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The aryl hydrocarbon receptor and the gut–brain axis
Andreia Barroso 1, João Vitor Mahler 1,2, Pedro Henrique Fonseca-Castro1,2 and Francisco J. Quintana 1,3

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost
half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in
health and disease. In this review, we discuss the role of AHR in the gut–brain axis and its potential value as a therapeutic target for
immune-mediated diseases.
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INTRODUCTION
In the 1970s, Poland et al.1,2 identified a potential receptor for the
anthropogenic compound 2,3,7,8-tetraclorodibenzo-p-dioxin
(TCDD).3 Two years later, the same group demonstrated that
TCDD binds to this unknown receptor in hepatic cells, inducing
expression of the aryl hydrocarbon hydroxylase enzyme encoded
by CYP1A1.4 Those and other seminal studies by Nebert and
Poland led to the identification and characterization of the aryl
hydrocarbon receptor (AHR),3–6 a ligand-activated transcription
factor with important physiological roles in health and disease.7

Indeed, although initial studies focused on ligands such as
polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphe-
nyls (PCBs) and halogenated aromatic hydrocarbons (HAHs), it is
now clear that a broad range of dietary, commensal and
endogenous, ligands activate AHR.8–11 To date, multiple physio-
logical and dietary AHR ligands (Table 1) have been identified,
including tryptophan metabolites such as 6-formylindolo[3,2-b]
carbazole (FICZ), kynurenine, indigo, indirubin, the pigment
curcumin,12 carotenoids,13 flavonoids, bilirubin and biliverdin,14

2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester
(ITE),15 indoxyl-3-sulfate (I3S), indole-3-carbinol (I3C), gallic acid,16

prostaglandins and eicosanoids.17 Additional AHR agonists are
produced by the metabolism of commensal microorganisms.9,18,19

Moreover, some medications are reported to activate AHR,
including omeprazole,20 sulindac,21 laquinimod,22 tapinarof,23

and diclofenac.24 The ability of AHR to interact with multiple
molecules and its broad expression enables it to modulate diverse
physiological processes in response to environmental, microbial
and metabolic cues. In this review, we discuss the role of AHR in
the immune response, with a focus on the gut–brain axis.25

THE AHR
In mice and humans, AHR is an 848-amino acid-long protein. It is
encoded by a gene located on chromosomes 7 and 12 in
humans26 and mice,27 respectively. The Ahr promoter harbors

several transcription initiation sites rich in GC-rich regions but
without a TATA or a CCAAT box.28 These GC-rich regions contain
binding sites for ubiquitously expressed zinc-finger transcription
factors, including Sp1 and Sp3, which seem to be required for
basal AHR expression.29 AHR is a member of the basic-helix/loop/
helix per-Arnt-sim (bHLH/PAS) family of transcription factors. The
bHLH domain of AHR is responsible for DNA binding and
dimerization, stabilizing protein–protein interactions. The PAS
domain contains two subdomains: PAS-A, which is essential for
dimerization with other proteins, and PAS-B, which harbors ligand-
and heat shock protein (HSP) 90-binding motifs (Fig. 1A). The AHR
transcriptional activation domain is located in the N terminal
region and encompasses a region rich in glutamine (Q-rich region)
that also harbors a nuclear translocation signal30,31 (Fig. 1A).
Inactive AHR is located in the cytoplasm complexed with several

chaperones that stabilize it. The cytoplasmic AHR complex
contains the following: (1) an HSP90 dimer that maintains AHR
in a conformation that maximizes its affinity for ligands;32 (2) p23
as a cochaperone; (3) AHR-interacting protein (AIP, also known as
Ara9 or XAP2), which stabilizes AHR in the cytoplasm, preventing
its ubiquitination and degradation;33 and (4) the c-SRC protein
kinase.34 AHR genomic signaling is triggered by ligand binding,
which induces a conformational change in AHR, releasing AIP35

and exposing the nuclear localization signal36 and a protein kinase
C target site that when phosphorylated promotes AHR nuclear
translocation37 (Fig. 1B). HSP90 is reported to translocate to the
nucleus together with AHR,38 but knowledge of the cofactors that
translocate to the nucleus together with AHR and their function
remains limited.
In the nucleus, AHR exchanges its chaperones with the AHR

nuclear translocator (ARNT, also known as HIF-1β)39 to interact with
DNA sequences known as xenobiotic responsive elements (XRE,
also known as DRE) in the regulatory regions of target genes (e.g.,
CYP1A1, CYP1A2, CYP1B1, and AHRR). AHR-targeted components of
cytochrome P450 (CYP) affected by AHR catalyze the degradation
of AHR ligands40 and hence participate in a negative feedback loop
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Table 1. AHR ligands

