
The ISME Journal (2021) 15:762–773
https://doi.org/10.1038/s41396-020-00811-y

ARTICLE

Resource partitioning of phytoplankton metabolites that support
bacterial heterotrophy

Frank Xavier Ferrer-González1 ● Brittany Widner2 ● Nicole R. Holderman3
● John Glushka3 ● Arthur S. Edison 3

●

Elizabeth B. Kujawinski 2
● Mary Ann Moran 1

Received: 22 March 2020 / Revised: 2 October 2020 / Accepted: 9 October 2020 / Published online: 23 October 2020
© The Author(s) 2020. This article is published with open access

Abstract
The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by
Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological
pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the
metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for
uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the
exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net
drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample
preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen
(including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and
dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate).
Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine,
proline, and N-acetyl-D-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role
for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.

Introduction

The marine dissolved organic carbon (DOC) reservoir plays
two critical roles in the global carbon cycle. The first is as a
long-term repository of carbon nearly equal in magnitude to
the inorganic carbon stored in the atmosphere. This role is

fulfilled by ~660 Pg C of refractory organic compounds that
accumulate in seawater, some with lifetimes of many
thousands of years [1]. The second is as the primary source
of substrates for heterotrophic marine microbes. This role is
fulfilled by ~0.2 Pg of highly bioreactive organic com-
pounds that are rapidly cycled by bacterioplankton [2],
some with turnover times on the order of hours [3–5].
Recent chemical analysis of bulk marine DOC concentrated
from seawater has shown it to be conservatively composed
of tens of thousands of distinct organic compounds [6, 7].
Yet chemical analysis of the bioreactive subset of marine
DOC has thus far been dominated by targeted analysis of a
limited number of core metabolites, such as amino acids,
sugars, and select biopolymers [8–11]. Untargeted chemical
approaches have lagged behind, plagued by low con-
centrations, similar physical properties of salt and polar
metabolites, and short lifetimes of component metabolites.
Thus many critical but largely invisible chemical connec-
tions between marine microbes remain unstudied.

The primary source of labile metabolites for surface ocean
bacteria is phytoplankton. It is estimated that these microbial
autotrophs release 10–20% of net primary production (NPP)
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into the marine DOC pool in coastal systems [12] and up to
40% in oligotrophic systems [13], although this percentage
varies across species and growth conditions [14, 15].
Mechanisms by which metabolites are released from phyto-
plankton cells range from passive leakage of small and
uncharged molecules [16], to active exudation related to
redox balance, defense, and signaling [17–19], to photo-
synthetic overflow due to stoichiometric imbalance [15].
Labile organic compounds also become available by phyto-
plankton cell death from processes such as viral lysis, protist
grazing, and senescence [20–22]. Once metabolites are
released or excreted from phytoplankton cells, heterotrophic
bacteria play the dominant role in their transformation.

Three marine bacterial taxa have consistently been found
associated with microphytoplankton in natural marine
environments and phytoplankton cultures, and are thought
to dominate processing of recently-fixed carbon using genes
that allow them to quickly respond to transient nutrient
pulses [23]. Members of these three groups, the Rhodo-
bacterales, Gammaproteobacteria, and Flavobacteriales,
appear to specialize on different components of bioreactive
DOC [11, 23–25]. Rhodobacterales typically play a pro-
minent role in processing low molecular weight (LMW)
phytoplankton-derived metabolites [26, 27], Flavobacter-
iales largely transform high molecular weight carbohydrate
polymers [28, 29], and several copiotrophic Gammapro-
teobacteria families utilize compounds from both classes
[30, 31]. Here, we address the ecological basis of this
widespread taxonomic pattern by generating metabolite
uptake profiles for three model bacterial species, one from
each of the major phytoplankton-associated groups, when
growing on a microphytoplankton exometabolite pool in the
absence of competition from other bacteria.

