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Abstract
Using county-level data on COVID-19 mortality and infections, along with county-
level information on the adoption of non-pharmaceutical interventions (NPIs), we
examine how the speed of NPI adoption affected COVID-19 mortality in the United
States. Our estimates suggest that adopting safer-at-home orders or non-essential
business closures 1 day before infections double can curtail the COVID-19 death rate
by 1.9%. This finding proves robust to alternative measures of NPI adoption speed,
model specifications that control for testing, other NPIs, and mobility and across
various samples (national, the Northeast, excluding New York, and excluding the
Northeast). We also find that the adoption speed of NPIs is associated with lower
infections and is unrelated to non-COVID deaths, suggesting these measures slowed
contagion. Finally, NPI adoption speed appears to have been less effective in Repub-
lican counties, suggesting that political ideology might have compromised their
efficacy.
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1 Introduction

The COVID-19 pandemic and non-pharmaceutical interventions (NPIs) implemented
in many countries to suppress contagion have unsettled lives fundamentally and
cratered the global economy. Epidemiologists contend that NPIs (i.e., safer-at-home
orders, closures of non-essential businesses and schools, or bans on large gatherings)
combined with testing, tracing, and isolating are the only options to fight the pandemic
until a vaccine is widely available or societies achieve widespread immunity (Ferguson
et al. 2006; Karlsson et al. 2014; Tian et al. 2020). Yet, the intensity and vigor of NPI
implementation have varied across countries, reflecting skepticism regarding their
efficacy and concerns about their social and economic costs.

In the United States, where COVID-19 has taken a high toll in terms of infections
and mortality, skepticism toward NPIs reigns high among the public and legislators.
Early in the pandemic, President Trump famously criticized NPIs by remarking that
“the cure cannot be worse than the problem itself” (Haberman and Sanger 2020). The
nation remained divided on the effectiveness of NPIs, even as the pandemic raged from
March to early May 2020 in the Northeast, spreading more widely to the rest of the
country thereafter. Surveys show that conservative Republicans expressed more skep-
ticism than liberal Democrats about NPIs (Funk and Tyson 2020). State and local
implementation and lifting of NPIs were often driven by political ideology.
Republican-governed cities were slower to adopt NPIs, whereas cities led by Demo-
crats were more aggressive (Willetts 2020).

Amid the highly partisan response to the pandemic, the question remains: does the
timeliness of NPIs save lives in the United States? Have these interventions helped
reduce the spread of the virus? Has political ambivalence toward NPIs influenced their
effectiveness? We address these questions in this paper using county-level data on
mortality, infections, and NPIs.

If NPIs have not been successful in the United States, that would mean the
government has needlessly cratered the economy, compromised children’s education,
disrupted lives and livelihoods, and reduced the pace at which herd immunity can be
achieved—ultimately validating public skepticism about these policies. Arguably, NPIs
reduce the pace at which a population can acquire widespread immunity. For this
reason, several countries, including the United Kingdom in the initial stages of the
pandemic and Sweden, opted against implementing NPIs. Additionally, the implemen-
tation of NPIs inevitably brings economies to a halt, resulting in tidal unemployment
claims. Many countries and localities delayed their adoption and effective implemen-
tation to lessen their economic and social toll. These delays could have adversely
affected the spread of the pandemic. Indeed, if NPIs are effective at reducing contagion,
the politicization of NPIs can be blamed for the ambivalence and hesitation toward their
implementation. This ambivalence and hesitation could explain the United States’
failure to contain the virus, even as other developed countries have successfully
reduced infections and mortality.

A rapidly growing body of literature has examined the impact of NPIs on COVID-
19 infections and deaths using Chinese data (Pan et al. 2020; Qiu et al. 2020), Spanish
data (Amuedo-Dorantes et al. 2020), and cross-national data (e.g., Anderson et al.
2020; Bai et al. 2020; Flaxman et al. 2020; Hsiang et al. 2020; Imai et al. 2020; Viner
et al. 2020). Focusing on the United States, several researchers have explored the role
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of various social distancing measures on the incidence of COVID-19 and COVID-
related mortality. For instance, Auger et al. (2020) focus on school closures, Korevaar
et al. (2020) use a low/medium/high NPI index, VoPham et al. (2020) use smartphone
GPS data to estimate social distancing, and Wright et al. (2020) focus on the role of
mask mandates.1 Other studies, more closely related to ours, have focused on the role
of safer-at-home orders (i.e., Dave et al. 2020; Fowler et al. 2020; Friedson et al. 2020;
Harris 2020b).2 These studies find that NPIs are associated with lower infection and
mortality rates—some focused in California or New York (i.e., Friedson et al. 2020;
Harris 2020b) and others countrywide (i.e., Dave et al. 2020; Fowler et al. 2020). We
build on this research by assessing the relevance of the timing of two of the most
frequently adopted NPIs—safer-at-home orders and non-essential business closures—
on mortality. Our paper makes two primary contributions. First, we study the effec-
tiveness NPIs in relation to their timeliness. To that end, we construct a measure that
captures the relative speed of NPI adoption based on a county’s rate of contagion when
the NPI was adopted.3 Using this measure of timeliness, as opposed to just the policy
adoption date, is critical from an epidemiological point of view, as what is considered
“early” implementation in some localities might be “late” for others depending on their
position on the pandemic curve. Second, we investigate the mechanism through which
NPIs impacted COVID deaths. Specifically, we investigate whether NPIs saved lives
by curtailing the spread of infection or by reducing pressure on the healthcare system.

Further, we investigate whether NPI efficacy differed across counties with different
political ideologies and different degrees of demographic, economic, and health-related
vulnerabilities. To examine the former, we construct a dummy to identify Republican
counties, defined as those where most residents voted for President Trump in the 2016
election, and estimate whether NPI efficacy differed in those areas compared to other
counties. For the latter, we use several pre-COVID demographic, economic, and health
characteristics to explore the differential efficacy of NPIs across counties with distinct
degrees of vulnerability. Ideally, we would use time series data on COVID-19 mortality
according to these traits, but such data are currently not available. Instead, we use pre-
COVID county-level characteristics to explore differences in the relevance of NPI
adoption timing across counties with different characteristics associated with poor
COVID-19 health outcomes. Finally, we explore mechanisms through which NPI
adoption speed might be critical, focusing on the spread of the infection and the ability
to avert an overwhelmed healthcare system.

A challenge in estimating the causal effect of NPIs on mortality is that these
interventions are adopted in response to the spread and severity of the virus. Because
of the likely presence of reverse causality (i.e., COVID-linked deaths motivating the
adoption of NPIs), a simple correlation between NPIs and COVID-linked mortality or
infection will likely result in downwardly biased estimates. We address this concern by

1 Other studies examine socioeconomic factors, such as income, influencing compliance with some of these
self-protective behaviors (e.g., Papageorge et al. 2021).
2 Relatedly, other authors focus on assessing the factors conditioning compliance with safer-at-home orders,
such as trust and risk perception using mobility data (e.g., Bargain and Ulugbek 2020; Brodeur et al. 2020;
Brzezinski et al. 2020; Engle et al. 2020).
3 We follow Amuedo-Dorantes et al. (2020) who used a similar measure to study the effectiveness of NPIs in
Spain and Correia et al. (2020) who studied the effect of NPIs during the 1918 influenza.
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supplementing our primary analysis with an event study examining how COVID-19
mortality rates respond to NPI adoption.