Compound Activity Source

1,4-dihydroxy-2-naphthoic acid (DHNA) Agonist Microbial metabolism

2-(19H-indole-39-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) Agonist Tryptophan metabolism

2-(Indol-3-ylmethyl)-3,39-diindolylmethane (Ltr-1) Agonist Cruciferous vegetables

2,3,7,8-Tetrachlorodibenzop-dioxin (TCDD) Agonist Anthropogenic

3,3-diindolylmethane (DIM) Agonist Cruciferous vegetables

3′4′-Dimethoxyflavone (DMF) Partial agonist Anthropogenic

3-Methylcholanthrene Agonist Anthropogenic

3-Methylindole (Skatole) Partial agonist Tryptophan metabolism

4-hydroxy-tamoxifen (4OHT) Agonist Anthropogenic

5-hydroxytryptophan (5HTP) Agonist Natural amino acid

6-Formylindolo [3,2-b] carbazole (FICZ) Agonist Tryptophan metabolism

6-Methyl-1,3,8-trichlorodibenzofuran (6-MCDF) Partial agonist Anthropogenic

Baicalin Antagonist Scutellaria baicalensis (plant)

Beta-naphthoflavone Agonist Anthropogenic

Bilirubin Agonist Heme metabolism

Biliverdin Agonist Heme metabolism

CH-22319 Antagonist Anthropogenic

Cinnabarinic acid (CA) Agonist Tryptophan metabolism

Curcumin Agonist Natural pigment

Diclofenac Agonist Anthropogenic

Diosmin Agonist Citrus fruit peel

Gallic acid Agonist Diferent plants

GNF351 Antagonist Anthropogenic

Hydroxyeicosatrienoic acid ([12(R)-HETE]) Agonist Arachdonic acid metabolism

Indigo Agonist Indigofera spp (plant)

Indirubin Agonist Indigofera spp (plant)

Indole Agonist Diverse natural origen

Indole-3-acetic acid (IAA) Agonist Plant hormone (Indole derivative)

Indole-3-acetonitrile (I3ACN) Agonist Plant hormone (indole derivative)

Indole-3-aldehyde (IAId) Agonist Tryptophan metabolism by bacterias

Indole-3-carbinol (I3C) Agonist Cruciferous vegetables

Indolo [3,2-b]carbazole (ICZ) Agonist Indole-3-carbinol

Indoxyl-3-sulfate (I3S) Agonist Tryptophan metabolism

Kynurenic acid (KA) Agonist Tryptophan metabolism

L-Kynurenine (Kyn) Agonist Tryptophan metabolism

Laquinimod Agonist Anthropogenic

Lipoxin A4 Agonist Arachidonic acid metabolism

Malassezin Agonist Malassezia furfur (fungi)

3′-methoxy-4′- nitroflavone (MNF) Antagonist Shynthetic falvone derivative

Norisoboldine Agonist Lindera aggregata (plant)

Omeprazole Agonist Anthropogenic

Prostaglandin Agonist Arachidonic acid metabolism

Quercetin Partial agonist Fruits and vegetables

StemRegenin 1 (SR1) Antagonist Purine derivative

Sulindac Agonist Anthropogenic

Resveratrol Partial agonist Fruits and vegetables

Tapinarof Agonist Bacterial metabolism

Tryptamine Agonist Tryptophan metabolism

Trypthantrin Agonist Tryptophan metabolism

VAF347 Agonist Anthropogenic

Xanthurenic acid Agonist Tryptophan metabolism
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that limits AHR activation. AHR also induces expression of the AHR
repressor (AHRR), which limits AHR activation.41