Pairwise co-culture systems were established with the
diatom Thalassiosira pseudonana as the sole source of
substrates for Ruegeria pomeroyi DSS-3 (Rhodobacterales),
Stenotrophomonas sp. SKA14 (Xanthomonadales), or
Polaribacter dokdonensis MED152 (Flavobacteriales). T.
pseudonana was selected as the autotrophic member of the
model systems because as a group, marine diatoms con-
tribute ~20% of global NPP [32]. The heterotrophic bac-
terial strains were selected because they have high identity
to 16S rRNA genes from phytoplankton cultures or flow-
sorted phytoplankton cells, with percent similarities as high
as 99.6% for R. pomeroyi [33–36], 98.8% for Steno-
trophomonas sp. SKA14 [33], and 97.2% for P. dokdo-
nensis [35, 37]. To overcome some challenges of direct
chemical analysis of low-concentration compounds in sea-
water, we used two biological vetting approaches that
highlighted metabolites most likely to be important in
phytoplankton-bacteria carbon exchange. In the first,
expression patterns of bacterial transporters and catabolic
genes were used to identify the cellular machinery for

carbon acquisition activated by each strain when growing in
co-culture. In the second, drawdown of diatom-derived
exometabolites from the co-culture media was used to dis-
tinguish compounds decreasing in the presence of bacteria.
Metabolite concentrations were measured using liquid
chromatography-mass spectrometry (LC-MS) and hetero-
nuclear single quantum coherence (HSQC) nuclear mag-
netic resonance (NMR) spectroscopy. Both biological
vetting strategies relied on bacterial activity to spotlight
compounds within a complex pool of dilute metabolites that
were likely supporting bacterial heterotrophy.

Methods

Co-cultures

Three bacterial strains were introduced individually into
7-day diatom co-cultures. Samples were collected after 8,
24, and/or 48 h and analyzed for bacterial response via
transcriptomics (to measure regulation changes) or via mass
spectrometry (MS) or NMR (to measure metabolite draw-
down). To initiate co-cultures, T. pseudonana 1335
(National Center for Marine Algae) was grown axenically in
organic carbon-free medium L1 +Si [38] in 1900-ml vented
polystyrene tissue culture flasks at 18 °C under 16 h light at
160 µmol photons m−2 s−1 and 8 h dark. For samples used
in NMR analysis, 13C bicarbonate was used to make the L1
medium. After the diatom cultures had been growing for
7 days, bacteria pre-grown in YTSS medium were washed
five times in sterile L1 medium and inoculated into three
replicate diatom cultures at ~106 cells ml−1; three flasks
remained uninoculated. Following incubation in the light
for 8 h, T. pseudonana cells were removed by pre-filtration
through 2.0-µm-pore-size filters, and bacteria were collected
on 0.2-µm-pore-size filters. Filters were immediately flash
frozen in liquid nitrogen and stored at −80 °C until pro-
cessing and the filtrate was stored frozen for subsequent
chemical analysis. Filtrate was also obtained 24 and 48 h
after bacterial inoculation for chemical analysis. The control
for transcriptome analysis was established by growing
bacteria in a defined glucose medium (L1 medium +Si with
2.5 mM glucose); this masked signals of glucose utilization
in the co-cultures but provided baseline transcriptomes of
actively growing bacteria. Bacterial strains were similarly
inoculated into the control medium, collected on 0.2 pore-
size filters after 8 h, and flash frozen. Detailed methods are
given in Supplementary File 1.

Cell counts

Culture samples were fixed to a final concentration of 1%
glutaraldehyde, incubated at 4°C for 20 min, and stored at
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−80 °C. Just prior to analysis, an internal standard of 5-μm
fluorescent beads was added (Spherotech, Lake Forest, IL,
USA), followed by staining for 15 min with SYBR Green I
(final concentration 0.75X; Life Technologies, Waltham,
MA, USA). Samples were analyzed on an Agilent Quanteon
flow cytometer (Acea, Biosciences Inc., San Diego CA).
Fluorescence was detected with a 405 nm laser using a 530/
30 bandpass filter for SYBR Green (bacteria) and a 695/40
bandpass filter for chlorophyll a. There was no bacterial
contamination of axenic cultures based on scattergrams
from flow cytometry and aliquots from axenic cultures
spread onto YTSS plates.