Because of the ongoing nature of the pandemic, an additional challenge is the
chosen temporal frame for our analysis. We focus on the early months of the pandemic,
capturing when states and counties first adopted NPIs, through the first re-opening.
This means we are comparing counties at various initial stages of the pandemic. To
address this limitation, we estimate models that separate specific outliers during that
period. Specifically, we experiment with samples that include only Northeastern
states—which comprised the epicenter of the pandemic during our study period;
exclude Northeastern states; or exclude the state of New York. These sample modifi-
cations allow us to compare NPI speed between counties in roughly similar stages of
the pandemic.

Any research on the efficacy of NPIs in the United States is affected by the fact that
data on reported infections and COVID-linked mortality are highly correlated with
COVID-19 testing, which has varied across the country and over time. In counties with
inadequate testing, reported infections likely underestimate actual infections and deaths
attributable to COVID-19 are likely to be reported as non-COVID mortalities. Further-
more, if testing is correlated with NPIs, it will confound the estimated efficacy of NPIs.
To address these concerns, we explicitly control for testing. Similarly, to address the
possibility that our NPI estimates reflect endogenous self-distancing occurring before
NPI adoption, we include robustness checks that control for the daily median maximum
distance traveled by county residents as an estimate of mobility at the county level.

To explore the underlying mechanisms at play, we examine how NPI adoption
speed affects infections and conduct state-level analyses of the association between
NPIs and non-COVID deaths.4 Studies document that non-COVID deaths increased
over our study period (Woolf et al. 2020). This could have occurred for various reasons,
including the voluntary postponement of procedures or, in some instances, through an
overwhelmed healthcare system. If timely adoption of the NPIs helped reduce the
burden on the healthcare system, they should also lower non-COVID deaths.

We find that advancing the implementation date of NPIs by 1 day before the
doubling of infections would have lowered the COVID-19 death rate by 1.9%. The
value of early policy implementation proves robust to the use of alternative measures of
NPI adoption speed; to controlling for testing, other NPIs, and mobility; as well as to
the removal of outliers (i.e., New York and the Northeast region) from the analysis. We
find that NPI adoption speed is associated with fewer infections, suggesting these
measures operated by slowing contagion. We also find that NPI adoption speed is not
associated with fewer non-COVID deaths, which suggests that the identified effective-
ness of NPIs in reducing COVID mortality are not spurious. Finally, our results suggest
that the speed of NPI adoption proves less effective in Republican counties, suggesting
that the attitudes of residents toward NPIs may influence their efficacy.

4 We conduct this analysis at the state level because county-level non-COVID deaths are not consistently
available for the period under consideration in our study.
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2 Data

2.1 Mortality and infections

To determine how NPIs affected COVID-19 mortality in the United States, we use
county-level data on COVID-19 deaths and infections collected by Johns Hopkins
University. This data includes daily counts of cumulative COVID-19 cases and deaths
reported by state and local health departments.5 We use 2019 population estimates from
the U.S. Census Bureau to derive daily COVID-19 mortality rates by county.

We focus our analysis on the period from February 15, 2020, to April 23, 2020.
While the first confirmed case of COVID-19 occurred in late January, countrywide
contagion was reported in late February and early March. To avoid confounding the
effects of NPI adoption speed with the continuation of NPI policies, our study period
ends on April 23, 2020—the day before the first NPI was lifted.6

We also collect information on state-level testing and overall mortality from the
COVID Tracking Project and the Centers for Disease Control and Prevention, respec-
tively. Given that the identification of COVID-19 infections and cause of death
attributions are contingent upon detection, we use the most detailed information
available from the COVID Tracking Project—daily test results by state—to account
for variation in testing.7 We also collect information on mortality by cause of death
from the Centers for Disease Control and Prevention to estimate non-COVID deaths.8

We use the most detailed information available—weekly deaths by state—to explore
possible mechanisms responsible for any observed impact of NPIs on COVID-19
mortality. While county-level information would be preferable to prevent any informa-
tion loss, the state level data allows us to account for differences in the level testing at
the state level, as well as modeling non-COVID deaths to learn about potential
mechanisms at play at the state level.

2.2 Non-pharmaceutical interventions

We use data from the National Association of Counties (NACo) and Boston
University’s School of Public Health to identify counties with NPIs in place during
our study period. The NACo compiles information on the type and timing of NPIs for
every county in the United States.9 We complement this information with a

5 Retrieved on July 20, 2020, from https://github.com/CSSEGISandData/COVID-19. Using documentation
provided by Johns Hopkins, we identified 34 counties that required consolidation to align with the level at
which COVID-19 cases and deaths were reported. This affected five counties in New York (New York City’s
five boroughs were originally grouped under New York county), two counties in Massachusetts (Dukes and
Nantucket), Rhode Island’s five counties, and 22 counties in Utah. In each of these instances, we aggregate
population counts and apply population weights to approximate aggregated characteristics. These consolida-
tions bring our county total to 3117 down from 3142. Cases and deaths not assigned to a geographic area are
excluded from our analysis.
6 The state of Alaska lifted its safer-at-home and non-essential business closure orders on April 24, 2020.
7 Retrieved on July 27, 2020, from https://covidtracking.com/data/download. We make use of state-level data
because data on testing is not consistently available at the county level for the period under consideration.
8 Retrieved on July 20, 2020, from https://data.cdc.gov/NCHS/Weekly-counts-of-death-by-jurisdiction-and-
cause-o/u6jv-9ijr. Data on non-COVID deaths is not available at the county level for the period under
consideration.
9 Retrieved on July 20, 2020, from https://ce.naco.org/.
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comprehensive database assembled by Boston University researchers that records
similar measures taken by states.10 We focus on two types of NPIs: non-essential
business closures and safer-at-home policies.

While there is overlap between non-essential business closures and safer-at-home
orders, business closure policies only restrict the activities of certain businesses,
whereas safer-at-home orders include provisions that close non-essential businesses
in addition to restricting individual movement. Safer-at-home policies—also referred to
as “stay-at-home” and “shelter-in-place”—explicitly restrict the movement and activ-
ities of individual residents unless they are engaged in “essential” activities.11 These
policies prohibit residents from gathering or travelling outside of their homes unless for
an essential activity and, as such, often consist of the closure of non-essential busi-
nesses (i.e., restaurants, bars, gyms). Though policies and enforcement vary, residents
who ignore safer-at-home orders may face a misdemeanor punishable by fine, impris-
onment, or both (Harris 2020a).

We also use information manually curated by a dedicated group of Virtual Student
Federal Service Interns to identify the type and timing of other NPIs commonly
adopted over our study period.12 Using this data, we identified whether and when a
state or county adopted any of the following NPIs: (1) mandated face mask use by
individuals in public spaces; (2) K-12 school closures; (3) nursing home visitation
restrictions; (4) gym closures; and (5) dine-in restaurant closures.

