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SUMMARY

Transcriptional profiling of tumors has revealed a stress-like state among the cancer cells, with the 

concerted expression of genes such as fos, jun and heat-shock proteins, though this has been 

controversial given possible dissociation-effects associated with single-cell RNA-Seq. Here, we 

validate the existence of this state using a combination of zebrafish melanoma modeling, spatial 

transcriptomics and human samples. We found that the stress-like subpopulation of cancer cells is 

present from the early stages of tumorigenesis. Comparing with previously reported single-cell 

RNA-Seq datasets from diverse cancer types, including triple-negative breast cancer, 

oligodendroglioma and pancreatic adenocarcinoma, indicated the conservation of this state during 

tumorigenesis. We also provide evidence that this state has higher tumor-seeding capabilities and 

that its induction leads to increased growth under both MEK and BRAF inhibitors. Collectively, 

our study supports the stress-like cells as a cancer cell state expressing a coherent set of genes and 

exhibiting drug-resistance properties.
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eTOC:

Multiple transcriptional states occur in melanoma cancer cells, one of which is a stress-like state 

that is conserved across species and other cancer types. The stress-like state has a role in tumor 

progression and drug response.
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INTRODUCTION

A universal feature of cancer is its genetic and phenotypic heterogeneity (Fisher et al., 2013; 

Lawrence et al., 2013; Meacham and Morrison, 2013; Sharma et al., 2010). Genetically, 

tumor evolution leads to a recurring set of DNA alterations in genes such as KRAS, BRAF 

or p53. (Hollstein et al., 1991; Lièvre et al., 2006; Riely et al., 2009; Vogelstein and Kinzler, 

2004). In addition to such DNA alterations, transcriptional heterogeneity of cancer cells is 

increasingly recognized in a diverse array of tumors including melanoma (Jerby-Arnon et 

al., 2018; Rambow et al., 2018; Tirosh et al., 2016a), glioblastoma (Patel et al., 2014), 

oligodendroglioma (Tirosh et al., 2016b), breast (Kim et al., 2018) and head and neck cancer 

(Puram et al., 2017, 2018). In glioblastoma, multiple transcriptional programs of cancer cells 

co-exist according to classical, proneural, neural, and mesenchymal cell states (Patel et al., 
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2014). For melanoma, the genetics have been well characterized in terms of recurring genes 

and pathways across nevus and invasive bulk tumors (Cancer Genome Atlas Network, 2015; 

Tsao et al., 2012), and recent work using single-cell RNA sequencing (scRNA-Seq) has 

mapped out multiple transcriptional programs (Jerby-Arnon et al., 2018; Rambow et al., 

2018; Tirosh et al., 2016a). However, despite the characterization of this diversity, the 

functional consequences of cancer cell states are not well understood.

Much like genetic evolution during tumorigenesis, transcriptional evolution can give rise to 

different cancer cell states over time. Many open questions remain about the nature of these 

cell states, including how they arise, their physical organization, and their functional 

consequences (Barkley and Yanai, 2019). In addition, evidence has been presented 

indicating that cell states are not fixed, which may be an important aspect of tumor cell 

plasticity (Hoek et al., 2008; Verfaillie et al., 2015; Widmer et al., 2012). Switching between 

states can be driven by factors from the microenvironment such as WNT5A (O’Connell et 

al., 2013) and EDN3 (Kim et al., 2017), or from varying levels of MITF (Carreira et al., 

2006; Vivas-García et al., 2020), the master transcription factor for melanocyte development. 

The ability of individual cells to take on these varying transcriptional states also has 

important consequences for patient prognosis (Sarrió et al., 2008). For example, the 

acquisition of an AXLhigh/MITFlow state is associated with an invasive, metastatic 

phenotype (Müller et al., 2014; Tirosh et al., 2016a), and phenotype switching has been 

associated with drug tolerance (Ahmed and Haass, 2018). More recently, a transcriptional 

state associated with RXR signaling has been found to be a key factor in resistance to 

BRAF/MEK inhibitors (Rambow et al., 2018).

Previous scRNA-Seq melanoma studies have revealed multiple cell states in melanoma, 

including neural crest, pigmented, invasive and starved states (Rambow et al., 2018; Tirosh 

et al., 2016a). We and others have previously shown that the neural crest transcriptional 

program, typified by genes such as SOX10, is essential to melanoma initiation because it 

provides the proper milieu on which DNA mutations can act (Kaufman et al., 2016; 

Shakhova et al., 2012; Travnickova et al., 2019; White et al., 2011). In contrast, the existence 

of other cell states such as a “stress-like” state, expressing genes such as fos and jun, has 

been suggested by prior work but its functional role remains unclear (Tirosh et al., 2016a). 

Further complicating the matter is the observation that a stress transcriptional program has 

been shown to arise as an artifact of cell dissociation protocols and flow cytometry sorting 

(van den Brink et al., 2017). This highlights the challenge of identifying a role for stress 

signaling in cancer. Collectively, the existence of the stress-like state as a biological property 

of tumorigenesis remains unclear.

We previously developed a transgenic zebrafish model of melanoma, in which the 

BRAFV600E oncogene is expressed in melanocytes (Ceol et al., 2011; Patton et al., 2005; 

White et al., 2011). These fish develop melanomas that resemble the human disease at 

histological, transcriptomic and genomic level, and have previously been shown to be a 

powerful model for the study of both metastasis and drug resistance (Heilmann et al., 2015; 

Patton et al., 2005; Yen et al., 2013). Importantly, the tumors can be repeatedly sampled over 

time, allowing us to understand when these cell states arise over the course of tumor 

evolution.
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Here, we use the zebrafish model to study subpopulations of cancer cells with scRNA-Seq, 

identifying the transcriptional programs for mature melanocytes, neural crest, and a 

population of “stress-like” cells. Using spatial transcriptomics on intact tumors – which does 

not rely on cell sorting or dissociation – we investigate whether the stress-like transcriptional 

program is consistently present among cancer cells. We then reanalyzed published scRNA-

Seq data to determine whether the stress-like transcriptional program is found across a wide 

variety of tumor types, including triple-negative breast cancer, oligodendroglioma and 

pancreatic adenocarcinoma. We also developed a transgenic reporter of this stress-like state, 

and used it to determine whether stress-like cells have drug-resistant properties.