RNA-seq analysis

Filters were incubated in SDS (0.6% final concentration)
and proteinase K (120 ng μl–1 final concentration). RNA
was extracted from duplicates of each treatment by adding
an equal volume of acid phenol:chloroform:isoamyl-alco-
hol, followed by shaking, centrifugation, collection of the
supernatant, and addition of an equal volume of chloroform:
isoamyl-alcohol. RNA was recovered from the supernatant,
treated to remove rRNA, and sequenced on an HiSeq Illu-
mina 2500. Quality control of the 207 million 50-bp reads
was performed using the FASTX toolkit. Reads aligning to
rRNA were removed and remaining reads were mapped to
the bacterial genomes. Genes with differential expression
were determined with DESeq2 [39], and are available in
Supplementary Tables S1, S2, and S3. The dbCAN web
resource was used for identification of carbohydrate-active
enzyme annotations [40]. Raw RNA-seq data are available
in the NCBI SRA BioProject database under accession
PRJNA448168. Detailed methods are given in Supple-
mentary File 1. Microbial genome sequences are available
at NCBI RefSeq under accession numbers ASM14940v2
(T. pseudonana CCMP1335), ASM1196v2 (R. pomeroyi
DSS-3), ASM15857v1 (Stenotrophomonas sp. SKA14),
and ASM15294v2 (P. dokdonensis MED152).

Mass spectrometry analysis

Chemical analysis was conducted on filtered spent media
from the co-cultures and axenic T. pseudonana culture
using an uninoculated L1 as the medium blank. For MS
analysis, 8, 24, and 48 h co-culture spent media were ana-
lyzed. Metabolites were derivatized with benzoyl chloride
[41] by modification of methods from Oehlke et al. [42] and
Wong et al. [43], extracted using a solid phase resin (Agi-
lent, Bond Elut PPL), and analyzed using ultra high per-
formance liquid chromatography coupled with electrospray
ionization and tandem MS with modifications to Kido Soule
et al. [44]. Metabolite peak areas were selected and inte-
grated using Skyline [45, 46] (Fig. S1). MS metabolites

were evaluated statistically in MATLAB by comparing
adjusted sample concentrations grouped across time points
using a one-way ANOVA (α= 0.05). Post hoc Dunnett’s
test was used to compare each co-culture to the axenic T.
pseudonana treatment, and p values were adjusted for
multiple comparisons. Outliers were defined as values that
exceeded three scaled median absolute deviations and were
excluded from statistical analysis. All MS data are available
at MetaboLights under accession number MTBLS1751.
Detailed methods are given in Supplementary File 1.

NMR analysis

For NMR analysis, 5 ml of 48 h co-culture spent medium
was lyophilized, homogenized dry using 5 × 3.5 mm glass
beads, reconstituted in dimethyl-sulfoxide-d6, and re-
homogenized. The supernatant was analyzed using two-
dimensional HSQC NMR (Bruker 800MHz NEO with 1.7
mm cryoprobe) using acquisition parameters modified from
a hsqcetgpsisp2.2 pulse program (TopSpin V4.0.6). The
indirect 13C (f1) dimension had a spectral width of 90.0027
ppm, 128 data points, and a carrier frequency of 45 ppm.
The direct 1H dimension (f2) had a spectral width of
13.0255 ppm, 4166 data points, and a carrier frequency of
3.691 ppm. Spectra were processed in MNOVA and trans-
formed spectra were auto-phased, baseline-corrected, and
referenced along f1 and f2 to DSS-d6 (0.0, 0.0 ppm). All
peaks above noise were manually integrated (Fig. S2). A
MATLAB workflow was used to normalize, scale, and
analyze spectral features. p values were calculated for all
peak integrals using the [ttest] function in MATLAB for
sample pairs. False discovery rates and q values were cal-
culated using MATLAB built-in function [mafdr]. Raw
data, peak lists, and analysis scripts are available at Meta-
boLights under accession MTBLS1544. Detailed methods
are given in Supplementary File 1.