2.3 Mobility

We make use of daily mobility data for each county obtained from Descartes Labs to
account for variation in compliance with the social distancing imposed by the NPIs.13

Commercially available location data from smartphones and other mobile devices are
used to sample the movement of individuals (Warren and Skillman 2020). We use
estimates of the median maximum distance traveled by residents to estimate daily
mobility at the county level. These statistics are available from March 1, 2020, and
beyond.

2.4 County characteristics

To investigate whether NPI efficacy differed across counties with different political
ideologies and different degrees of demographic, economic, and health-related vulner-
abilities, we collect information on a series of county-level characteristics. We use data
from the MIT Election Lab on the share of residents that voted Republican in the 2016
presidential election to identify majority-Republican counties—defined as those with a
Republican vote share of 50% or more.14 We collect information on a series of
demographic and socioeconomic characteristics sourced from 2018 5-year American
Community Survey. Specifically, we compile estimates on the percent of county

10 Retrieved on July 20, 2020 from https://tinyurl.com/statepolicies.
11 Activities and businesses deemed “essential” vary by county and state.
12 Retrieved on December 21, 2020, from https://healthdata.gov/dataset/covid-19-state-and-county-policy-
orders.
13 Retrieved on July 20, 2020, from https://github.com/descarteslabs/DL-COVID-19.
14 Retrieved on July 20, 2020, from https://dataverse.harvard.edu/dataverse/medsl_president.

1450 C. Amuedo-Dorantes et al.

https://tinyurl.com/statepolicies
https://healthdata.gov/dataset/covid-19-state-and-county-policy-orders
https://healthdata.gov/dataset/covid-19-state-and-county-policy-orders
https://github.com/descarteslabs/DL-COVID-19
https://dataverse.harvard.edu/dataverse/medsl_president


residents that are (i) over the age of 65, (ii) without health insurance, (iii) unemployed,
and (iv) living below the federal poverty line. We use data from the Centers for
Medicare and Medicaid Services to measure county-level chronic disease prevalence.
We use information from 2017, the latest year available, to create a comorbidity index
that aggregates the percent of Medicare beneficiaries with chronic diseases associated
with severe COVID-19 outcomes, including chronic lung disease (chronic obstructive
pulmonary disease, asthma), heart conditions (atrial fibrillation, heart failure, ischemic
heart disease), cancer, hypertension, HIV/AIDS, diabetes, chronic kidney disease, and
liver disease (hepatitis).15 We standardize the index to have a mean of 0 and a standard
deviation of 1, with larger values indicating higher comorbidities. Lastly, we combined
2019 population estimates with data from the U.S. Census Bureau on county land area
to measure population density as the number of persons per square mile.16

3 Methodology

Our primary objective is to explore the effectiveness of NPIs on COVID-19 mortality.
To that end, we start by estimating the following baseline difference-in-differences
specification:

Y ct ¼ αþ β Postct � NPI speedcð Þ þ ρc þ ϑt þ εct ð1Þ

where the vector Yct represents the number of COVID deaths per 100,000 in county c
and date t.

We consider two different types of NPIs: safer-at-home policies and non-essential
business closures. Our main regressor is an interaction term made up of two variables:
(1) Postct, a dummy variable indicative of the period in county c when the NPI was in
effect, and (2) NPI speedc, the relative speed of NPI adoption based on county c’s rate
of contagion when the NPI was adopted. The post-NPI dummy (Postct) includes a 14-
day lag to account for the average amount of time between infection and possible death
(Lauer et al. 2020). The vector NPI speedc measures the number of days between the
adoption of the NPI and the first day-to-day doubling of county-level infections per
capita.17 We multiply this count by minus one, so that higher values indicate a faster
response.18 This operationalization allows us to gauge the impact of the adoption of
NPIs as well as the effect of a faster response. We contrast two counties in the state of
New York to illustrate. The New York City boroughs were late adopters—evidenced in
their (-15) day NPI speed measure. New York’s statewide safer-at-home order and non-
essential business closure was adopted on March 22—15 days after New York City
saw its first day-to-day doubling of infections per capita on March 7. Saratoga County,

15 Retrieved from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/
Chronic-Conditions/CC_Main. List of high-risk conditions made available by the CDC: https://www.cdc.gov/
coronavirus/2019-ncov/hcp/underlying-conditions.html.
16 Retrieved from https://www.census.gov/library/publications/2011/compendia/usa-counties-2011.html#
LND.
17 We experiment with different contagion thresholds in robustness checks outlined later in the paper. Results
prove consistent throughout.
18 This approach aligns with that used in Correia et al. (2020).
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on the other hand, did not experience their first day-to-day infection doubling until
March 24—17 days after statewide NPIs were adopted—making this county an early
adopter, evidenced in their 17-day NPI speed measure.

Equation (1) also includes daily fixed effects to capture temporal shifts in the
incidence and treatment of the disease across the country and county fixed effects to
account for time-invariant differences potentially related to COVID mortality, such as
population density, health infrastructure, and population comorbidities. Standard errors
are clustered at the county level.

4 Descriptive evidence

Our methodological approach is inspired by the daily variation in COVID-19 deaths
and deaths per capita displayed in Figs. 1 and 2, respectively. As shown therein, early
versus late adopters of NPIs were impacted differently. We distinguish among three
types of counties: (1) early adopters, which include those with a safer-at-home order or
business closure in place prior to the first day-to-day doubling of infections per capita;
(2) late adopters, which include counties that adopted an NPI after the first day-to-day
doubling; and (3) counties that never adopted a safer-at-home order or business closure
policy during our study period. COVID-19 deaths began to accelerate in mid-March for
early and late adopters but at notably different rates. Peak COVID-19 death rates in
counties classified as late adopters were more than 2.5 times the peak experienced by
early adopters. Also noteworthy is the relative dearth of COVID-19 mortality in the 311
counties that were not subject to an NPI during our study period. Most of these counties
are in sparsely populated states (i.e., North and South Dakota, Nebraska, and
Wyoming).

Figure 3 illustrates the staggered adoption of safer-at-home and non-essential
business closure policies, which provides the temporal and geographic variation needed
for identification. The first statewide NPI was adopted by California on March 19,
2020. By March 20, a total of 134 counties, including California’s 58, had an NPI in
place. As illustrated in the subsequent maps, most NPI adoptions occurred in late

Fig. 1: Daily COVID-19 mortality by non-pharmaceutical intervention timing
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March and early April. By March 30, a total of 1979 counties were subject to a safer-at-
home order, non-essential business closure, or both. This number grew to 2806 by
April 6—after which, according to our sources, no additional safer-at-home or non-
essential business closures were implemented during the period covered in this study.

Table 1 displays basic descriptive statistics for the full sample and by NPI adoption
timing. Counties were observed daily from February 15, 2020, to April 23, 2020 (69 days).
The descriptive statistics confirm the trends illustrated in the figures. COVID-19 infections
and mortality were lower in early-adopting counties when compared to counties adopting
NPI measures late, despite the larger number of tests performed in the latter group. Counties
that never adopted a safer-at-home order or non-essential business closure were the smallest
in size and hadCOVID-19 infections andmortality figures that werewell below those of late
and early NPI adopters. There are other differences across counties worth noting. For
instance, late-adopting counties were, by far, the largest in population size and density.
Early-adopting counties were somewhat between never adopters and late adopters in terms
of size; they were also more mobile and quicker to adopt other NPI before infections
doubled. In terms of pre-COVID characteristics, early-adopting counties had a larger share
of elderly residents, had more residents living in poverty, and were more likely to be
classified as Republican than late-adopting counties. Counties that never adopted NPIs were
more likely to have health insurance and have lower levels of unemployment, poverty, and
comorbidity indexes relative to counties that adopted NPIs early. Differences in unemploy-
ment rates, health insurance, and comorbidity indexes were not different across counties that
adopted NPIs early or late.