RESULTS

Cell state mapping reveals conserved cell types between zebrafish and human melanomas

Animal models of cancer allow for both characterization and functional analysis of cell 

states in cancer. To study this in melanoma, we utilized a transgenic zebrafish model in 

which human BRAFV600E is expressed in melanocytes through the mitfa promoter. In a 

p53−/− background, these fish develop melanomas that resemble the human tumors (Patton 

et al., 2005). To determine if these tumors recapitulate the cellular diversity of human 

melanoma, we performed scRNA-Seq on 8 tumor biopsies. We processed ~15k cells from 

the eight samples (Figure 1A), using the inDrop system (Klein et al., 2015; Zilionis et al., 

2017). After quality control and filtering (see Methods), we were left with a total 10,012 

cells, each with an average of approximately 2,500 transcripts and 1,000 genes detected 

(Figure S1A). Studying the transcriptomes, we detected eight cell types, each forming a 

distinct cluster when visualized using tSNE (t-distributed stochastic neighbor embedding, 

Maaten and Hinton, 2008, Figure 1B). We annotated the cancer cell population by the 

detection of BRAFV600E transcripts, and annotated the rest of the cell types - keratinocytes, 

fibroblasts, erythrocytes, natural killer cells, neutrophils, macrophages, other lymphocytes - 

using known markers (Table S1 and Figure S1B). For example, a cluster was annotated as 

keratinocytes since it was enriched in the expression of keratin 4 (krt4) and other genes. In 

humans, keratinocytes are the major cell type that surrounds the melanocytes from which 

these tumors arise, and contribute important growth factors such as EDN3 that promote 

tumor growth (Saldana-Caboverde and Kos, 2010). Other identified cell types include 

immune cells such as T-cells and macrophages, also commonly observed cell types in the 

human disease. These data confirm that the zebrafish melanomas are composed of multiple 

cell types that closely resemble the cell types seen in humans.

Melanomas exhibit three cell states, including a stress-like cell state

To study transcriptional heterogeneity within the melanoma malignant cells, we applied 

principal component analysis (PCA) to the cancer cell transcriptomes from a single tumor 

(tumor 1). This analysis revealed a triangle-shaped arrangement of transcriptomes with a 

concentration of cells near the vertices (Figure 1C) suggesting that melanoma tumors consist 

of three cancer cell states. We verified that this shape is not driven by pre-processing 

methods or any technical aspects such as the number of UMIs detected (Figure S1C-F). 

Furthermore, analyzing the cells across our eight biopsies, we found that all three 

transcriptional states are present in each biopsy and tumor (Figure 1D and Figure S2A-C). In 
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order to test whether these three cancer cell states are present in early stages of 

tumorigenesis, we performed microscopic biopsies on one of the transgenic zebrafish tumors 

(tumor 1) as soon as they were visible on the skin of the animals followed by scRNA-Seq. 

We found that all three states were readily identifiable as early as 5 months of age and that 

their proportion within each biopsy does not change significantly over time (Figure 1E).

To characterize the functional attributes of the three cancer cell states, we studied their 

underlying transcriptional programs in terms of uniquely expressed genes (Figure 2A). We 

performed differential gene expression analysis among the groups of cells closest to each 

PCA vertex in Figure 1C (see Methods and Table S2 for lists of all genes corresponding to 

each program). We found that transcriptional program 1 (low PC1, low PC2) is enriched for 

the expression of neural crest genes, such as sox2 and sox10, suggesting co-option of this 

progenitor program by the cells (Figure S2D). In contrast, transcriptional program 2 (low 

PC1, high PC2) is enriched with the expression of genes associated with mature 

melanocytes, such as dct, tyrp1b, and pmela, indicating that these cells co-opt the 

differentiated melanocyte transcriptional program (Figure S2D). To test for the distinction 

between program 1 and 2, we compared their expression profiles to a published dataset that 

measured gene expression changes that accompany human melanocyte differentiation from 

pluripotent stem cells (Mica et al., 2013). As expected, we found that programs 1 and 2 best 

correlate with the expression to neural crest cells and mature melanocytes, respectively 

(Figure 2B). A third transcriptional program was enriched in the expression of genes such as 

jun, fosb, fosab, ubb, and heat-shock response genes, all associated with a stress-like 

transcriptional program (Figure 2A and Figure S2D). While this was of interest to us, this 

class of genes was found to be a potential artifact of scRNA-Seq methods (van den Brink et 

al., 2017).

To address whether our identified cancer cell states are unique to the zebrafish system or 

conserved also in human melanoma, we compared them to the cell states detected in two 

previously reported human melanoma scRNA-Seq datasets (Rambow et al., 2018; Tirosh et 

al., 2016a). We first compared to the Tirosh et al. human melanoma scRNA-Seq data. 

Focusing on the MITF high population of cells, since the zebrafish BRAFV600E transgene is 

driven by the mitfa promoter, we found that these have a similar pattern of expression to the 

zebrafish tumor expression (P<10−5, Figure 2C and Figure S2D). We next compared our 

data to that of Rambow et al. (Rambow et al., 2018), who described four transcriptional 

states of melanoma cells isolated from patient-derived xenografts that were exposed to 

RAF/MEK inhibition. We found that the neural crest state, the mature melanocyte, and the 

stress-like state showed the highest respective gene expression correlation with Rambow et 

al.’s annotated neural crest stem cells, pigmented cells, and ‘starved’-like melanoma cells 

respectively (P<10−2, P<10−5 and P<10−4, respectively, Figure 2D). While we did not 

identify the invasive program in the zebrafish model this perhaps stems from our use of a 

mitfa promoter in a p53 dominant-negative background, which may constrain some 

transcriptional heterogeneity.
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Spatial transcriptomics supports the presence of stress-like cancer cells

Since the neural crest and melanocyte programs are well described in melanoma, we focused 

on the poorly characterized stress-like state, whose actual presence has been called into 

question, as it has been observed that a stress transcriptional program may arise as an artifact 

of cell dissociation protocols and flow cytometry sorting (van den Brink et al., 2017). 

Seeking to test for the existence of the stress-like cancer cell state, we found that the 

associated transcriptional program was not detected in two other non-cancer datasets 

generated using the same cell-dissociation protocol and scRNA-Seq methods (Figure S2F-

H). We also implemented the previously described in silico purification method (van den 

Brink et al., 2017) to our dataset, and found that the stress-like state in cancer cells remains 

across a range of thresholds Figure 2SE).

To more directly validate the existence of the stress-like cell state in melanoma, we turned to 

spatial transcriptomics (Ståhl et al., 2016). This is an in situ RNA-Seq approach that does 

not depend upon dissociation or flow sorting of cells, which we have previously used to 

study the architecture of the tumor microenvironment (Moncada et al., 2020). We generated 

zebrafish melanomas by transplanting a melanoma cell line called ZMEL1 (Heilmann et al., 

2015) into transparent casper zebrafish. We prepared two frozen sections of the tumor and 

surrounding normal tissue, along with a section from non-tumor bearing regions of the fish, 

and placed these on a spatial transcriptomics slide containing spatially barcoded mRNA 

probes (see Methods).

Analyzing the spatial transcriptomics data, we sought to ask whether the stress-like state 

could be evidenced in malignant areas. We thus examined the expression of the 3 melanoma 

cell states in the tumor and normal areas, as identified by the hematoxylin/eosin stain of the 

same section (Figure 3A). The expression of genes such as sox2 (neural crest program), 

pmela (melanocyte program) and fosab (stress-like program) are highly enriched in the 

tumor areas when compared to the normal surrounding tissue (Figure 3A,B, P<10−7, Mann-

Whitney test, Figure S3A,B). Extending this analysis to all genes for each of the 3 cancer 

cell states, we found that genes associated with the three states are enriched in the tumor 

area (Figure 3C and Figure S3C) when compared to surrounding normal tissue. As a 

negative control, we examined a randomly selected gene-set (n=200), and found that these 

do not show an enrichment in the tumor area (Figure 3C). In addition, we also found that the 

expression of the genes of each of the cancer cell states were not found in non-tumor bearing 

sections of animals (Figure S3D).