Results

Identification of ecologically relevant exometabolites was
carried out in co-culture systems in which marine phyto-
plankter T. pseudonana CCMP1335 served as the sole
carbon source for three bacterial strains. R. pomeroyi DSS-
3, Stenotrophomonas sp. SKA14, and P. dokdonensis
MED152 were individually inoculated into a T. pseudonana
culture that had accumulated exometabolites over 7 days.
Bacterial gene expression in response to compounds in the
exometabolite pool was identified after 8 h by comparison
to gene expression in a single-substrate (glucose) control.
Drawdown of T. pseudonana exometabolites in the co-
culture spent medium was analyzed after 8, 24, and 48 h by
LC-MS (Table S4) [41] and after 48 h incubations by 2D

764 F. X. Ferrer-González et al.



HSQC NMR (Holderman et al. in prep.). The control for the
chemical analyses was spent medium from axenic T.
pseudonana cultures. Microscopic observations did not
reveal close physical attachment of the bacteria to diatom
cells, although P. dokdonensis appeared associated with
diatom extracellular polysaccharides after 48 h in co-
culture. There was no evidence of altered growth rates by
the diatom in the presence of the bacteria (Kruskal Wallis, p
= 0.30, n= 3, T= 253 h; Fig. 1).

Ruegeria pomeroyi DSS-3 metabolite utilization

R. pomeroyi transporters that were enriched in the co-
cultures compared to the glucose control included ABC and
TRAP transporters, both employing dedicated solute bind-
ing proteins that recognize substrates with high affinity, as
well as permeases that depend largely on diffusion. Five
enriched transporters had hypothesized annotations for
amino acid uptake (Fig. 2 and Table S5). Spent medium
drawdown patterns were consistent with this, and specifi-
cally indicated that concentrations of arginine and the
branched chain amino acids valine, leucine, and isoleucine
were lower in co-cultures with R. pomeroyi compared to
axenic T. pseudonana cultures (Fig. 3). Nucleoside uptake

was also indicated by spent medium drawdown, with sig-
nificantly lower concentrations of guanosine and thymidine
(Figs. 3 and S1).

Organic sulfur substrates indicated by transcript enrich-
ment included 2,3,-dihydroxypropane-1-sulfonate (DHPS)
and cysteate and N-acetyltaurine each containing a nitrogen
atom as well (Tables 1 and S5). For all of these, the
transporter genes have been verified experimentally in R.
pomeroyi (Table 1). In the case of DHPS, spent medium
drawdown analysis further indicated bacterial consumption
based on significantly lower concentrations in the co-
cultures. Drawdown analysis also indicated homoserine
consumption (Fig. 3). Although the transporter for dime-
thylsulfoniopropionate (DMSP) has not yet been identified
in the R. pomeroyi genome, enrichment of transcripts for
functionally verified genes dmdA (DMSP demethylase) [47]
and acuI (acrylyl-CoA reductase) [48] (Tables 1 and S5)
suggested uptake of this organic sulfur metabolite.

For five enriched transporter systems, computationally
inferred target substrates included urea, phenylacetate,
mannonate, acetate, and a galactoside. Transcriptome ana-
lysis indicated uptake of six additional metabolites by
transporters with general (e.g., sugar and dicarboxylate) or
no substrate annotation (Fig. 2 and Table S5). Drawdown
analysis revealed a lower concentration of one unidentified
metabolite (designated Ua). In two cases there were higher
concentrations of compounds in the co-culture spent media
(phosphate-containing three carbon compound 3C-P and
Ub; Fig. 3), suggesting either release of these unidentified
metabolites by R. pomeroyi or enhanced export by T.
pseudonana in the presence of the bacterium. Overall, the
transcriptome and spent medium analyses of the T. pseu-
donana–R. pomeroyi co-culture indicated that at least 20
components of the diatom exometabolite pool were used by
this bacterium, 13 of which were organic nitrogen mole-
cules and 4 of which were organic sulfur molecules.

Stenotrophomonas sp. SKA14 metabolite utilization

Of the 23 organic compound transporters significantly
enriched in the Stenotrophomonas sp. SKA14 transcriptome,
six are TonB-dependent transporters (TBDTs) functioning in
the outer membrane to bring molecules into the periplasm
using energy from TonB proteins located in the inner
membrane (Table S6); subsequent passage of substrates into
the cytoplasm is typically carried out by permeases or other
types of inner membrane transporters. Among the enriched
TBDTs, three are annotated as cobalamin/B12 receptors and
likely involved in vitamin acquisition. Other types of enri-
ched transporters indicate uptake of peptides (major facil-
itator superfamily (MFS) and oligopeptide family
transporters), amino acids (two permeases, a serine/alanine/
glycine transporter), and benzoate (Fig. 2 and Table S6).
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However, there were no decreases in amino acids in the
spent medium compared to the T. pseudonana axenic con-
trol. An actual increase in proline and phenylalanine con-
centrations (Fig. 3) suggested either release of these