In addition to its direct effects mediated via XREs, AHR controls
transcriptional responses through interaction with other transcrip-
tion factors and coactivators, including nuclear factor-kappaB (NF-
κB), estrogen receptor (ER), retinoic acid receptor, and members of
the signal transducers and activators of transcription family.42 For
instance, NF-kB/RelA-dependent AHR expression following LPS
stimulation in dendritic cells (DCs) has been described.43 AHR has
also been shown to interact with c-Maf to control the expression
of IL-10 and IL-21.44–47

AHR has been shown to modulate the epigenetic status of the
cell via the control of noncoding RNAs,48 microRNAs,49 and
histone acetylation/methylation mechanisms that regulate chro-
matin conformation and accessibility.50

AHR signaling also involves nongenomic pathways. For example,
once released from its complex with AHR, c-SRC can phosphorylate
enzymes involved in the arachidonic acid and leukotriene signaling
pathways.51 These nongenomic mechanisms are important for the
induction of endotoxin tolerance in DCs via c-SRC-driven
phosphorylation and stabilization of indoleamine 2,3-dioxygenase

1 (IDO1).52 Finally, AHR has been reported to act as an E3 ubiquitin
protein ligase, inducing proteasomal degradation of protein
targets such as p53, FOS, hypoxia-inducible factor (HIF)-1α, MYC,
and ER.53–55 Altogether, these data demonstrate that almost half a
century after the cloning of AHR, the mechanisms mediating the
control of cellular responses by AHR still need to be fully
elucidated.

AHR IN THE CONTROL OF THE IMMUNE RESPONSE
The purification of AHR and the generation of knockout mice (AHR
KO) led to the identification of multiple physiologic roles for
AHR.56,57 One of those roles is the regulation of the immune
response.

Modulation of inflammation by AHR expressed in mucosal tissues
and skin
The intestinal epithelium interacts with a myriad of microbial
metabolites, pollutants, and dietary molecules. AHR acts as a
sensor for many of these environmental stimuli, mediating some
of their effects on the immune response. AHR conditional

Fig. 1 AHR and its signaling pathway. A Schematic representation of AHR protein domains. B The AHR signaling pathway. The inactive form of
AHR is localized in the cytosol in a complex composed of HSP90, AIP, p23, and c-SRC. AHR agonists induce conformational changes in AHR
that result in its translocation to the nucleus. In the nucleus, AHR interacts with ARNT, and the heterodimer is responsible for the transcription
of XRE-containing genes. Notes: (AHR) aryl hydrocarbon receptor, (N) N terminal motif, (C) C terminal motif, (NLS) nuclear localization signal,
(bHLH) basic-helix loop helix, (PAS) Per-Arnt-Sim, (Q-rich) glutamine rich, (HSP90) heat shock protein 90, (AIP) AHR-interacting protein, (XRE)
xenobiotic responsive elements, (AHRR) AHR repressor, (CYP) cytochrome P450, (IDO) indoleamine 2,3-dioxygenase
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knockout mice generated using an intestinal epithelial cell (IEC)-
specific Cre recombinase (Vil1-Cre) show increased susceptibility
to Citrobacter rodentium infection.58 In addition, these mice display
defective differentiation of intestinal stem cells, resulting in the
malignant transformation of IECs.58 Conversely, AHR activation by
dietary ligands limits intestinal stem cell proliferation by regulat-
ing the E3 ubiquitin ligases Rnf43 and Znrf3, suppressing Wnt/β-
Catenin signaling. Within the context of inflammation, IFN-γ
induces the expression of IDO1, which produces the AHR agonist
L-kynurenine, thereby triggering AHR-driven upregulation of IL-10
receptor 1 and consequently amplifying the anti-inflammatory
effects of IL-10.59 These findings highlight the anti-inflammatory
role of AHR in IECs and its contribution to the integrity of the
intestinal barrier.
AHR also controls the expression of antimicrobial peptides that

fight pathogens in the gut. For instance, regenerating islet-derived
protein III (REGIII)β and REGIIIγ are upregulated following
administration of the probiotic-derived AHR agonist 1,4-dihy-
droxy-2-naphthoic acid (DHNA), altering the microbiome and
ameliorating dextran sodium sulfate-induced colitis in mice.60 In
support of a role for AHR in therapeutic interventions already in
use, the increase in Th22 cell differentiation and IL-22 production
induced by TNF blockade was abrogated by AHR inhibition in
Crohn’s disease (CD) patients treated with antitumor necrosis
factor (TNF)-blocking antibodies. These data suggest a new role
for AHR agonists as potential adjuvants for anti-TNF therapy in CD
patients.61