We further tested for the existence of the stress-like cell state at the protein level by 

performing immunofluorescence for FOS, a marker of the stress-like program (Figure 2A 

and Figure S2D) on 100 human biopsy core sections (see Methods), including 62 cases of 

primary melanoma, 21 metastatic melanoma, and 17 nevus tissues as a control (Figure S3E-

H). Consistently, we found that in tumor slices FOS protein expression was localized in the 

nucleus of cells (Figure 3D).
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The stress-like cancer cell state is also observed in other cancer types

Since the program defined for the stress-like cancer state (including fos, jun, and heat shock 

proteins) does not contain genes specific to melanocyte biology - in contrast to the neural 

crest and melanocyte states - we hypothesized that it might be conserved in other cancer 

types. To study this at the transcriptomics level, we reanalyzed four previously published 

scRNA-Seq tumor datasets: triple negative breast cancer (TNBC, Kim et al., 2018), 

pancreatic cancer adenocarcinoma (PDAC, Moncada et al., 2020), oligodendroglioma 

(Tirosh et al., 2016b) and melanoma (Tirosh et al., 2016a). For each cancer type, we 

analyzed the transcriptomes of the cancer cells in isolation: 388 single cells from a TNBC 

patient, 462 single cells from a PDAC patient, 692 from an oligodendroglioma patient and 

1257 single cells from melanoma patients, all without treatment.

Studying these cancer cells using PCA, we found a triangle-shaped distribution of cells for 

each cancer type (Figure 3E), reminiscent of that found for zebrafish melanoma (Figure 1C). 

We further found that in all datasets, one vertex is enriched in the expression of the stress-

like gene program (Figure 3E). Using a bootstrapping approach, we found evidence that 

these enrichments are statistically significant in all four datasets (P<0.01, see Methods). 

Particularly noteworthy is the fact that the TNBC dataset was uniquely generated using a 

nuclear scRNA-Seq, which involves snap freezing of the sample followed by nuclei 

harvesting (Gao et al., 2017; Habib et al., 2017; Kim et al., 2018). Since this approach is not 

prone to possible cell dissociation induced artifacts (Krishnaswami et al., 2016), the 

observation of the stress-like state in this sample provides further evidence for the 

expression of this transcriptional program in cancer cells.

In addition, we again used the FOS protein as a marker for stress-like cells and queried for 

its expression in various other cancer tissues. IF on pancreatic ductal adenocarcinoma 

(PDAC) showed similar patterns to melanoma where heterogeneous nuclear staining of FOS 

is observed across the different cancer cells (Figure S3I). Extending to other tissues, using 

the human protein atlas dataset (Thul et al., 2017; Uhlén et al., 2015), we further observed 

that heterogeneous nuclear expression of FOS is present in other cancer types such as breast 

cancer, glioma, prostate cancer and head and neck cancer (Figure S3J).

A ubb-tdTomato transgenic line as a reporter of the stress-like state

We next sought to functionally assess whether the stress-like cells in our melanomas had 

unique biological properties that made them particularly pro-tumorigenic. To this end we 

built a fluorescent transgenic reporter using the ubb gene that allowed us to isolate and 

characterize the stress-like cancer cells (Figure 4A). The ubb gene encodes for the ubiquitin-

B protein, part of the protein degradation system that is commonly activated under periods 

of diverse types of cell stress (Flick and Kaiser, 2012), including DNA damage, changes in 

temperature, oxidative damage, hypoxia and starvation. It serves in part to target proteins for 

degradation by the proteasome, including other stress genes such as fos that we identified in 

our analysis as part of the stress-like program (Stancovski et al., 1995). The ubiquitin system 

acts in concert with other stress related genes such as the heat shock proteins, which can 

serve as chaperones for misfolded proteins (Dai and Sampson, 2016) and together can act as 

a pivotal mechanism by which the cell can either survive stress or undergo apoptosis if the 
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stress cannot be resolved. ubb itself is transcriptionally induced under stress conditions such 

as oxidative stress, making it an ideal reporter of the stress-like state (Bianchi et al., 2015). 

We reasoned that cells with higher levels of ubb transcription would be representative of a 

more general stress program and could use transcriptional levels of ubb as an indicator of the 

more general stress state we observed in our melanomas. To test this, we used a previously 

described ubb transcriptional promoter fragment (Mosimann et al., 2011) to drive tdTomato, 

and stably inserted this transgene into the ZMEL1-GFP melanoma cell described above.

The ubb reporter allowed us to isolate ubbhigh versus ubblow cells from the melanocyte 

population (Figure S4). We confirmed that the transgene is only at a single copy per cell by 

measuring genomic ubb levels by qPCR. We validated that high intensity of tdTomato 

represents the stress-like cells in two ways: (1) Using qPCR, we found that fosab, hsp70.1, 
junba and ubb are more highly expressed in tdTomato-high cells compared to tdTomato-low 

cells, providing support for the stress-like identity (Figure S5A). We confirmed that the high 

fluorescence was only reflected in tdTomato and not GFP intestines to rule out 

autofluorescence artifacts (Figure S4A-I). (2) The stress-like program includes eight heat 

shock genes. We induced their expression by culturing the cells in heat shock conditions 

(37°C overnight, compared to optimum conditions, 28°C). Examining tdTomato intensity as 

a measure for ubb expression, we detected a significant increase in heat shock conditions 

compared to the control (P<0.001, effect size = 0.8). This provides evidence for the notion 

that stress by heat shock leads to enrichment in ubbhigh cells (Figure S5B).

We next inquired into the robustness of ubb expression as a marker for the stress-like 

program by examining its correlation with the expression of the three programs. For this, we 

processed cells from the cultured ZMEL1-GFP melanoma cell line for scRNA-Seq using 

CEL-Seq2 (see Methods). We found that ubb expression across the cells was highly 

correlated with that of the stress-like program, and anti-correlated with the melanocyte 

differentiation program (Figure S5C). We did not detect, however, an anti-correlation with 

the neural crest program. We thus injected the cell line into a zebrafish embryo which 

resulted in a tumor later in the animal (see Methods). Again sampling the cells using 

scRNA-Seq, we found that both the melanocyte differentiation and neural crest programs are 

anti-correlated with ubb expression (Figure S5C). From these experiments, we concluded 

that high ubb expression is a robust marker for the stress-like program, and that it is 

mutually exclusive with the induction of the other two programs.