metabolites by Stenotrophomonas or their enhanced export
by T. pseudonana when Stenotrophomonas was present.
Transporters for purines (MFS transporter) and nucleosides
(NupC) were upregulated in co-culture (Table 1).
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Table 1 Metabolites hypothesized to support bacterial heterotrophy in diatom co-cultures based on significant changes in bacterial gene expression
(adjusted p < 0.05) or metabolite concentrations in spent media (adjusted p < 0.10) for three bacterial strains, and the methodological approach
providing support.

Substrate R. pomeroyi Stenotrophomonas P. dokdonensis References

Organic nitrogen

3′ AMP M

Adenosine G M

Arginine M

Chitobiose M, G

Chitotriose M, G

Choline G

N-acetyl-D-galactosamine Ga [53]

N-acetyl-D-glucosamine G G G

Glutamine G

Guanosine M G M

Homoserine M

Inosine M

Isoleucine M, G

Leucine M, G

Peptides G G

Proline M G G

Thymidine M M

Urea G

Valine M, G

Organic nitrogen and sulfur

Cysteate Ga [98]

N-acetyltaurine Ga [99]

Organic sulfur

DHPS M, Ga [100]

DMSP Ga [47, 48]

Carbon only

Acetate G

Alginate-like oligosaccharide G

β-D-Glucans G

Benzoate G

Chrysolaminarin G

Citrate G

Mannonate G

Mannose-like oligosaccharide G

Phenylacetate G

Galactoside G

Others

Cobalamin G G

Ua M

Ub M

Metabolites Ua and Ub are unidentified compounds detected by 13C-HSQC NMR (Fig. S2).

M uptake suggested from metabolomics analysis, G uptake suggested from gene expression.
aGene function is experimentally verified.
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Carbohydrate utilization was important in the Steno-
trophomonas co-cultures and accomplished largely via
polysaccharide utilization loci (PULs), genomic regions that
provide Gammaproteobacteria [7] and Flavobacteriales [49]
with the capacity to hydrolyze polysaccharide structures
while retaining the resulting monomers in the periplasm
until passage inside the cell. Both TBDTs and carbohydrate
degrading enzymes (CAZymes) are common in these
regions. Among the four PULs containing enriched genes in
the Stenotrophomonas co-culture transcriptome is a likely
N-acetyl-D-glucosamine (GlcNAc) PUL (Fig. 4) containing
an enriched glycoside hydrolase (GH) that acts on N-acet-
ylglucosides (GH-20), a glucokinase that phosphorylates
glucose, a sugar membrane permease, and several GlcNAc
catabolic enzymes (such as nagA) [50, 51]. The two chit-
inases also present in this PUL were not enriched, a pattern
suggesting that Stenotrophomonas sp. SKA14 was targeting
GlcNAc or chitin oligosaccharides in the T. pseudonana
exometabolite pool. The hypothesized mannose oligo-
saccharide PUL system includes two GHs annotated as a β-
mannosidase (GH2) and α-1,2-mannosidase (GH92). The
likely N-acetyl-D-galactose PUL (GalNAc PUL) has a gene
content consistent with activity toward galactose-containing
carbohydrates [52–54], and is homologous to an operon in
Stenotrophomonas maltophilia K279a verified experimen-
tally to catabolize N-acetyl-D-galactosamine [53]. Sig-
nificantly enriched genes in the co-culture transcriptome
(Fig. 4) included an MFS transporter that brings N-acetyl-D-
galactosamine through the inner membrane (AgaP), a
tagatose-biphosphate aldolase (AgaY) that carries out the
final step in N-acetyl-D-galactosamine catabolism, and a GH
containing a carbohydrate binding module with activity
against substrates such as galactose oligosaccharides,

galactomannans, and galactolipids (Table S6). Finally, a
likely 1,3/1,4-β-D-glucan PUL contains an upregulated exo
1,3/1,4-β-D-glucan glucohydrolase (GH3) predicted to
hydrolyze residues of β-D-glucans [55].