0 We would have preferred to control for county-level testing, but consistent data are not publicly available.

Fig. 2: Daily COVID-19 mortality rates by non-pharmaceutical intervention timing. Early adopters include
counties with safer-at-home orders or non-essential business closures in place before the first day-to-day
doubling of infections per capita. Late adopters include counties that adopted an NPI after the first day-to-day
infection doubling. Never adopters include counties that did not have a safer-at-home order or non-essential
business closure in place anytime between February 15, 2020, and April 23, 2020
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as of March 20, 2020

As of March 30, 2020

As of April 10, 2020

Fig. 3: Geographic variation in adoption of non-pharmaceutical interventions
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5 Main findings and robustness checks

Our main objective is to learn about the importance of timing when adopting NPIs in
fighting COVID-19. If timing proves critical, a secondary objective is to gain a better
understanding of the channels enabling the effectiveness of NPIs in curtailing deaths—
an investigation that involves uncovering heterogeneous impacts of the adopted NPIs.

0 We would have preferred to control for county-level testing, but consistent data are not publicly available.
0 Recall that our baseline specification includes a 14-day lag. We also experiment with alternate lags of 1, 5,
and 10 days. As shown in Table 7 of the Appendix, our results prove robust to alternative incubation periods.
0 Computed as: (β ∗ΔX) ∗ 100/μDV, where: ΔX=1 and μDV=0.070.
0 The effects of these two NPIs are not statistically different from one another: F(1, 3117) = 1.03, p=0.309.

Table 1: Descriptive statistics

Sample Overall By NPI adoption timing

Early adopters Late adopters Never adopters

Variable Mean SD Mean SD Mean SD Mean SD

COVID deaths per 100,000 0.07 0.77 0.06 0.74 0.20* 1.12 0.01* 0.41

COVID infections per
100,000

1.65 11.77 1.35 10.53 4.09* 12.38 1.11* 18.18

Population 105,306 359,430 61,180 240,035 469,397* 751,770 25,649* 64,489

Population per square mile 224.66 944.78 134.45 577.45 993.26* 2171.31 32.54* 115.36

NPI speed 31.00 40.08 36.55 40.08 −6.21* 4.14 NA NA

Safer-at-home speed 26.14 38.24 32.12 38.51 −7.40* 4.78 NA NA

Non-essential business
closure speed

31.65 40.65 36.57 40.62 −6.61* 4.25 NA NA

Other NPI speed 38.98 41.94 44.82 42.38 5.24* 5.76 32.66* 43.02

State test results per 100,000 298.88 471.29 289.18 453.75 348.86* 575.77 316.49* 466.43

Mobility index 6.12 15.27 6.49 16.92 4.20* 3.96 5.79* 6.54

Majority Republican (2016) 0.81 0.40 0.84 0.37 0.48* 0.50 0.93* 0.25

Percent over age 65 (2018) 18.38 4.59 18.63 4.34 15.69* 4.87 19.57* 4.98

Percent without health
insurance (2018)

8.21 3.99 8.28 4.05 8.45 3.53 7.32* 3.93

Percent unemployed (2018) 1.22 0.59 1.26 0.58 1.32 0.44 0.77* 0.56

Percent living below FPL
(2018)

10.74 4.17 10.99 4.14 9.92* 3.83 9.76* 4.55

Comorbidity index (2017) 0.00 1.00 0.06 1.01 0.12 0.86 −0.57* 0.84

Observations 215,073 168,498 25,116 21,459

Notes: Statistics are reported at the county level unless otherwise specified. These estimates are not weighted
by population. Counties that never adopted an NPI during our study period were assigned an uninformative
NPI speed value to ensure these cases were preserved when estimating the model outlined in Eq. 1. Our
specification interacts NPI speed with a dummy indicative of the day a county adopted an NPI—effectively
rendering this value equal to zero for never adopters. *p<0.05 in t-test comparing value with early adopters
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To achieve our primary aim, we start by estimating several model specifications of
Eq. (1). Initially, we simply consider the adoption timing of either safer-at-home orders
or non-essential business closures—the most common NPIs during the pandemic. The
results from this exercise are displayed in Table 2. The baseline specification only
includes date and county fixed effects. Subsequently, we control for the level of testing
in the state, the speed of adopting other NPIs, as well as mobility measured as the
median maximum distance traveled by county residents. COVID testing was inade-
quate in the initial months after the outbreak but began to improve over our study
period. To account for any mechanical association between testing, infections, NPIs,
and COVID mortality, we control for daily trends in state-level testing.19 Accounting
for the speed of adopting other NPIs—including mask mandates, school and gym
closures, nursing home visitation restrictions, and dine-in restaurant closures—prevents
us from confounding the effects of safer-at-home orders and non-essential business
closures with other NPIs. This other NPI speed measure reflects the number of days
between the earliest date any of the other NPIs were adopted and the first day infections
per capita doubled. Controlling for mobility allows us to capture the role played by any
endogenous self-distancing irrespective of whether the NPIs were in place. Regardless
of the model specification used, the speed of adoption of NPIs curtails COVID-19
deaths.20 Based on the estimates from our preferred model specification that controls
for testing and the speed of adopting other NPIs (column (3) in Table 2), we find that
moving up the implementation date of any of the NPIs (if both were adopted,
whichever came first) by 1 day lowers the COVID-19 death rate by 1.9%.21

To gain a better understanding of which of the two most common NPIs matter the most,
we re-estimate the models including separate measures of adoption speed for each NPI. As
can be seen in Table 3, our estimates suggest both measures prevent deaths. Estimates from
our preferred specification in column (3) reveal that adopting non-essential business closures
1 day before infections double lowers COVID-19 deaths by 0.7% and moving up the
adoption of a safer-at-home order by 1 day curtails COVID-19 mortality rates by 1.3%.22

Recognizing the overlap between these two NPIs, we experimented with adding an
interaction term to assess whether the effect of one policy is absorbed by the other. Results
are presented in Panel C of Table 8 in the Appendix.While the two NPIs prove individually
effective with their impact rising when implemented jointly in models (1) and (2), their
individual effectiveness dissipates as we further control for the speed of adopting other NPIs,
possibly owing to correlations among all NPIs.

Finally, in Table 4, we conduct several robustness checks to assess the sensitivity of
our findings to: (1) alternative measures of the NPI adoption speed; (2) the application
of population weights to derive nationally representative estimates; and (3) using
different samples that exclude New York and the Northeast region as potential outliers
and isolate the Northeast region.23 In what follows, we briefly refer to each robustness
check.