Cells in the stress-like state are more efficient at seeding new tumors

Recent work has pointed to an important role of cell stress in mediating tumor dormancy and 

the ability to see new tumor sites. For example, an imbalance in the ratio of ERK versus p38/

stress signaling can dictate the fate choice between dormancy and proliferation (Harper et 

al., 2016; Ranganathan et al., 2006), and under the right microenvironment these dormant 

cells can re-enter the cell cycle and begin to proliferate. Similarly, FBXW7 is a subunit of 

the SCF ubiquitin ligase complex that regulates HSF1 and stability of the heat shock 

proteins. Tumors that lose FBXW7 have elevated expression of heat shock proteins and are 

more efficient at metastatic seeding (Kourtis et al., 2015), supporting the concept that stress 

signaling can promote tumor progression. We therefore tested whether our stressed 
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population, which occurs endogenously in the transgenic melanomas, might be more 

efficient at seeding new tumors.

For this we developed a highly stringent assay in which we can test whether a small number 

of cells can give rise to a tumor after transplantation in the zebrafish. We built upon the logic 

of blastula transplantation, an assay that is commonly employed in developmental biology 

(Gansner et al., 2017) in which small numbers of fluorescently labelled “donor” cells are 

transplanted into an un-labelled “recipient” animal and the fate of those cells is then tracked 

using in vivo imaging. We adopted this method to use with our ZMEL1-GFP;ubb-tdTomato 

cells as the donors, and transparent casper animals as recipients. From the ZMEL1-

GFP;ubb-tdTomato parental population, we sorted ubbhigh versus ubblow cells using flow 

cytometry (Figure S4), and then transplanted 5-10 of each of these cells into recipient 

animals (Figure 4A-B). We performed this assay with three groups of fish: 1. ubbhigh (stress-

like) cells, 2. ubblow (non-stress-like cells), and 3. and a mix of the parental cells without 

prior selection. After 5 days, we then quantified the tumor burden by calculating the 

percentage of the entire fish that is covered by GFP+ cells intensity in a total of n=124 

animals. Because the GFP is driven by the mitfa promoter, it is independent of ubb mediated 

transcription. This analysis revealed that tumor size (overall tumor burden) in animals 

seeded by the ubbhigh cells is larger compared to the tumors seeded by the ubblow cells, or 

from tumors seeded by the parental unsorted cells (Figure 4C, Mann-Whitney test, P< 

5×10−2).

Extrinsic induction of the stress-like program induces drug resistance

Finally, we asked whether cancer cells in the stress-like state are intrinsically more drug-

resistant, by querying if extrinsic induction of the stress-like state is sufficient to trigger this 

resistance. Given our finding that heat shock of the melanoma cells was sufficient to trigger 

increased expression of the ubb reporter (Figure S5B), we reasoned that heat shock of the 

cells might affect sensitivity to BRAF or MEK inhibitors. To test this, we grew ZMEL1-

GFP;ubb-tdTomato cells at either 28°C (the normal zebrafish temperature) or at 37°C (a 

temperature long known to induce the heat shock response in zebrafish, Figure 4D). 

Strikingly, this induced resistance to both BRAF as well as MEK inhibitors across a wide 

range of doses and combinations (Figure 4E and Figure S5D). To exclude the possibility of a 

zebrafish-specific effect, we repeated this experiment using human A375 melanoma cells, 

which harbor the same BRAFV600E mutation as the ZMEL1 cells. In this case, we grew the 

human cells either at 37°C (normal human body temperature) or at 42°C (known to induce 

heat shock in human cells) and found a similar phenomenon: cells at the higher temperature 

were more resistant to both BRAF and MEK inhibitors across the doses tested (Figure S5E).

To address whether this response is due to an increase of a specific gene program, such as 

the stress-like cells or an induction of several cancer cell populations, we queried for the 

stress-like state in cells undergoing drug treatment. For this, we turned to a dataset in which 

human melanoma cells (451Lu) were treated with vemurafenib, a BRAF inhibitor (Ho et al., 

2018). In that study, cells at confluence were processed for scRNA-Seq with and without the 

drug treatment, corresponding to parental sensitive (3,295 cells) and resistant cells (1,757 

cells). Examining the expression of key genes of the stress-like program – FOS, UBB and 
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the heat shock protein gene HSPH1 – we found higher expression in the resistant cells 

compared to the parental ones (Figure S5F, P<10−4, Mann-Whitney test, effect sizes of 0.16, 

0.53 and 0.68, respectively). Expanding this analysis to the entire set of genes in the stress-

like program, we found that it is generally expressed higher in the resistant cells (Figure 

S5F-I, P<10−4, Mann-Whitney test, effect size of 0.98). The neural-crest program, in 

contrast, is not induced in the resistant cells (Figure S5G). However, the mature melanocyte 

program is also significantly induced in the resistant cells, suggesting that the potential drug-

resistant properties of this program also require additional research. These results suggest 

potential drug-resistant properties of the stress-like state. We further explored this 

association with a zebrafish in vivo experiment (Figure S5J-L), however further work will be 

required to fully map the drug-tolerant properties across cancer cell states.

DISCUSSION

Here we have studied gene expression programs in zebrafish and human melanomas, 

detecting 3 recurring cancer cell states: a mature melanocyte, a neural-crest and a stress-like. 

Other recent findings using scRNA-Seq have also detected transcriptional programs in 

melanoma cancer cells. Tirosh et al. showed that cancer cells have distinct transcriptional 

programs that capture the known proliferative and invasive states (Tirosh et al., 2016a), 

Rambow et al. identified four transcriptional programs in patient-derived xenografts (PDX) 

formed by BRAF mutant patients that were treated with RAF/MEK inhibition drugs 

(Rambow et al., 2018) and Tsoi et al. found that bulk melanoma tumors show different states 

along the trajectory of differentiation (Tsoi et al., 2018). While the frequencies of the states 

within the cancer cell population varied by studies perhaps, due to different model systems 

and sampling approaches, similar states were detected overall (Figure 2). Our focused 

analysis on the stress-like cell state led us to validate it as a significant component of the 

tumor, and not an artifact of cell dissociation and sorting methods (van den Brink et al., 

2017). In this Discussion, we consider the general occurrence of the stress-like state across 

cancer types, its possible role, qualities and implications for treatment.

Collectively, we have provided 9 lines of evidence that support the existence of the stress-

like cancer state: (1) applying a previously introduced method for eliminating stress 

dissociation biases, confirmed that the cancer state persists (Figure S2), (2) using spatial 

transcriptomics, a method that avoids biases by immediate sample freezing without a cell 

dissociation step, we also recovered the stress-like state in cancer regions (Figure 3 and 

Figure S2), (3) immunofluorescence on 100 tissues indicated the expression of a marker for 

the state (Figure 3D, Figure S3E-H), (4) the presence of the stress-like cancer state was 

detected in three additional cancer types (Figure 3E), (5) the stress-like cancer cell state was 

detected in nuclear single-cell RNA-Seq data (TNBC, Figure 3E), (6) the stress-like 

subpopulation of cancer cells was present from the early stages of tumorigenesis (Figure 

1E), (7) the stress-like cancer state is observed across species, in both zebrafish and human 

tumors (Figure 2, Figure S2D), (8) cells expressing the stress-like cells state are more 

efficient at seeding tumors in zebrafish (Figure 4C), and (9) induction of the stress-like state 

leads to increased growth under both MEK and BRAF inhibitors (Figure 4E). Collectively, 

this provides strong evidence for the stress-like state as a conserved component of 

tumorigenesis.
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One important clinical implication of this study is that the existence of the stress program 

can have consequences for the intrinsic responsiveness to therapy. Our study also helps 

explain prior work in which it has been observed that high levels of the heat shock protein 

HSP90 can promote BRAF oncogenic activity, since it can bind to and stabilize the mutant 

BRAFV600E protein (Grbovic et al., 2006). The increased resistance to both BRAF and MEK 

inhibitors upon application of heat shock may be due to this stabilization of BRAF and 

increased MAP kinase signaling. Whether other physiologic conditions associated with 

increased heat, i.e. fever that occurs in cancer patients, affects response to these therapies 

remains an open question.