There were also seven carbohydrate-active enzymes
located outside PUL regions among the enriched Steno-
trophomonas sp. genes (Table S6), two of which have
computationally derived annotations for utilization of cho-
line and chitin. Overall, transcriptomes and drawdown
assays hypothesized at least 12 diatom metabolites serving
as substrates for Stenotrophomonas in the co-cultures
(Table 1), 7 of which contain nitrogen and 4 of which are
carbohydrates.

Polaribacter dokdonensis MED152 metabolite
utilization

In the co-culture transcriptomes of P. dokdonensis,
components of 13 organic molecule transporters were
significantly enriched compared to the glucose control
(DeSeq2; p < 0.01) (Fig. 2 and Table S7). Six of these are
TBDTs, most located in PULs with carbohydrate utili-
zation functions but one annotated for cobalamin uptake.
Of the seven other transporters, one is a general MFS
transporter with no substrate information, and one is
annotated as a putative amino acid transporter. Exome-
tabolite analysis showed no evidence of amino acid
drawdown in the P. dokdonensis co-culture, but did
indicate decreases in concentrations of inosine, adeno-
sine, thymidine, and guanosine (Fig. 3). Peaks putatively
assigned to unidentified metabolite Ub were also drawn
down in the P. dokdonensis co-culture relative to axenic
T. pseudonana.

GlcNAc PUL

GalNAc PUL

Man PUL

1 kb

PUL2

PUL5

PUL3

PUL6,7 ** ** ***** ***

* ** *

** * * **

* * ** ***** *

TonB-dependent Transporter

Transcriptional regulationCarbohydrate Active Enzyme

Transporter

Enriched at p <0.01*
Enriched at p <0.05*

Catabolism

Substrate Binding Protein

Unknown function

Other Protein

** *

** * * *

** * **

A

B

β-D-glucan PUL * *

Fig. 4 Polysaccharide utilization loci (PULs) containing genes
enriched in diatom co-cultures relative to glucose controls. A

Stenotrophomonas sp. SKA14. B Polaribacter dokdonensis MED152.
Gene annotations and fold-change data are given in Tables S6 and S7.
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Carbohydrate utilization via PULs was also important in
the P. dokdonensis co-cultures. PUL2 (designations from
the CAZy database) [55] (Fig. 4) is predicted to degrade
chrysolaminarin, a glucose storage glucan synthesized by
diatoms [56, 57] that is ubiquitous in ocean organic matter
pools [58]. The enriched substrate binding proteins (susD)
is an ortholog of a Flavobacterales gene demonstrated to
bind laminarin [59], a storage glucan similar to chrysola-
minarin found in brown macroalgae. For PUL3 of P. dok-
donensis (Fig. 4), we hypothesize a function in transport
and catabolism of fucose-like or maltooligosaccharide-
containing compounds based on inner membrane transpor-
ters (Table S7). PUL5 was the most enriched PUL in the P.
dokdonensis transcriptome, and we predict it transports and
catabolizes GlcNAc in the form of chitin monomers or
oligomers. This PUL aligns modularly with a Bacter-
oidaceae PUL in a bacterium confirmed to grow on GlcNAc
[60], and the enriched MFS transporter (Table S7) is an
ortholog of a gene in the GlcNAc PUL of a Steno-
trophomonas species. Genes encoding chitin hydrolysis
were not found in the P. dokdonensis genome, suggesting
this bacterium is only able to use monomers and oligomers
of chitin. Bacterial drawdown analysis agreed with this
annotation by indicating significantly lower concentrations
of chitobiose and chitotriose in the co-culture spent medium
(Fig. 3), but concentrations of GlcNAc were higher. PUL6
and PUL7 are co-located (Fig. 4) and we predict they target
glycans containing guluronic acid and mannuronic acid, the
two primary monomers of alginate. While alginate has not
been reported as a component of T. pseudonana poly-
saccharides, guluronic acid is present in diatom cell walls
[61] and the P. dokdonensis PUL6 is highly syntenic with
those of previously described alginate-catabolizing Flavo-
bacteriales [62–64]. The enriched components of PUL6 and
PUL7 include a poly(β-D-mannuronate) lyase and two
alginate lyases, also supporting a function for this genomic
region in utilization of an alginate-like polysaccharide
(Table S7). Nine enriched CAZymes that were not asso-
ciated with PULs included a gene with catabolic activity
against β-1,3 glucans, a gene with activity toward various β-
1,3 and β-1,4 glucans, and an alginate lyase. A total of
14 possible substrates were identified for P. dokdonensis, 10
of which were organic nitrogen compounds and 5 of which
were carbohydrates (Table 1).