Although these and additional studies40,47,58,62–69 support a
protective role for AHR in intestinal inflammation, some studies
have challenged this notion. In particular, it was recently reported
that environmental oxazoles induce the production of AHR
agonists by IDO1 expressed in IECs and other cell types,70 which
surprisingly leads to increased intestinal inflammation via the
suppression of IL-10 secretion, modulation of CD1d-dependent
antigen presentation and production of IFNγ/IL-13 by NKT cells.70

These provocative findings should be further investigated,
particularly within the context of alternative interpretations, such
as the expansion of AHR-driven nonpathogenic Th17 cells, which
may acquire full pathogenic activity following exposure to
additional factors in the inflamed gut, such as IL-23.71

Innate lymphoid cells (ILCs) are tissue-resident innate immune
cells that participate in the response to infection and contribute to
tissue homeostasis and chronic inflammation.72,73 ILCs are
classified into five subsets: NK cells, lymphoid tissue inducer cells,
group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs
(ILC3s).74 Each of these subsets is controlled by different
transcription factors,75 and AHR controls IL-22 expression in
ILC3s.76 Indeed, AHR-deficient mice exhibit expansion of segmen-
ted filamentous bacteria in the small intestine due to reduced IL-
22 production by ILC3s, which in turn promotes Th17 cell
expansion in the gut and the development of spontaneous
colitis.72,73 Of note, polymorphisms in caspase recruitment domain
family member 9 (CARD9) have been associated with intestinal
inflammation.77 Interestingly, CARD9 risk alleles associated with
inflammatory bowel disease promote a decrease in the abun-
dance of intestinal commensals that produce AHR agonists,
leading to decreased AHR activation and intestinal inflamma-
tion.77 These findings highlight how AHR’s role as a sensor of
commensal products contributes to mechanisms of intestinal
pathogenesis.
DCs play central roles in the maintenance of tolerance and the

generation of protective immune responses against pathogens in
the gut as well as in other tissues.78,79 AHR is highly expressed in
DCs,80 affecting their differentiation and function.9,81 AHR-driven
cytokine, kynurenine,82–84 and retinoic acid85 production in DCs
boosts the differentiation of regulatory T cells that suppress the
development of experimental autoimmune encephalomyelitis
(EAE), the model of multiple sclerosis (MS).86

Different subsets of DCs sense the lumen microenvironment,
and following their migration to mesenteric lymph nodes (MLNs)
via CCR7 signaling, they control peripheral differentiation reg-
ulatory cells and prime effector T cells.87 For example, AHR
activation by the commensal metabolite indole-3-pyruvic acid
reduces the ability of DCs in MLNs to promote the differentiation
of IFN-γ-producing T cells, thus preventing chronic inflammation
during colitis.88 AHR signaling in DCs is also reported to affect
nonimmune cells in unexpected ways, as demonstrated by reports
of increased numbers of small intestinal epithelial stem cells and
atypical differentiation of epithelial precursors following AHR
deletion from CD11c+ DCs.89

AHR signaling controls T-cell responses not only via the
modulation of APC function but also through intrinsic effects in
T cells. For example, AHR modulates the expansion and
differentiation of Th17 cells,90,91 though AHR appears to be more
relevant for the control of the transcriptional program of
nonpathogenic Th17 cells.71 Indeed, AHR signaling promotes the
conversion of Th17 cells to type 1 regulatory T cells (Tr1 cells).92

Moreover, AHR has been linked to the control of regulatory T cells
through multiple mechanisms involving their differentiation and
stability as well as effector mechanisms.44,46,63,85,90,93 Overall, the
effects of AHR on T cells are likely to have consequences for
inflammation in other tissues in addition to the gut.
Intraepithelial lymphocytes (IELs) constitute a population of