19 We would have preferred to control for county-level testing, but consistent data are not publicly available.
20 Recall that our baseline specification includes a 14-day lag. We also experiment with alternate lags of 1, 5,
and 10 days. As shown in Table 7 of the Appendix, our results prove robust to alternative incubation periods.
21 Computed as: (β ∗ΔX) ∗ 100/μDV, where: ΔX=1 and μDV=0.070.
22 The effects of these two NPIs are not statistically different from one another: F(1, 3117) = 1.03, p=0.309.
23 The Northeast region includes Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Ver-
mont, New Jersey, New York, and Pennsylvania.
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As noted earlier, the estimates in Table 2 use a contagion threshold equal to the first
day-to-day doubling of infections per capita in each county. In columns (1) and (2) of
Table 4, we experiment with different contagion thresholds: the first day infections per
capita exceeded the national average from January 21, 2020, to March 7, 2020 (column
1), and the first day infections per capita exceeded the county average prior to any NPI
adoption (column 2).24 Our results prove robust to the use of these alternative contagion
thresholds. Accelerating the adoption speed of the NPIs by 1 day lowers the COVID-19
mortality rate by 1.7% in column (1) and by 1.9% in column (2).

Next, we experiment with using population weights to derive nationally representa-
tive estimates. As can be seen in column (3) of Table 4, we continue to find that
speeding up the adoption of the NPIs by 1 day before infections double would have
significantly lowered mortality from COVID-19, in this case by 2.3%, as opposed to
1.9% using the unweighted estimates of Table 2—which may suggest that NPIs are
more effective in more populous counties, where the transmissibility of the virus is
greater.

24 National infection rates between January 1 and March 7, 2020, averaged 7.30 infections per 100,000. The
pre-NPI county average infection rate was 1.85 infections per 100,000.
0 Results are similar when we further separate non-essential business closures and safer-at-home orders, as
shown in Table 9 of the Appendix. The sole exception is the estimated coefficient on the speed of non-
essential business closures in column (2), which is positive and marginally significant at the 10% level.

Table 2: Impact of NPI speed on COVID-19 deaths per 100,000 residents

Model specification Baseline Control for
testing

Control for other NPI
speed

Control for
mobility

Column (1) (2) (3) (4)

Postct×NPI speedc −0.0019*** −0.0020*** −0.0013*** −0.0013***
(0.0002) (0.0002) (0.0002) (0.0002)

State test results per
100,000

0.0003*** 0.0003*** 0.0003***

(0.0000) (0.0000) (0.0000)

Postct×Other NPI speedc −0.0012*** −0.0018***
(0.0001) (0.0001)

Mobility −0.000001
(0.00005)

Observations 215,073 215,073 215,073 141,480

R-squared 0.083 0.088 0.089 0.127

Dependent variable mean 0.070 0.070 0.070 0.100

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
Standard errors are in parentheses and clustered at the county level. This table reports the estimates from Eq.
(1) using daily COVID-19 deaths occurring between February 15, 2020, and April 23, 2020. Column (2)
controls for state-level testing, column (3) further controls for the speed of adopting other NPIs, and column
(4) controls for residential mobility. The estimates reported in column (4) use daily COVID-19 deaths for 2260
counties with mobility data for the period March 1, 2020, to April 23, 2020. We re-estimated the models
presented in columns (1) to (3) using this restricted sample, as shown in Panel A of Table 8 in the Appendix.
While our estimates increase in magnitude in the first two columns, the estimates from our preferred
specification in column (3) are nearly identical
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Finally, we test the sensitivity of our findings across different geographic samples.
First, we exclude New York—which was the epicenter of the pandemic during the
period under consideration—to check if our results were driven by its presence in the
sample. As can be seen in column (4) of Table 4, our results remain robust to this
exclusion. Speeding up NPI adoption by 1 day before infections double would have
lowered the COVID-19 mortality rate by 1.8% if we exclude New York. We next
experiment with excluding the entire Northeast region (column 5), as well as focusing
entirely on that region (column 6). As shown therein, the results confirm our prior
findings, underscoring the significance of NPIs in lowering mortality in the Northeast.
Specifically, speeding up the implementation of the NPIs by 1 day would have lowered
COVID-19 deaths by 1.5% if we exclude the entire Northeast region. However, in that
region alone, deaths from COVID-19 would have dropped by 4.8%.

In sum, the analyses in Table 4 confirm the robustness of our estimates presented in
Table 2 to alternative definitions of contagion, to the use of population weights, and to
changes in the geographic scope of our sample.25

25 Results are similar when we further separate non-essential business closures and safer-at-home orders, as
shown in Table 9 of the Appendix. The sole exception is the estimated coefficient on the speed of non-
essential business closures in column (2), which is positive and marginally significant at the 10% level.

Table 3: Impact of disaggregated NPI speeds on COVID-19 deaths per 100,000 residents

Model specification Baseline Control for
testing

Control for other NPI
speed

Control for
mobility

Column (1) (2) (3) (4)

Postct×BC Speedc −0.0016*** −0.0011*** −0.0005*** −0.0007***
(0.0002) (0.0002) (0.0002) (0.0002)

Postct×SAH Speedc −0.0008*** −0.0011*** −0.0009*** −0.0009***
(0.0002) (0.0002) (0.0002) (0.0002)

State test results per
100,000

0.0003*** 0.0003*** 0.0003***

(0.0000) (0.0000) (0.0000)

Postct×Other NPI speedc −0.0011*** −0.0016***
(0.0001) (0.0001)

Mobility −0.000001
(0.00004)

Observations 215,073 215,073 215,073 141,480

R-squared 0.083 0.088 0.089 0.127

Dependent variable mean 0.070 0.070 0.070 0.100

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
Standard errors are in parentheses and clustered at the county level. This table reports the estimates from Eq.
(1) using daily COVID-19 deaths occurring between February 15, 2020, and April 23, 2020. Column (2)
controls for state-level testing, column (3) further controls for the speed of adopting other NPIs, and column
(4) controls for residential mobility. The estimates reported in column (4) use daily COVID-19 deaths for 2260
counties with mobility data for the period March 1, 2020, to April 23, 2020. We re-estimated the models
presented in columns (1) to (3) using this restricted sample, as shown in Panel B of Table 8 in the Appendix.
While our estimates increase in magnitude in the first two columns, the estimates from our preferred
specification in column (3) are nearly identical
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6 Identification

An important caveat of the difference-in-differences approach adopted above is the
non-random adoption of NPIs. Given their implicit economic cost, counties are likely
reticent to impose social distancing, unless it is suspected that the healthcare system
will be overwhelmed as the death toll climbs. Fortunately, from an inferential stand-
point, if NPIs are implemented once contagion has surpassed a threshold, the estimated
impact of NPIs in curtailing COVID-related deaths would likely represent a lower
bound estimate of the true effectiveness of the adopted measures if they were adopted
in a timely manner. A related concern refers to endogeneity biases stemming from
unobserved heterogeneity. For instance, if the adoption of an NPI is related to unob-
served or unaccounted for factors, such as the county’s political ideology—which may
affect timely adoption of NPIs as well as cause laxity in the adoption of other measures
(Dave et al. 2020)—the estimated impact of NPIs might be confounded by other
unobserved factors.