Discussion

Metabolites passed between marine microbes play key roles
in ocean ecosystems, influencing bacterial community
assembly and diversity [65, 66], mediating competition,
antagonism, and mutualisms [25], and serving as currencies
of carbon flux. The last of these roles is a central function in

global carbon cycling by which ~50% of marine photo-
synthate is transferred from phytoplankton to heterotrophic
bacteria via the labile DOC pool [1, 67, 68]. There are two
primary reasons why little is known about the metabolites
linking marine phytoplankton and bacteria [69]. One is that
the most biologically reactive components of marine DOC
do not accumulate and therefore account for an extremely
small fraction of the total reservoir [1]; and the other is that
direct chemical analysis, especially in a seawater matrix, is
challenging unless the identity of a compound is already
known [70].

Our approach delineated clear differences in resource use
patterns by bacteria individually inoculated into identical
exometabolite pools formed during exponential through
stationary growth phases of a diatom. Of the 36 molecules
(Fig. 2) covering chemical classes ranging from amino acids
to organic sulfur compounds, monosaccharides, oligo-
saccharides, nucleosides, and organic acids, 29 (80%) were
targeted for uptake up by only one of the three repre-
sentative bacterial strains. Rhodobacterales member R.
pomeroyi was hypothesized to uniquely utilize four amino
acids, the organic sulfur compounds DHPS, cysteate, DMSP,
and N-acetyltaurine, the carboxylic acids acetate and
phenylacetate, two carbohydrates, and urea, suggesting a
substrate suite that is diverse, dominated by LMW
compounds, and distinguished by a focus on organic
sulfur metabolites. Gammaprotebacteria member Steno-
trophomonas sp. SKA14 was hypothesized to uniquely
utilize three carbohydrates plus benzoate, citrate, and choli-
ne. Flavobacteriales member P. dokdonensis uniquely uti-
lized the chitin oligomers chitobiose and chitotriose,
the carbohydrate storage compound chrysolaminarin, an
alginate-like carbohydrate, 3′AMP, and the nucleoside ino-
sine. The latter two bacteria had substrate use linked to
polymeric and oligomeric carbohydrates that, particularly in
the case of P. dokdonensis, is consistent with significant roles
in aging blooms [11, 23]. Low overlap in the utilization of
labile organic matter has been proposed to explain the pre-
dictable co-occurrence of Rhodobacterales, Gammaproteo-
bacteria, and Flavobacteriales with microphytoplankton in
the surface ocean [11, 23, 27, 71, 72]. Our analyses concur
that substrate overlap is low among these groups when
processing a natural pool of phytoplankton-derived mole-
cules. Furthermore, they point to resource-based niche par-
titioning of the available resources, rather than competition
for them, as the underlying ecological explanation.

Seven of the 36 metabolites, however, were targeted for
uptake by more than one bacterial strain: proline, GlcNAc,
peptides, cobalamin, and the nucleosides adenosine, gua-
nosine, and thymidine. All of these are organic nitrogen
compounds and one is also a vitamin, suggesting these may
be resources for which there is competition among the
marine bacteria growing at the expense of diatom
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exometabolites. Proline, guanosine, and GlcNAc were tar-
geted for uptake by all three strains, with the availability of
GlcNAc possibly linked to the chitin present in diatom cell
walls [73]. Organic nitrogen compounds were also common
in the non-shared metabolites, making up ~45% of
metabolites.

