm VXY (for order 1) and UXY (for orders greater than 1) are calculated and considered constant. 
As a result, more calculations are needed in the OIPCQ algorithm.

It can concluded that OIPCQ and OIPCQ2 outperform other algorithms on simulated datasets. Also, the 
OIPCQ and OIPCQ2 results on the AML data shows more similarities with RACER compared to some popular 
inferring network methods. Similar results are concluded by using OIPCQ and OIPCQ2 algorithms, therefore, 
applying Eq. (5) instead of 4 for calculating CMI, the constructed GRN do not change the result significantly. 
Finally, the main advantage of the proposed method is that it is applicable to all PC-based methods.

Methods
In this section, we discuss about drawbacks of PC-based algorithms. Following that, the details of the proposed 
OIPCQ algorithm for inferring the structure of GRN are introduced.

Drawbacks of PC‑based algorithms.  The first is that these methods are not robust for different sequen-
tial node orders. The second is that the results by these methods are highly dependent on the maximum value of 
CMI tests used for removing edges in each step of the algorithms. In addition, the proper selection of a collection 
of nodes which contains the separator sets significantly influences the performance of these methods.

PC‑based algorithms are order‑dependent.  The network topology resulted from PC-based algorithms are 
dependent on the order of genes taken as input. In each order of PC-based algorithms, the edges are removed 
based on conditional mutual information tests which explained in section “PC Algorithm based on Conditional 

Table 12.   Comparison of AUC for real data sets (AUCSOS: AUC values for a SOS network with 9 genes). Best 
results are indicated in bold.

Method PCA-CMI CN CMI2NI OIPCQ

AUCSOS 0.79 0.791 0.8 0.8
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Mutual Information (PCA-CMI)”. Therefore, the adjacent of the vertices are updated as a result of sequential 
removing edges from the network. According to this method, VXY depends on the initial order of the nodes and 
a different nodes order may eventually result in a different final network.

Construction of separator sets.  In PCA-CMI, CMI2NI, and CN algorithms, the separator set is extracted from 
VXY . So, these algorithms in each order only considers the paths of length 2 and ignores any existing connec-
tions with length greater than 2. One way of dealing with this constraint is to use UXY = ADJ(X)

⋃
ADJ(Y) 

for order greater than one ( i > 1 ). For i > 1 , by using UXY instead of VXY , the decision will be made by more 
information considering all the paths between X and Y. For example, in Fig. 8 by using VXY = {M,N} only 
the CMI(X, Y|M, N) for order i = 2 is calculated and only two paths of length 2, X − N − Y  and X −M − Y  , 
between X and Y are considered. By using UXY = {M,N ,Z,W} , we also considered the path of length 3, 
X − Z −W − Y  , for checking the dependency between X and Y. The results show that, by considering more 
paths, OIPCQ helps to keep more reliable edges compared to other methods.

Removing edges in PC‑based algorithms is threshold‑dependent.  In PC-based algorithms, the decision for 
removing edges from a network strictly depends on the value of CMImax(X,Y |Z) and threshold θ as the criterion 
for removing the edges. In fact, the edge XY is removed if for each Z in separator X and Y, CMI(X,Y |Z) < θ . 
This method results in many FN. On the other hand, if the most CMI(X, Y|Z) are close to zero and only one of 
them is greater than θ , PCA-CMI, CN and CMI2NI keep the edge XY in the network. Our investigation show 
that most of such edges are FP. So, considering the distribution of CMI(X, Y|Z), quantile-based criterion for 
removing an edge is more effective and yield better results than using constant value as a threshold for removing 
edge. Our algorithm is trained by 70th percentile of all CMI(X, Y|Z) values in one dataset and this quantile is 
used for all datasets. In OIPCQ and OIPCQ2 algorithms, user sets the threshold.

The OIPCQ algorithm.  The OIPCQ starts from a complete graph and iterates the following process to 
extract skeleton Si from Si−1.

Step 0: Initialization: Generate a complete network with number of nodes equal to the number of genes.
Step 1: Calculate MI: Compute MI values for each pair of genes.
Step 2: Remove Edges: Eliminate corresponding edges for which MI values are smaller than θ1 ( θ1 denotes 

the threshold for MI test). The resulted network in this step is denoted by S0.
Step 3: Calculate CMI of order 1: If there exists any edges between X and Y in S0 , find all genes Z which are 

adjacent to both X and Y, and then calculate their CMI(X, Y|Z) for Z belongs to VXY . In this step, the paths of 
length 2 are considered between X and Y.

Step 4: Remove Edges: Define CMI70(X,Y |Z) as all 70th percentile of all CMI(X, Y|Z) values. If CMI70(X,Y |Z) 
is less than θ2 ( θ2 is the threshold for CMI test), remove the edge between X and Y. The resulted network in this 
step is denoted by S1.

Step 5: Calculate CMI of order 2: Do the steps above for X and Y and calculate CMI(X, Y|Z, W), where Z and 
W belong to UXY . In this step, the paths of length at least 2 are considered between X and Y.

Step 6: Remove Edges: Define CMI70(X,Y |Z,W) as the 70th percentile of all CMI(X, Y|Z, W) values. If 
CMI70(X,Y |Z,W) is less than θ2 , remove the edge between X and Y.

An example of the OIPCQ algorithm is illustrated in Fig. 9 for network with 5 genes. The other version of 
OIPCQ, named OIPCQ2 was introduced using CMI2 for detecting dependency between genes. In both OIPCQ 
and OIPCQ2 algorithms, in each order of algorithms for each X and Y, UXY and VXY are defined and fixed. Then, 
at the end of each order the algorithm decides to remove edges based on threshold θ1 and θ2 . By using this method 
and fixing the UXY and VXY in each order of algorithms, the order dependency issue is solved and both OIPCQ 
and OIPCQ2 algorithms are order independent.

OIPCQ and OIPCQ2 algorithms compute MI(X, Y) in steps 1 and 2, CMI(X, Y|Z) in steps 3 and 4, and 
CMI(X, Y|Z, W) in steps 5 and 6.

Figure 8.   Example of Paths of length 2 and greater than 2 between X and Y.
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In PCA-CMI, CMI2NI, and CN algorithms, the separator set is extracted from VXY . So, these algorithms 
in each order only consider the paths of length 2 and ignore any existing connections with lengths of greater 
than 2. One way of dealing with this constraint is to use UXY = ADJ(X)

⋃
ADJ(Y) for orders greater than one 

( i > 1 ). For i > 1 , by using UXY instead of VXY , the decision will be made by more information considering all 
the paths between X and Y. In general, PC-based algorithms first consider a complete graph, then try to reduce 
the number of edges in the early steps to reach the desired network. In the early steps, such as CMI(X, Y|Z), the 
computational time is less than the computational time for CMI(X, Y|Z, W).

If CMI(X, Y|Z, W) has a low value for the 70th percentile of all Z and W, CMI(X, Y|Z) also has a low value. 
These steps (first order one then second order) are performed to increase the speed of the algorithm and reduce 
the computational complexity.

Received: 24 June 2020; Accepted: 24 March 2021

Figure 9.   An example of the OIPCQ algorithm. MI and CMI denote the mutual information and 
conditional mutual information. CMI70(X,Y |Z,W) indicates the 70th percentile of the CMI values. 
VXY = ADJ(X)

⋂
ADJ(Y) and UXY = ADJ(X)

⋃
ADJ(Y).
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