One of our main findings is that the stress-like state is a consistent component of the cancer 

cell population. This raises the question of what adaptive advantages this program might 

have for tumor initiation. The fos/jun pathway is a critical downstream mediator of MAP 

kinase signaling (Dunn et al., 2005; O’Donnell et al., 2012), suggesting that activation of 

BRAFV600E itself may be inducing this state. However, it is likely that other factors such as 

hypoxia are playing a role as well, during these early stages of tumorigenesis (Webster et al., 

1993). The stress population in cancer is likely enacting a set of regulatory mechanisms that 

balance cell survival/quiescence versus apoptosis, which is critical in the early stages of 

tumorigenesis. The fact that we see the emergence of this population early in tumorigenesis, 

even in the absence of drug or other selection factors leads us to speculate that these states 

could be generated by stable epigenetic mechanisms, rather than genetic mechanisms, since 

we see it in multiple cancers with very different DNA mutational events (i.e. BRAF, KRAS, 

CDKN2A). The specific factors that induce the stress state, whether cell intrinsic or relating 

to the microenvironment, will need further analysis, since they may offer an opportunity for 

eliminating these intrinsically drug resistant “seeds” even before therapies are applied.

STAR Methods:

Resource Availability

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact Itai Yanai (Itai.Yanai@nyulangone.org).

Materials Availability—Plasmids generated in this study have been deposited to Addgene 

(ID 159533).

Data and Code Availability—The complete data that support the findings of this study 

have been deposited in NCBI GEO database with the accession code GSE115140. The code 

generated during this study is available in Github: https://github.com/MaayanBaron/

sc_melanoma_Baron2020

Experimental Model and Subject Details

Cell lines

Melanoma cell lines:  A375 (human melanoma cell line) was obtained from ATCC. 

ZMEL1 cells were generated as previously described (Heilmann et al., 2015).
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ZMEL1-tdtomato-ubb cell line:  For the generation of ZMEL1 cells expressing tdTomato 

under the control of the ubb promoter, LR gateway cloning was performed with 5’ubb 

promoter, middle entry tdTomato-NTR and 3’ SV40 fragment. Following successful cloning, 

8 million ZMEL1 cells were electroporated with 15μg of the plasmid using the Neon 

electroporator. Following electroporation, cells were allowed to recover for 72hr and 

subsequently grown in 4μg/ml blasticidin containing media for 3 weeks to select for stable 

integration of the plasmid.

Fish strains and handling

Transgenic minicoopr fish:  minicoopr fish were generated as previously described (Ceol et 

al., 2011; Iyengar et al., 2012). Fish with the genotype mitfa-BRAFV600E;p53−/−;mitfa−/− 
were incrossed. 1-cell stage embryos were injected with a plasmid containing mitfa-MITF 
and mitfa-GFP. Fish were screened at 3 days for melanocyte rescue, visualized as black 

spots along the skin. The fish were raised to adulthood (4-12 months) and screened for the 

appearance of GFP-positive tumors. For biopsy experiments, fish with visible tumors were 

anesthetized with Tricaine (MS222), and a biopsy was taken using a 1mm biopsy punch. 

The fish were then allowed to recover and were returned to the main aquatics system.

Transplant ZMEL1 fish:  ZMEL1 zebrafish melanoma cells were grown as previously 

described (Heilmann et al., 2015). Cells were detached from standard tissue culture dishes 

with trypsin-EDTA and approximately 50 cells in 1nl of 0.9X Dulbecco’s PBS were 

transplanted intravenously into the Duct of Cuvier of each 2 day-post-fertilization casper 
embryo as previously described (Heilmann et al., 2015; Kim et al., 2017).

METHOD DETAILS

Single-cell RNA-Seq collection and processing of tumor biopsies.

Tumor biopsy sample collection:  Biopsy samples were obtained from the same location of 

the tumor and placed in a 1.5mL Eppendorf tube followed by the addition of 500μL 0.25% 

Trypsin-EDTA for digestion. The digestion was carried out at 37°C in a thermomixer for 

15-30 minutes to soften the tissue, with tissue mashings every 5 minutes using a disposable 

pestle to break up softened tissue. Upon completion of incubation at 37°C, 500μL of 

DMEM10 were added to deactivate the trypsin. Cells were washed three times by spinning 

down the sample at 500 rcf for 5 minutes and resuspended in PBS. The sample was then 

filtered twice using 5mL polystyrene round-bottom tube with 35μm cell-strainer. Viability 

and single cell consistency were checked prior to encapsulation of the cells with the inDrop 

system (Klein et al., 2015; Zilionis et al., 2017) for each biopsy taken.

Single-cell encapsulation, processing and bioinformatics pipeline:  inDrop encapsulation 

of the cells and reverse transcription (RT) reaction was carried out as previously described 

(Klein et al., 2015; Zilionis et al., 2017). RNA amplification and library preparation was 

carried out according to this protocol incorporating the changes introduced in Zilionis et al. 

2017 based on the CEL-Seq2 protocol (Hashimshony et al., 2016) on batches of 1,500-3,000 

cells from each biopsy taken. The number of PCR cycles required for final library 

amplification ranged from 9-13 cycles. scRNA-Seq library sequencing was carried out using 

the Illumina NextSeq 500/550 machine. Pair-end sequencing was carried out with read1 
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(barcodes) for 34bp, index read for 6bp and read2 (transcripts) for 50bp. Raw sequencing 

data obtained from the inDrop method was processed using a custom-built pipeline, 

(available at https://github.com/flo-compbio/singlecell). The location of the known “W1” 

adapter sequence of the inDrop RT primer, was located in the barcode read (read 2). Reads 

for which the W1 sequence could not be detected were discarded. The start position of the 

W1 sequence was then used to infer the length of the first part of the inDrop cell barcode in 

each read, which can range from 8-11bp, as well as the start position of the second part of 

the inDrop cell barcode, which is 8bp long. Cell barcode sequences were mapped to the 

known list of 384 barcode sequences for each read. The resulting barcode combination was 

used to identify the cell from which the fragment originated. Finally, UMI sequence was 

extracted, and reads with low confidence base calls for the six bases comprising the UMI 

sequence (minimum PHRED score less than 20) were discarded. The reads containing the 

mRNA sequence (read 1) were mapped using STAR with parameter “—outSAMmultNmax 

1” and default settings otherwise (Dobin et al., 2013). Expression was quantified by 

counting the number of reads mapped to each gene. The genome and gff file used included 

the zebrafish genome (Version 10) (Zerbino et al., 2018) and the BRAF human vector.