To address these endogeneity concerns, we conduct an event study. Such an
approach allows us to gauge if COVID-19 mortality trends systematically differed
across counties before the adoption of NPIs. In this manner, we first address concerns
regarding differential pre-trends across early- versus late-adopting counties. Secondly,
we determine whether there is a clear break in the trend of COVID-19 mortality

Table 4: Robustness checks—impact of NPI speed on COVID-19 deaths per 100,000 residents

Robustness
check

Alternative contagion threshold Alternative
weighting

Alternative samples

Column (1) (2) (3) (4) (5) (6)

M o d e l
specification

P r e - N P I
national
average

P r e - N P I
county
average

Population
weighted

Excluding
NY

Excluding
NE region

Only the
NE region

Postct×
NPI speedc

−0.0012*** −0.0013*** −0.0035*** −0.0012*** −0.0009*** −0.0099***

(0.0002) (0.0003) (0.0012) (0.0002) (0.0001) (0.0021)

State-level tests
per 100,000

0.0003*** 0.0003*** 0.0006*** 0.0003*** 0.0002*** 0.0001*

(0.0000) (0.0000) (0.0001) (0.0000) (0.0000) (0.0001)

Postct×

Other NPI speedc−0.0007***−0.0030***−0.0030***−0.0012***−0.0010***−0.0064***(0.0001)(0.0003)
(0.0004)(0.0001)(0.0001)(0.0013)Observations215,073215,073215,073211,071200,72114,352R-squared

0.0880.0890.2740.0840.0720.251Dependent variable mean0.0700.0700.1550.0680.0600.207Notes: ***
p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects. This table
reports estimates using specification (3) from Table 2 that predicts daily COVID-19 deaths occurring between
February 15, 2020, and April 23, 2020. In columns (1) and (2), we alter the definition of contagion we used to
measure the speed of NPI adoption. Specifically, we replace our original contagion threshold, which reflected
the first day-to-day doubling of infections per capita in a given county to (1) the first day infections per capita
exceeded the national average from January 21, 2020, to March 7, 2020, and (2) the first day infections per
capita exceeded the overall county average prior to any NPI adoption, the results of which are found in
columns (1) and (2), respectively. In column (3), we apply population weights to derive nationally represen-
tative estimates. In columns (4), (5), and (6), we experiment with using alternative samples. In column (4), we
exclude New York from the analysis. In column (5), we exclude the entire Northeast region, which consists of
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York, and
Pennsylvania. In column (6), we focus exclusively on the Northeast region
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following the adoption of NPIs. This enables us to dissipate concerns regarding the
confounding impact of unobserved and unaccounted for factors. Finally, we examine
the dynamic impact of NPIs and assess the plausibility of how these policies reduce
infections and deaths. Specifically, we estimate the following model:

Yct ¼ αþ ∑
35

−35
βtPostct þ ρc þ ϑt þ εct: ð2Þ

Equation (2) differs from Eq. (1) in that it includes leads and lags to NPI adoption,
allowing us to examine the existence of pre-trends up to 35 days prior, as well as
dummies for up to 35 days after NPI adoption to learn about the impact of the
implemented policies. A developing literature (e.g., de Chaisemartin and
D'Haultfœuille 2018, 2020; Callaway and Sant'Anna 2020; Goodman-Bacon 2018)
points to challenges in interpreting estimates from difference-in-differences models
when treatment effects are heterogeneous across time. Specifically, Goodman-Bacon
(2018) shows how treatment effects that take place in a staggered fashion can result in
difference-in-differences estimates that are biased away from a weighted mean of the
average treatment effect on the treated. Our focus on a relatively short span of time
should minimize concerns surrounding staggered treatment effects. However, to ho-
mogenize treatment effects, we also experiment with excluding early-adopting counties
from the event study.

Figure 4 displays the coefficients from the event study corresponding to the model
specification presented in column (4) of Table 2, along with 95% confidence intervals.
All estimates for the days preceding the adoption of the first NPI in the county are close
to zero, strongly supporting the assumption of no differential pre-trends. In addition,
there is a clear break in the trend of COVID-19 deaths approximately 4 weeks after NPI
adoption—a common turn around period from infection to recovery for most mild
cases (e.g., Britt 2020; Zhou et al. 2020)—staying down thereafter.26 Results are
similar when we exclude from the sample counties that adopted safer-at-home orders
or non-essential business closures early in the pandemic (Fig. 5 in the Appendix).27

Another concern regarding identification refers to the start of social distancing, as
well as the observance of business closures and safer-at-home orders. If residents in
early-adopting counties were already practicing self-distancing prior to the adoption of
an NPI, its estimated effectiveness in curtailing deaths would be biased upward. (The
opposite would be the case if, instead, that was predominantly the case among residents
in counties that were late adopters of NPIs—namely, the estimated impact of the NPI
would be biased downward.) In addition, it is important for the orders to have been
observed by the public similarly across counties. If orders were observed differentially
in counties that were early versus late adopters, the estimated impact of the NPI could
also be biased. Fortunately, both concerns have been addressed by recent research (e.g.,
Alexander and Karger 2020) showing that county-level measures of mobility declined

26 Prior epidemiological studies have documented that, early in the pandemic, the median time between initial
COVID-19 symptoms and death was 19 days, roughly a 3-week period (Zhou et al. 2020), which when added
to the 1–2-week incubation period, takes us to the observed impact 4–5 weeks after the NPI adoption.
27 We also conduct the analysis using confirmed cases, despite mismeasurement concerns. Results, available
from the authors, suggest an earlier effectiveness of NPIs in reducing confirmed cases when compared to
deaths.
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sharply the day after stay-at-home orders went into effect, but not prior to their
implementation.

7 Mechanisms

According to the Centers for Disease Control and Prevention, the COVID-19 virus is
primarily transmitted between people through respiratory droplets emitted during
coughing or sneezing and through fomites in the environment around infected per-
sons.28 By reducing close contact between individuals, the adoption of NPIs may slow
down virus transmission and consequently, curtail deaths. In the absence of vaccines
and reliable tracking systems, NPIs have also been invoked to flatten the pandemic
curve by lowering the demands on public healthcare services, allowing for COVID-19
patients to be properly treated (Ferguson et al. 2020). As such, NPIs could have helped
lower COVID-19 mortality directly by reducing contagion, as well as indirectly by
preventing bottlenecks in the healthcare system.

In an attempt to sort out these two channels, we look first at COVID-19 infections. If
the effectiveness of the NPIs did not stem from reducing contagion but, rather, from
avoiding an overwhelmed healthcare system, we should not observe a reduction in the
infection rate. As displayed in columns (1) through (3) of Table 5, adopting one of the
two types of NPIs under examination 1 day before infections double would have
reduced infections by roughly 1%, regardless of whether we use all counties, exclude
New York, or exclude the entire Northeast region.

28 See: https://www.cdc.gov/coronavirus/2019-ncov/faq.html#Spread.
0 While the estimated coefficient on NPI speed is positive in column (6) of Table 10, it is only marginally
significant at the 10% level.