T cells localized in the epithelial layer of mammalian mucosal
linings such as the intestine. IELs are antigen-experienced T cells
of both T-cell receptor γδ (TCRγδ)+ and TCRαβ+ lineages.94 AHR
modulates IEL survival and response to nutritional and microbial
stimuli.95 For example, administration of the AHR agonist FICZ
ameliorates DDS-induced colitis by reducing the apoptotic rate of
CD8αα+TCRαβ+ IELs, while decreasing and increasing their
production of IFN-γ and IL-10, respectively.96 Furthermore,
Colonna and collaborators established that CD8αα+TCRαβ+ IELs
in the small intestine are supported by the activation of AHR
signaling by tryptophan metabolites produced by Lactobacillus
reuteri.65 Interestingly, Kadowaki et al. reported that microbial
AHR agonists promote the differentiation of regulatory CD4+ IELs,
which can migrate to the CNS and suppress inflammation through
LAG3-dependent mechanisms.97 These important findings sug-
gest that AHR-dependent immunoregulatory mechanisms operat-
ing in the gut can affect inflammatory processes in other tissues.

Modulation of inflammation in the central nervous system (CNS)
The gut and brain axis is now recognized as a key factor in the
pathology of multiple neurological disorders, including MS and its
experimental model EAE.25 In EAE and MS, CD4+ effector T cells
primed in the periphery migrate to the CNS, where they are
reactivated by cDCs and other cells to cause myelin destruc-
tion.98,99 In addition, recruited T cells secrete cytokines that
modulate the activity of CNS-resident immune cells, such as
microglia and astrocytes.100–102

In pioneering studies, Wekerle and coworkers demonstrated
that the commensal gut flora controls autoreactive T cells that
migrate to the CNS and cause inflammation and tissue
pathology.103 Follow-up studies defined alterations in the gut
microbiota associated with MS104 and identified specific compo-
nents of the microbiome involved in the regulation of effector and
regulatory T cells.105–107 Similarly, it was recently reported that
anti-inflammatory B cells controlled by the commensal flora
migrate the gut to the CNS to limit tissue pathology in MS.108

Interestingly, AHR controls B-cell anti-inflammatory activ-
ities.109,110 Moreover, AHR controls the differentiation and stability
of intestinal Tregs,47,85 and oral administration of the AHR agonist
ITE increases the myelin-reactive Treg/Teff ratio and suppresses
EAE.85 These findings suggest that AHR signaling contributes to
the anti-inflammatory effects of the commensal flora not only in
the gut but also in other tissues, such as the CNS.
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Astrocytes are the most abundant glial cells in the CNS and
have essential roles associated with the support of neurons and
synapses, the control of neurotransmitters and the regulation of
blood–brain barrier development and function.111–118 Astro-
cytes also play important roles in CNS inflammation and
neurodegeneration via their own neurotoxic activities as well
as the recruitment and activation of other cells involved in CNS
pathogenesis.19,100,119–126 Transcriptional analyses of astrocytes
revealed AHR upregulation in the context of EAE and MS.119,121

Indeed, specific inactivation of AHR in astrocytes via conditional
knockout mice and cell-specific shRNA knockdown identified
AHR as a negative regulator of the NF-κB transcriptional
responses that promote microglial activation, neurotoxic per-
ipheral monocyte recruitment to the CNS, and astrocyte-intrinsic
neurotoxic activities.19 Moreover, in-depth molecular studies
have established that AHR inhibits NF-κB activation in astrocytes
through a SOCS2-dependent mechanism19 that also operates in
DCs.127 Interestingly, microbiota perturbation studies showed
that metabolites produced from the degradation of tryptophan
by the intestinal commensal flora reach the CNS and activate
AHR in astrocytes to limit CNS inflammation,19 describing for the
first time a mechanism mediating the control of astrocytes by
the gut flora.
Microglia are CNS-resident macrophages with multiple func-

tions in health and disease,128 playing important roles in the
control of astrocyte responses.129 Interestingly, microglia express
AHR,130,131 and conditional knockout mice revealed that AHR
limits NF-κB activation in microglia.19 In addition, AHR controls
microglial production of TGF-α and VEGF-B: AHR transactivates the
Tgfa promoter, interfering with NF-κB-driven VEGF-B expression.19