Quality control and filtering of low-quality cells:  Single-cell transcriptomes with 

UMIs>750, mitochondrial transcripts < 20% and ribosomal transcripts < 30% were retained 

for analysis, leaving 7,278 cells. The same approach was applied for the other tumors 

leaving 1171 and 1563 cells, respectively, yielding a total of 10,012 (out of 15,000 processed 

for all samples). Expression profiles were smoothed using MAGIC (van Dijk et al., 2018) 

with parameter k = 7 to reduce noise after optimization using different k values. UMI counts 

were normalized by the total number of transcripts per cell, and a scale factor equivalent to 

the median number of transcripts for that cell was applied (transcripts per median, TPM). 

Expression was transformed using Freeman-Tukey transform (FTT) as described previously 

(Wagner et al., 2017). In order to avoid processing artifacts and since cell cycle genes were 

not differentially expressed among the cells we did not perform further processing (Figure 

S1C-F).

Single cell RNA-Seq analysis.

Cell type clustering:  Clustering was performed by first distinguishing the cancer cells from 

non-cancer cells by detecting the expression of the human BRAF gene. Next, hierarchical 

clustering was performed on the non-cancer cells with Ward’s criterion using the most 

variable genes (defined as Fano factor and mean expression above mean-dependent 

thresholds). Clustering was performed over correlations computed from the smoothed 

expression of the selected genes (Z-score of the TPM). This process initially revealed five 

clusters: cancer, immune, keratinocytes, fibroblasts and erythrocytes. After examining the 

immune cluster using recently published markers (Carmona et al., 2017) we could separate 

the immune cluster into three subclusters: macrophages, natural killers and neutrophils. To 

identify each cluster, we obtained a list of marker genes by examining genes that are 

differentially expressed (P<10−6, Kolmogorov-Smirnov test; effect size >0.2, Cohen’s d).

Dimensionality Reduction by PCA and tSNE:  Dimensionality reduction methods were 

performed on TPM transformed data using variable genes (defined as Fano factor and mean 
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expression above mean-dependent thresholds). tSNE was performed using the following 

parameters: perplexity = 30 and initial dimension = number of principal components 

explaining >90% of the variance (Maaten and Hinton, 2008).

Cancer cell type analysis:  To identify genes that are uniquely expressed in each cancer cell 

type we first identified each vertex: 1. low pc2 score, 2. high pc2 score, and 3. high pc1 

score. Then we identified the 500 closest cells (Euclidean distance) to create 3 groups of 

cells. For each gene we then checked if its expression is significantly higher in one group 

compared to the other two and higher in that program (P < 10−10, Kolmogorov-Smirnov test, 

effect size > 0.2, Cohen’s d). As a control we also used a different approach which yielded 

similar results. This included first identifying dynamic genes (defined as Fano factor and 

mean expression above mean-dependent thresholds) followed by unsupervised clustering to 

identify 3 clusters. We found a significant overlap between the set of genes differentially 

expressed genes in these clusters with the ones we had originally identified using the 

approach described first.

Spatial transcriptomics (ST) of zebrafish tumors.

Tissue preparation, cryosectioning, fixation, staining, and brightfield 
imaging:  Zebrafish melanoma tumors were obtained by sectioning the entire tumor with its 

surrounding tissue. Tissue was transferred from 1X-PBS to a dry, sterile 10-cm dish and 

gently dried prior to equilibration in cold OCT for 2 minutes. The tissue was then transferred 

to a tissue-mold with OCT and snap-frozen in liquid nitrogen-chilled isopentane. Tissue 

blocks were stored at −80°C until further use. Prior to cryosectioning, the cryostat was 

cleaned with 100% ethanol, and equilibrated to an internal temperature of −18°C for 30 

minutes. Once equilibrated, OCT embedded tissue blocks were mounted onto the chuck and 

equilibrated to the cryostat temperature for 15-20 minutes prior to trimming. ST slide was 

also placed inside cryostat to keep the slide cold and minimize RNase activity. Sections were 

cut at 10 μm sections, mounted onto the ST arrays, and stored at −80°C until use, maximum 

of two weeks. Prior to fixation and staining, the ST array was removed from the −80°C and 

into a RNase free biosafety hood for 5 minutes to bring to room temperature, followed by 

warming on a 37°C heat block for 1 minute. Tissue was fixed for 10 minutes with 3.6% 

formaldehyde in 1X PBS, and subsequently rinsed in 1x PBS. Next, the tissue was 

dehydrated with isopropanol for 1 minute followed by staining with hematoxylin and eosin. 

Slides were mounted in 65 μl 80% glycerol and brightfield images were taken on a Leica 

SCN400 F whole-slide scanner at 40X resolution.

Spatial Transcriptomics (ST) barcoded microarray slide information:  Library 

preparation slides used were purchased from Spatial Transcriptomics (https://

www.spatialtranscriptomics.com; lot 10002). Each of the spots printed onto the array is 100 

μm in diameter and 200 μm from the center-to-center, covering an area of 6.2 by 6.6 mm. 

Spots are printed with approximately 2 x 108 oligonucleotides containing an 18-mer spatial 

barcode, a randomized 7-mer UMI, and a poly-20TVN transcript capture region (Ståhl et al., 

2016).
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On-slide tissue permeabilization, cDNA synthesis, probe release:  After brightfield 

imaging, the ST slide was pre-warmed to 42°C and attached to a pre-warmed microarray 

slide module to form reaction chambers for each tissue section. The sections were pre-

permeabilized with 0.2 mg/ml BSA and 200 units of collagenase diluted in 1X HBSS buffer 

for 20 minutes at 37°C and washed with 100 μl 0.1X SSC buffer twice. Tissue was 

permeabilized with 0.1% pepsin in HCl for 4 minutes at 42°C and washed with 100 μl 0.1X 

SSC buffer twice. Reverse transcription (RT) was carried overnight (~18-20h) at 42°C by 

incubating permeabilized tissue with 75 μl cDNA synthesis mix containing 1X First strand 

buffer (Invitrogen), 5 mM DTT, 0.5 mM each dNTP, 0.2 μg/μl BSA, 50 ng/μl Actinomycin 

D, 1% DMSO, 20 U/μl Superscript III (Invitrogen) and 2U/μl RNaseOUT (Invitrogen). Prior 

to removal of probes, tissue was digested away from the slide by incubating the tissue with 

1% 2-mercaptoethanol in RLT buffer (Qiagen) for one hour at 56°C with interval shaking. 