Fig. 4: Event study non-pharmaceutical invention effects on COVID-19 deaths per capita. This figure plots
the β_t coefficients from Eq. 2, including controls for state-level testing, other NPI adoption speed, and
residential mobility. Bands represent 95% confidence intervals for each estimate
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We then look at how the speed of NPI adoption might have affected non-COVID
mortality. If NPIs primarily helped curtail deaths by preventing the healthcare system
from becoming overwhelmed, non-COVID mortality rates should also be lower in
those regions where NPIs were adopted early, as non-COVID patients could still be
treated. Based on the results in columns (4) through (6) in Table 5, the estimated
coefficients are not statistically different from zero. In other words, the response speed
does not significantly alter non-COVID deaths, as one would expect if preventing
congestion of the healthcare system was a primary channel for the reduction in
COVID-19 mortality following NPI adoption. Thus, our estimates suggest that excess
deaths from non-COVID causes observed in other studies (e.g., Woolf et al. 2020)
during the period of our study were not the result of NPI adoption speed.

In sum, the results in Table 5 point to the efficacy of NPIs in reducing COVID-19
mortality by curtailing contagion and the spread of the virus. These findings prove
robust when we further distinguish between business closures and safer-at-home orders,
as displayed in Table 10 of the Appendix.29

29 While the estimated coefficient on NPI speed is positive in column (6) of Table 10, it is only marginally
significant at the 10% level.
0 In turn, other studies examine how the ability to control the pandemic impacted political support and the
2020 elections (e.g., Baccini et al. 2021).
0 We also compare counties with Republican vote shares in the upper (more than 60%) and lower (less than
40%) ends of the distribution with counties at the margin (Lee et al. 2004). As can be seen in Table 11 in the
Appendix, relative to counties where 40 to 60% of residents voted Republican, those at the lower end of the
distribution—that is, those with the lowest share of Republican votes—benefited the most from early NPI
adoption.

Table 5: Exploring main mechanism—stemming contagion and/or an overwhelmed healthcare system

Outcome COVID-19 infections per 100,000 Non-COVID-19 deaths per 100,000

Column (1) (2) (3) (4) (5) (6)

Sample All counties Excluding
NY

Excluding NE
region

A l l
counties

Excluding
NY

Excluding NE
region

Postct×NPI Speedc −0.0172*** −0.0166*** −0.0130*** 0.0119 0.0122 0.0070

(0.0024) (0.0024) (0.0023) (0.0223) (0.0230) (0.0214)

State-level tests per
100,000

0.0029*** 0.0029*** 0.0014*** −0.0000 −0.0000 −0.0000*

(0.0005) (0.0005) (0.0005) (0.0000) (0.0000) (0.0000)

Postct×
Other NPI speedc

−0.0241*** −0.0232*** −0.0203*** −0.0856 −0.0826 −0.0449

(0.0018) (0.0018) (0.0017) (0.0533) (0.0536) (0.0434)

Observations 215,073 211,071 200,721 561 550 462

R-squared 0.123 0.110 0.093 0.908 0.904 0.930

Dependent variable
mean

1.648 1.582 1.445 25.160 25.355 25.383

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
This table reports estimates using specification (3) from Table 2 that predicts daily COVID-19 deaths
occurring between February 15, 2020, and April 23, 2020, and controls for state-level testing and other NPI
adoption speed
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8 Heterogeneous impacts

To conclude, we examine if the relative adoption speed of NPIs impacted counties
differently based on other traits associated with either their adoption or the disproportionate
toll of the virus. Attitudes toward the efficacy of NPIs have been partisan, with Republican
governors andmayors beingmore reluctant to implement NPIs (Funk and Tyson 2020). It is
possible that residents in majority-Republican counties with NPIs in place may be less
compliant with healthcare guidelines and recommendations. Given the role of political
partisan ideology in NPI adoption (Dave et al. 2020; Gupta et al. 2020), we examine the
differential impact that the speed of NPI adoption had in Republican counties—measured as
those with a Republican vote share above 50% in the 2016 presidential election.30 As can be
seen in column (1) of Table 6, adopting an NPI 1 day before infections double lowers
COVID-19 mortality in majority-Republican counties by approximately 1.5%, whereas the
reduction in other counties reaches 4.4%. In other words, speeding up the implementation of
NPIs in Republican counties would lower COVID-19 mortality by a third of the amount it
would in non-Republican counties.31 Why? Perhaps, as pointed out by Engle et al. (2020)
and Brodeur et al. (2020), counties with lower share of votes for Republicans comply more
withNPIs, inwhich case, speeding up their implementation does not have the same bite as in
more liberal counties. The descriptive statistics in Table 1 show that, according to our NPI
speed measure, Republican counties were more likely to be early adopters, largely on
account of the late outbreak of the pandemic in these counties. Thus, our findings suggest
that, despite the advantage of learning from the experience of counties where the virus
spread earlier, NPIs were less effective in these counties.

Finally, we consider how NPI effectiveness varied according to various county-level
traits known to be correlated to COVID-19 mortality. To that end, we first explore if the
adoption speed of NPIs benefits localities with a higher share of individuals age 65 and
older. As shown in column (2) of Table 6, we do not find that to be the case. This could
be because most COVID-related elderly fatalities over our study period were in nursing
homes, where safer-at-home orders and non-essential business closures might not have
been as effective in reducing contagion. Residents of nursing homes would require
other measures limiting their potential exposure to the virus, such as restrictions of
visitors or the safe distancing of residents from each other.

We then repeat the same exercise using other county-level traits reflective of the
share of the population that lack health insurance, are unemployed, or live below the
federal poverty line. In addition, we explore if speeding up the implementation of NPIs
has any differential impact in counties with higher comorbidity indexes and population
density. As seen in columns (3) through (7) in Table 6, speeding up the implementation
of NPIs does not differentially alter COVID-19 mortality in counties with different
values of the abovementioned traits. To some degree, this is not surprising given their
aggregated nature—as such, their non-significance should be interpreted with caution.

30 In turn, other studies examine how the ability to control the pandemic impacted political support and the
2020 elections (e.g., Baccini et al. 2021).
31 We also compare counties with Republican vote shares in the upper (more than 60%) and lower (less than
40%) ends of the distribution with counties at the margin (Lee et al. 2004). As can be seen in Table 11 in the
Appendix, relative to counties where 40 to 60% of residents voted Republican, those at the lower end of the
distribution—that is, those with the lowest share of Republican votes—benefited the most from early NPI
adoption.
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9 Summary and conclusions

The rapid spread of the COVID-19 pandemic took the world by surprise. In the absence
of a vaccine in the early stages of the pandemic, several countries opted for the adoption
of non-pharmaceutical interventions (NPIs) to halt the devastating impact of the
pandemic on human life. The United States was no different in that regard, even
though the response has been more fragmented and piecemeal. Prior research has
shown the effectiveness of NPIs in curtailing deaths in the United States, Europe,
and Asia. Our focus is on the importance of their timeliness, the mechanisms behind it,
and the heterogeneity of any effectiveness based on county political ideology and
population susceptibility to the virus.