Microglial TGF-α and VEGF-B suppress and induce astrocyte
responses, respectively, that promote CNS pathogenesis.19 In fact,
deletion of microglial AHR worsens EAE, increasing demyelination
and monocyte recruitment to the CNS.19 As microbial agonists can
also activate microglial AHR, these findings provide a molecular
mechanism by which the gut microbiome modulates microglial
and astrocyte responses as well as interactions between these
CNS-resident cells.
AHR is expressed in CNS endothelial cells,132 neurons,133 and

oligodendrocytes.134 Endothelial cell AHR is suggested to con-
tribute to detoxification processes132,135,136 and studies in fish
suggest that AHR hyperactivation in endothelial cells trigger
apoptosis and vascular defects, resulting in hemorrhage, edema,
and embryonic mortality.132 Metabolites of the pesticide DDT
induce AHR-dependent neurotoxicity.137 Finally, AHR has been
proposed to participate in oligodendrocyte differentiation.138

These findings indicate that AHR participates in the regulation

of endothelial cells, neurons and oligodendrocytes in health and
disease, though further studies are needed to identify the specific
mechanisms involved.
As mentioned above, AHR signaling can modulate peripheral T-

cell differentiation.9,81 Moreover, peripheral T cells recruited to the
CNS control astrocyte100,101,120 and microglial102 responses.
Hence, these findings suggest that AHR signaling participates in
the gut–brain axis through multiple mechanisms ranging from
activation of AHR in CNS-resident cells by microbial metabolites to
AHR-mediated peripheral modulation of immune cells that
migrate to the CNS.

ROLE OF AHR IN INFECTIONS TARGETING THE CNS
The microbiota establishes multiple types of relationships
with the host, ranging from mutualism to parasitism: in the
former, the interaction is beneficial for both organisms; in the
latter, this interaction is only beneficial for the parasite and
harmful for the host.139 We discussed AHR-mediated
microbiota–host relationships beneficial for the host above; below,
we describe the role of AHR in relationships detrimental to the
host (Fig. 2).
Lysteria monocitogenesis targets the gastrointestinal tract and

can also cause meningitis. In a murine model of listeriosis, AHR-
deficient mice displayed higher mortality than their WT counter-
parts, concomitant with higher levels of pro-inflammatory
cytokines, decreased ROS production and macrophage survival.140

Zika virus (ZIKV) infection has been associated with severe
outcomes, including fetal brain abnormalities141 and
Guillain–Barré syndrome.142 Similarly, it was recently reported
that ZIKV infection triggers the production of AHR agonists by the
host.126 AHR activation interferes with IFN-I-dependent mechan-
isms of anti-ZIKV immunity,126 in agreement with previous
reports.143 AHR also interferes with mechanisms of intrinsic
immunity mediated by the protein PML. Most importantly, AHR
inhibition with clinical antagonists suppresses ZIKV replication
in vitro and in vivo and ameliorates CNS abnormalities associated
with ZIKV.126 Similar mechanisms appear to operate within the
context of infection by dengue virus.126

Trypanosoma cruzi is the etiological agent of Chagas’s disease, a
chronic illness endemic to Central and South America with long-
term consequences for the heart, esophagus, colon and nervous
system.144 In the experimental model of Chagas disease, AHR
activation expands the Treg compartment, increasing parasite
replication.145 In agreement with these findings, AHR-deficient
mice show reduced T. cruzi parasitemia and a heightened immune
response characterized by the production of proinflammatory

Fig. 2 Role of AHR in infections targeting the CNS. AHR can affect the outcome of infectious diseases that target the CNS. Notes: (NP)
nanoparticles, (ROS) reactive oxygen species, (NO) nitric oxide
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cytokines, increased NO in serum, and downregulation of
SOCS2.145,146 Conversely, within the context of infection by
Toxoplasma gondii, AHR deficiency results in higher mortality as
a result of increased pro-inflammatory responses and decreased
IL-10 production.147 Taken together, these findings highlight the
complex roles played by AHR in infection: AHR can limit
immunopathology but can also be exploited by pathogens to
evade the immune response.