Tissue was rinsed gently with 100 μl 1X SSC, and further digested with proteinase K 

(Qiagen) diluted 1:8 in PKD buffer (Qiagen) at 56°C for 1 hour with interval shaking. Slides 

were rinsed in 2X SSC with 0.1% SDS, then 0.2X SSC, and finally in 0.1X SSC. Probes 

were released from the slide by incubating arrays with 65 μl cleavage mix (8.75 μM of each 

dNTP, 0.2 μg/μl BSA, 0.1 U/μl USER enzyme (New England Biolabs) and incubated at 37 

°C for 2 hours with interval mixing. After incubation, 65 μl of cleaved probes was 

transferred to 0.2 ml low binding tubes and kept on ice.

ST library preparation and sequencing:  Libraries were prepared from cleaved probes as 

previously described, with the following changes. After RNA amplification by in vitro 
transcription (IVT) and subsequent bead clean-up, the second RT reaction was performed 

using random hexamers, eliminating the need for a primer ligation step as described 

previously (Hashimshony et al., 2016).

ST spot selection and image alignment:  Upon removal of probes from ST slide, the slide 

is kept at 4°C for up to 3 days. The slide was placed into a microarray cassette and incubated 

with 70 μl of hybridization solution (0.2 μM Cy3-A-probe, 0.2 μM Cy3 Frame probe, in 1X 

PBS) for 10 minutes at room temperature. The slide was subsequently rinsed in 2X SSC 

with 0.1 % SDS for 10 minutes at 50°C, followed by one-minute room temperature washes 

with 0.2X SSC and 0.1X SSC. Fluorescent images were taken on a Hamamatsu 

NanoZoomer whole-slide fluorescence scanner. Brightfield images of the tissue and 

fluorescent images were manually aligned with Adobe Photoshop CS6 to identify the array 

spots beneath the tissue.

ST library sequence alignment and annotation:  The raw paired end sequencing file was 

processed by custom pipeline CEL-Seq2 (https://github.com/yanailab/celseq2) to generate 

the UMI-count matrix for 1007 spots. In general, the CEL-Seq2 was adapted to spatial-

transcriptomics data in 3 steps: 1) Tagging and demultiplexing. The leftmost 25nt of R1 

sequence consist of 18nt for spot-specific barcode and then 7nt for UMI. R2 sequence reads 

contain the transcript information and its leftmost 35nt were used for mapping. The name of 

every R2 read is tagged with spot-specific barcode and UMI sequences that are extracted 

from the paired R1 read. R2 reads are demultiplexed to create the 1007 spot-specific FASTQ 

files. If the detected spot-specific barcode of a read is not present in the pre-defined barcodes 

Baron et al. Page 15

Cell Syst. Author manuscript; available in PMC 2021 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/yanailab/celseq2


list, the read is excluded from the downstream analysis. 2) Alignment of demultiplexed 

FASTQ files using Bowtie2 version 2.3.1 (Langmead and Salzberg, 2012). 3) Counting UMI 

using customized HTSeq (Anders et al., 2015). The reads that are aligned to are collapsed to 

count only once if they have the same UMI.

Analysis of ST data:  UMI counts in each spot were normalized by the total number of 

transcripts per spot and then multiplied by a scale factor equivalent to the median number of 

transcripts per spot (TPM). A pseudocount of 1 was added prior to log10 transformation. To 

distinguish between cancer and non-cancer areas clustering was performed as described 

previously (Moncada et al., 2020) and enrichment of each gene in each of the transcription 

programs was calculated by Wilcoxon rank sum test.

Stress-like cells in vivo and in vitro functional assays.

Heat shock and drug treatments:  ZMEL1 cells were grown at 28°C (optimum 

temperature) or 37°C (heat shock) for 48hr with 30, 60, 600 and 6000nM of dabrafenib or 

10, 25 and 50nM of trametinib, either alone or in combination. For human melanoma cell 

line A375, cells were grown either at 37°C (optimum temperature) or 42°C (heat shock) and 

treated with the same drug concentrations as above. Cell viability was measured using the 

Promega CellTiter-Glo® 2.0 Cell Viability Assay and luminescence was measured using a 

Biotek plate reader.

Zebrafish blastula transplants and microscopy:  ZMEL1 cells expressing mitf-GFP and 

ubb-tdTomato were grown as previously described (Heilmann et al., 2015). Cells were 

trypsinized and resuspended in Dulbecco’s 1X PBS to a concentration of 2x107cells/mL. 

Approximately 20 cells in 1nL PBS were injected into the blastula of pre-epiboly casper 
embryos (~2.5-4 hours post-fertilization) using a quartz microneedle. Embryos were grown 

in E3 for 24 hours before adding drugs. All fish were grown at 28.5°C for the duration of the 

experiment. For microscopy, fish were anesthetized in Tricaine and placed on a petri dish 

containing 2% agarose. The fish were imaged using a Zeiss AxioZoom V16 fluorescence 

stereoscope with a 0.6X lens. Each fish was consecutively imaged with brightfield, GFP and 

Rhodamine filters. Raw images (CZIs) of each larva were exported for downstream analysis 

in MATLAB.

Drug treatments:  Compounds used were dabrafenib (working concentration: 1μM; 

Selleckchem #S2807) and trametinib (working concentration: 25nM; Selleckchem #2673). 

DmSO in E3 was used as the vehicle for all drugs and for all drug controls. Drugs were 

added at 24 hours post-fertilization and changed every subsequent 24 hours until imaging on 

day 5.

Quantification of tumor burden:  Quantifications of tumor area were performed using the 

MATLAB Image Processing Toolbox and a fully automated custom image analysis pipeline. 

Brightfield images were automatically segmented to calculate the area of the entire larva. 

The brightfield segmentation of the whole larva was then applied as a mask to the 

corresponding images of GFP fluorescence from the same fish to crop the images and reduce 

background noise. To measure tumor area, tumor images were thresholded and the number 
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of pixels above the threshold within the body of the larva were counted. Images of GFP 

fluorescence were used to calculate tumor area for all groups, due to consistency in mitf-

GFP fluorescence in all tumor cells across all groups. Tumor surface area was normalized to 

the total fish surface area.

Quantification of ubb cells using flow cytometry:  For each cell group of treatment, all 

larval fish were disaggregated in trypsin-EDTA by shaking at 37°C for 15 minutes with 

intermittent gentle agitation with a Disposable Pellet Pestle (Fisher Scientific) every 5 

minutes. Cells were pelleted by centrifugation and resuspended in DMEM supplemented 

with 2% FBS. All samples were filtered through 40μm cell strainers to achieve single cell 

suspensions prior to FACS. Individual cancer cells, from each treatment group, were 

selected based on GFP expression using FACS (Fluorescence activated cell sorting) SONY 

SH800 cell sorter in single cell mode to achieve the highest purity possible. The distribution 

of tdTomato was recorded and analyzed using FlowJo software v10.6.0 (Tree star, Ashland, 

OR, USA).

ZMEL1-GFP single cell RNA-Seq.