Previous studies of endometabolite composition of dia-
tom cells reported some of the same compounds identified
here in the T. pseudonana exometabolome (Table 1). These
include the amino acids glutamine, arginine, valine, iso-
leucine, leucine, and proline [74, 75], the organic sulfur
compounds DMSP and DHPS [76, 77], choline [74, 78],
galactose [79], and chrysolaminarin [77]. Previous studies
have also shown chemotaxis by marine bacteria to several
compounds identified in the T. pseudonana exometabo-
lome. These include valine, proline, DMSP, and GlcNAc
[80, 81]. Evidence that these compounds are present in
diatom cells, function as attractants in chemotaxis, and are
taken up differentially by heterotrophic bacteria suggests
they play roles in the chemical ecology of bacterial com-
munity assembly. Niche dimensions unrelated to carbon and
nutrient acquisition were not examined here, but may also
influence ecological differentiation among co-existing bac-
terial species in the surface ocean; such factors include
physical conditions [82], growth kinetics [83], antimicrobial
defenses [84], and death processes through viral and protist
grazing [85].

Some metabolites had different patterns in gene expres-
sion compared to drawdown. Examples are the enrichment
of transcripts from the experimentally verified cysteate
transporter in R. pomeroyi (Tables 1 and S5) but no evi-
dence of cysteate release by axenic diatoms; and enrichment
of transcripts from possible proline transporters in both
Stenotrophomonas sp. and P. dokdonensis (Tables 1, S6,
and S7) but no evidence of proline drawdown for either
(Fig. 3). Differential exometabolite release by the diatom in
axenic versus co-culture (i.e., different composition or rate
of exometabolite release in the presence versus absence of
bacteria) could explain these methodological mismatches.
There is growing evidence that marine phytoplankton can
detect the presence of bacteria, including a potential
recognition cascade invoked by T. pseudonana when
growing with R. pomeroyi [86]. Other scenarios that could
lead to mismatches between these methodological approa-
ches include lower bacterial drawdown rates than diatom
release rates, and bacterial metabolite release. A potential
example of the last scenario is the accumulation of GlcNAc
in the P. dokdonensis co-culture but not the axenic diatom
culture. In this case, Polaribacter hydrolysis of chitobiose
and chitotriose (Fig. 3) may be outpacing its uptake of the
hydrolysis product GlcNAc [87].

The interpretation of gene expression patterns used here
assumed that upregulation of transport and catabolic genes

was stimulated by the availability of a substrate. This is
based on the unfavorable energetics of across-the-board
synthesis of transporter systems that may not yield benefits
[88], as well as previous observations of transporter
expression changes when the substrates available to het-
erotrophic marine bacteria are manipulated [26, 89, 90].
Other regulatory strategies are possible, however, such as
constitutive regulation, posttranscriptional regulation, or co-
regulation, and these may not be detected in this study or
could mislead interpretation. Finally, gene expression
interpretations assume that computationally inferred anno-
tations of transporter and catabolic genes in the bacterial
genomes are generally correct, which is not always the case
[91]. Across the three bacterial genomes, half the upregu-
lated transporters have either general annotations or no
annotations regarding their target substrates (Tables S5, S6,
and S7), emphasizing the limitation of comparative genome
analysis alone to address bacterial resource dimensions.

The role of resource competition in determining bacterial
community assembly has been explored recently both in
experimental systems and metabolic models [66, 92–94].
Yet current knowledge of microbial metabolites is hindered
by barriers to capturing and identifying microbial products,
and further exacerbated by the difficulty of microbial gene
annotation. Thus it is challenging to go beyond generic
products of central metabolism in addressing resource-
based bacterial niche dimensions. Indeed, metabolites of
noncore processes that are by and large missing from
experiments and models may be the compounds most likely
to support resource-based niche differentiation. For exam-
ple, DHPS release by marine diatoms (Fig. 2) was men-
tioned only two times in the oceanographic literature
[95, 96] before it emerged as a major resource for certain
taxa of heterotrophic bacteria [26, 97]. Two types of
information are critical for improving understanding of
bacterial resource partitioning. The first is a chemical
database that captures the diversity of microbial metabo-
lites. The second is experimental annotation of bacterial
transporter genes that hold important clues about resource-
based niche dimensions in the surface ocean [69].

High turnover rates and low concentrations make iden-
tification of the labile organic matter released by phyto-
plankton problematic. Here we used biological vetting
based on bacterial activity to identify the molecules most
likely to shape heterotrophic bacterial communities reliant
on recent photosynthate. Progress in closing the knowledge
gap of marine metabolites will enable new insights into the
transfer of carbon between major ocean reservoirs.
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