AHR AND CNS TUMORS
Based on its multiple physiological roles, it is not surprising that
AHR contributes to tumor pathogenesis. Glioblastoma is the most
common primary malignant brain tumor in adults148 and one of
the most aggressive cancers, with a median survival of
15–18 months despite standard of care therapy.148,149 Opitz
et al. reported that tryptophan 2,3-dioxygenase in glioblastoma
leads to the production of kynurenine, which acts in an autocrine
manner to enhance tumor invasiveness and replication.150,151 In
addition, Gramarzki et al. reported that AHR in glioma cells drives
expression of TGF-β, suggesting that AHR signaling promotes an
immune suppressive microenvironment in glioma.152 Indeed, AHR
expression has been detected in tumor-associated macrophages
(TAMs), which constitute more than 30% of infiltrating cells in
glioblastoma. Takenaka et al. recently showed that AHR activation
induces an anti-inflammatory phenotype in glioblastoma TAMs.153

Moreover, AHR drives expression of CD39 in TAMs, which
promotes CD8+ cell dysfunction153 (Fig. 3). These findings suggest
a role for AHR in tumor immunoevasion and highlight the intrinsic
tumor cell functions, emphasizing its potential as a therapeutic
target.151,154,155

Fig. 3 Role of AHR in glioblastoma. Kynurenine in the tumor
microenvironment activates AHR in TAMs, promoting expression of
CCR2, CD39 and KLF4. CCR2 contributes to the recruitment of TAMs
to the tumor microenvironment, CD39 promotes CD8+ T-cell
dysfunction, and KLF4 together with SOCS2 influences TAM
polarization. Notes: (Kyn) kynurenine, (TAM) tumor-associated
macrophages

Fig. 4 AHR sensor and immunomodulatory roles. AHR senses diverse environmental cues provided by the diet, microbiome, and
anthropogenic compounds. AHR signaling participates in physiological and pathological processes, making it a potential target for
therapeutic intervention
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AHR AS A TARGET FOR THERAPEUTIC IMMUNOMODULATION
As briefly discussed in this manuscript, AHR signaling has multiple
effects on the immune response. AHR constitutes a potential
target for therapeutic intervention based on the ability of small
molecules to control its activity (Fig. 4).
With regard to autoimmune diseases, laquinimod22 and

tapinarof23,156,157 have been developed as AHR-targeting drugs
for the treatment of MS, psoriasis and atopic dermatitis.
Furthermore, codelivery of tolerogenic AHR agonists and antigens
to DCs with nanoparticles provides an attractive approach. This
nanoparticle-based approach is based on the induction of a
tolerogenic phenotype in DCs, which are concomitantly loaded
with disease-relevant antigens,158 thereby boosting antigen-
specific tolerance with minimal effects on nonrelated immune
responses. This approach leads to expansion of Tregs (both FoxP3
+ Tregs and Tr1 cells) that suppress inflammation in EAE.159

Similar observations have been made in other autoimmune
diseases, such as type 1 diabetes.127 Within the context of
infection or tumors, AHR inhibitors may offer a novel pathway to
limit immune evasion,151 with the caveat that AHR may also play a
role in limiting immunopathology. Nonetheless, in considering the
therapeutic targeting of AHR, it should be kept in mind that AHR
participates in multiple physiological processes in addition to
immune regulation. Moreover, AHR signaling is regulated by
microbial metabolites, with important effects on the immune
response. Thus, therapeutic targeting of AHR should consider not
only its effects on the immune response but also its important
roles in the host–microbiome relationship and the multiple effects
of the microbiome in autoimmunity, cancer, and infections.

CONCLUDING REMARKS
Five decades after its identification, AHR has emerged as an
important immune regulator. It is therefore important to char-
acterize the physiological AHR agonists involved in immune
regulation, as they may provide lead molecules for the develop-
ment of novel immunomodulators. In addition, they may
contribute to the identification of ligand-specific downstream
effects of AHR signaling of therapeutic interest. Within this context,
there remains an important need to characterize the cell-specific
effects of AHR signaling and the mechanisms involved.
Finally, the participation of AHR in the gut–brain axis prompts

new research questions, as follows: (1) Which microbial AHR
agonists reach the CNS? (2) Which components of the commensal
flora produce AHR ligands, and how are they regulated in health
and disease? (3) Which peripheral cells are educated by the
commensal flora in the periphery to then migrate to the CNS and
control the activity of resident cells? These questions will guide
future research efforts and reveal novel opportunities for AHR-
targeted therapeutics.
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