Using county-level data on COVID-19 mortality and infections, along with county-
level information on the adoption of safer-at-home orders and non-essential business
closures, we examine how the adoption speed of NPIs affected COVID-19 mortality.
We find that moving up the implementation date of NPIs by 1 day before infections
double lowers the COVID-19 death rate by 1.9%. The effectiveness of acting early is
similar for both safer-at-home orders and business closures. An event study addresses
concerns regarding the endogeneity of NPI adoption, and robustness checks show that
our results persist when introducing controls for testing, the speed of adopting other
NPIs, and mobility, as well as altering the definition of adoption speed, applying
population weights, and considering different geographic scopes. Finally, we confirm
how the relevance of responding early stems from the ability to slow contagion, which
likely prevented the overburdening of the healthcare system. We also find that NPI
adoption speed was less effective in Republican counties—a possible by-product of
skepticism and reluctance to apply or fully comply with NPIs. In contrast, NPIs appear
similarly effective, and their speed of implementation equally as relevant, in counties

Table 11: Effects of NPI speed on COVID-19 deaths per 100,000 residents by republican vote share

County characteristic (CC) Republican vote share

Postct×NPI Speedc −0.0012***
(0.0003)

Postct×NPI Speedc×CCUnder 40% −0.0037***
(0.0013)

Postct×NPI Speedc×CCOver 60% 0.0001

(0.0003)

State-level tests per 100,000 0.0003***

(0.0000)

Postct×Other NPI speedc −0.0012***
(0.0001)

Observations 213,141

R-squared 0.089

Dependent variable mean 0.071

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
Standard errors are in parentheses and clustered at the county level. This model uses dummy variables to
indicate the county’s Republican vote share in the 2016 presidential election where the reference category is
counties at the margin (40–60% Trump vote shares). We rely on information from 3089 counties because 28
were missing information on election returns
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with distinct degrees of vulnerability to the disease, as captured by an index of
comorbidity and the share of residents without health insurance, unemployed, or living
in poverty.

While we await the vaccination of millions of people and a cure for those infected,
NPIs remain the primary means to curtail COVID-19 infections and deaths. Gaining a
better understanding of their timeliness and the importance of responding early is
essential, especially in the foreseeable occurrence of additional waves.

Appendix

Table 7: Alternative lags to estimate the impact of NPI speed on COVID-19 deaths per 100,000 residents

Model specification Baseline Control for testing Control for other NPI speed

Column (1) (2) (3)

Panel A: 1-day lag

Postct×NPI speedc −0.0016*** −0.0018*** −0.0013***
(0.0002) (0.0002) (0.0002)

Observations 215,073 215,073 215,073

R-squared 0.083 0.088 0.088

Dependent variable mean 0.070 0.070 0.070

Panel B: 5-day lag

Postct×NPI speedc −0.0018*** −0.0019*** −0.0014***
(0.0002) (0.0002) (0.0002)

Observations 215,073 215,073 215,073

R-squared 0.083 0.088 0.089

Dependent variable mean 0.070 0.070 0.070

Panel C: 10-day lag

Postct×NPI speedc −0.0018*** −0.0020*** −0.0013***
(0.0002) (0.0002) (0.0002)

Observations 215,073 215,073 215,073

R-squared 0.083 0.088 0.089

Dependent variable mean 0.070 0.070 0.070

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
Standard errors are in parentheses and clustered at the county level. The specification in column (1) only
includes date and county fixed effects, column (2) controls for state-level testing, and column (3) further
controls for the speed of adopting other NPIs
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Table 8: Alternative models estimating the impact of NPI speed on COVID-19 deaths per 100,000 residents

Model specification Baseline Control for testing Control for other NPI speed

Column (1) (2) (3)

Panel A: Restricted sample

Postct×NPI speedc −0.0022*** −0.0023*** −0.0013***
(0.0002) (0.0002) (0.0002)

Observations 141,480 141,480 141,480

R-squared 0.119 0.125 0.127

Dependent variable mean 0.100 0.100 0.100

Panel B: Restricted sample and disaggregated NPI speeds

Postct×BC Speedc −0.0019*** −0.0014*** −0.0007***
(0.0002) (0.0002) (0.0002)

Postct×SAH Speedc −0.0009*** −0.0012*** −0.0009***
(0.0002) (0.0002) (0.0002)

Observations 141,480 141,480 141,480

R-squared 0.120 0.126 0.127

Dependent variable mean 0.100 0.100 0.100

Panel C: Full sample and mutually exclusive NPI speeds

Postct×Only BC Speedc −0.0021*** −0.0012*** −0.0004
(0.0002) (0.0002) (0.0002)

Postct×Only SAH Speedc −0.0019*** −0.0011** −0.0003
(0.0004) (0.0004) (0.0004)

Postct×BC and SAH Speedc −0.0022*** −0.0022*** −0.0014***
(0.0002) (0.0002) (0.0002)

Observations 215,073 215,073 215,073

R-squared 0.084 0.088 0.089

Dependent variable mean 0.070 0.070 0.070

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
Standard errors are in parentheses and clustered at the county level. Panels A and B predict daily COVID-19
deaths occurring between March 1, 2020, and April 23, 2020, for the 2260 counties with mobility data. Panel
C predicts COVID-19 deaths occurring between February 15, 2020, and April 23, 2020, for the 3117 counties
in our full sample and differs from our main specifications in two ways: (1) non-essential business closure and
safer-at-home order speeds are now mutually exclusive and (2) a separate measure capturing the speed of joint
adoption is included. Column (2) controls for state-level testing, and column (3) further controls for the speed
of adopting other NPIs
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Table 10: Exploring main mechanism—stemming contagion and/or an overwhelmed healthcare system

Outcome COVID-19 infections per 100,000 Non-COVID-19 deaths per 100,000

Column (1) (2) (3) (4) (5) (6)

Sample All counties Excluding
NY

Excluding NE
region

A l l
counties

Excluding
NY

Excluding NE
region

Postct×BC Speedc −0.0074*** −0.0080*** −0.0097*** 0.0250 0.0251 0.0434*

(0.0029) (0.0029) (0.0030) (0.0334) (0.0337) (0.0232)

Postct×SAH Speedc −0.0110*** −0.0104*** −0.0067*** −0.0300 −0.0302 −0.0373
(0.0023) (0.0023) (0.0022) (0.0359) (0.0362) (0.0239)

State-level tests per
100,000

0.0028*** 0.0028*** 0.0013*** −0.0000 −0.0000 −0.0000*

(0.0005) (0.0005) (0.0005) (0.0000) (0.0000) (0.0000)

Postct×
Other NPI Speedc

−0.0223*** −0.0212*** −0.0179*** −0.0790 −0.0757 −0.0438

(0.0018) (0.0018) (0.0017) (0.0517) (0.0518) (0.0452)

Observations 215,073 211,071 200,721 561 550 462

R-squared 0.123 0.111 0.093 0.908 0.905 0.930

Dependent variable
mean

1.648 1.582 1.445 25.160 25.355 25.383

Notes: *** p<0.01, ** p<0.05, * p<0.1. All regressions include a constant term, date, and county fixed effects.
This table reports estimates using specification (3) from Table 3 that predicts daily COVID-19 deaths
occurring between February 15, 2020, and April 23, 2020, and controls for state-level testing and the speed
of adopting other NPIs

Fig. 5: Event study excluding counties implementing NPIs prior to March 26, 2020, (non-pharmaceutical
intervention effects on COVID-19 deaths per capita). This figure plots the β_t coefficients from Eq. 2,
including controls for state-level testing, other NPI adoption speed, and residential mobility. Bands represent
95% confidence intervals for each estimate
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