Embryo Transplantation, sample preparation, dissociation and collection.: ZMEL 

zebrafish melanoma cells were grown as previously described (Heilmann et al., 2015). Cells 

were detached from standard tissue culture dishes with trypsin-EDTA and approximately 50 

cells in 1nl of 0.9X Dulbecco’s PBS were transplanted intravenously into the Duct of Cuvier 

of each 2 day-post-fertilization casper embryo as previously described (Heilmann et al., 

2015; Kim et al., 2017). Fish with successful transplants were allowed to form widespread 

metastatic disease until 17 days post-transplant, at which point they were used for scRNA-

Seq. Two larval fish with widespread metastases were disaggregated individually in trypsin-

EDTA by shaking at 37°C for 20 minutes with intermittent gentle agitation with a 

Disposable Pellet Pestle (Fisher Scientific). Cells were pelleted by centrifugation and 

resuspended in DMEM supplemented with 2% FBS. In parallel, ZMEL cells grown in 

standard tissue culture conditions were trypsinized and resuspended in DMEM with 2% 

FBS. All samples were filtered through 40μm cell strainers to achieve single cell 

suspensions prior to FACS. 93 Individual cells, from each cell line and each condition, were 

sorted based on EGFP expression using a FACS (Fluorescence activated cell sorting) SONY 

SH800 cell sorter into wells of 384-well plates pre-loaded with the CEL-Seq2 primer mix 

(Hashimshony et al., 2016). After sorting, the plates were immediately spun down and 

snapped freeze using liquid nitrogen and kept in −80 for further processing.

Single cell mRNA Sequencing of single cells and analysis.: 384 well plates with sorted 

cells were thawed on ice. Amplification of mRNA and library preparation was performed 

according to the CEL-Seq2 protocol (Hashimshony et al., 2016). scRNA-Seq library paired-

end sequencing was carried out using the Illumina NextSeq 500/550 machine. Fastq files 

were processed using the custom CEL-Seq2 pipeline (https://github.com/yanailab/celseq2) 

and UMI counts were normalized by the total number of transcripts per cell and then 

multiplied by a scale factor equivalent to the median number of transcripts per spot (TPM). 

The program expression profile was calculated by averaging the TPM expression of all 

genes associated with each program.

Baron et al. Page 17

Cell Syst. Author manuscript; available in PMC 2021 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/yanailab/celseq2


Immunofluorescence of FOS protein on tumor microarray.—Tumor microarrays 

(TMA) were obtained from US Biomax (ME1004g). The slide was baked for 30 minutes in 

60°C and washed three times with Xylene, 100% EtOH and 95% EtOH. After rinsing with 

DI H20, antigen retrieval was performed for 12 minutes in a boiling TE buffer. Slide was 

cooled down and rinsed with DI H20 following a wash in TBS+0.05% Tween. The array 

was stained for FOS (1:1000; Synaptic systems 226 003) for 48 hours at room temperature 

in a wet chamber. Before applying the secondary antibody, three washes with TBS+0.05% 

Tween were performed. DAPI and Secondary antibody (1:100) was applied and incubated 

for 1hr in a wet chamber at room temperature followed by 3 washes in TBS+0.05% Tween. 

Slide was dried and mounted before scanning for imaging.

Re-analysis of existing datasets.

Re-analysis of Tirosh et al. human scRNA-Seq melanoma dataset:  Normalized scRNA-

Seq data was retrieved from the Tirosh et al. publication (Tirosh et al., 2016a) and 

transformed using the Freeman-Tukey approach (Wagner et al., 2017). We examined the 

cancer cells as annotated by Tirosh et al., and of those only the MITF high (proliferating) 

cells.

Re-analysis of Mica et al. human melanocyte differentiation dataset:  Normalized 

microarray data was retrieved from Mica et al. (Mica et al., 2013) for the wild-type cell line 

studied using the standard and neural crest optimized protocols. PCA was performed on 

samples using the most variable genes (defined above). K-means clustering with K=3 

yielded the following groupings: samples from day 0 to day 3, samples from day 6 to day 11 

and primary and mature melanocytes. To calculate the Pearson correlation of each cancer 

cell state to each grouping of melanocyte differentiation, in silico bulk expression profiles 

were created by averaging each cancer cell type from the human scRNA-Seq dataset (Tirosh 

et al., 2016a). Next, the resulting profiles were scaled to the same range of melanocyte 

differentiation data set using min/max scaling. Finally, only genes that are differentially 

expressed among the three groupings were used for the correlation calculation (P < 10−5, 

Kolmogorov-Smirnov test and expression above a mean dependent threshold).

Re-analysis of Moncada et al. human scRNA-Seq pancreatic adenocarcinoma 
dataset:  scRNA-Seq data was retrieved from Moncada et al. publication (Moncada et al., 

2020), smoothed using the MAGIC method (van Dijk et al., 2018) and transformed using the 

Freeman-Tukey approach (Wagner et al., 2017). We examined only the cancer cells, 462 in 

total, using the approach described in the “Dimensionality Reduction (PCA and tSNE)” part. 

The stress program was defined using only the genes that are enriched for this cancer cell 

type (see “Cancer cell type analysis” part for details) in the human scRNA-Seq Melanoma 

dataset.

Re-analysis of Kim et al. human scRNA-Seq triple negative breast cancer 
dataset:  Normalized scRNA-Seq data was retrieved from Kim et al. publication (Kim et al., 

2018), smoothed using the MAGIC method (van Dijk et al., 2018) and transformed using the 

Freeman-Tukey approach (Wagner et al., 2017). We examined only the cancer cells from 
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donor P_6 before treatment, using the same approach as described in “Re-analysis of 

Moncada et al. human scRNA-Seq pancreatic adenocarcinoma dataset”.

Re-analysis of Tirosh et al. human scRNA-Seq oligodendroglioma dataset:  Normalized 

scRNA-Seq data was retrieved from Tirosh et al. publication (Tirosh et al., 2016b), 

smoothed using the MAGIC method (van Dijk et al., 2018) and transformed using the 

Freeman-Tukey approach (Wagner et al., 2017) The stress-like transcriptional program was 

identified using the same approach as described in “Re-analysis of Moncada et al. human 

scRNA-Seq pancreatic adenocarcinoma dataset”.

Re-analysis of Ho et al. human scRNA-Seq BRAF inhibitor treated melanoma cell line 
dataset:  scRNA-Seq data was retrieved from Ho et al. publication (Ho et al., 2018), 

normalized by total transcript per cell and transformed using the Freeman-Tukey approach 

(Wagner et al., 2017). Each transcriptional program was quantified using the same approach 

as described in “Re-analysis of Moncada et al. human scRNA-Seq pancreatic 

adenocarcinoma dataset” for both treated and untreated cells and visualized using violin 

plots.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of scRNA-seq data, including quality controls is described in the sections 

“Single-cell RNA-Seq collection and processing of tumor biopsies”,”Single cell RNA-Seq 

analysis”, “Spatial transcriptomics (ST) of zebrafish tumors” and “ZMEL1-GFP single cell 

RNA-Seq”. Quantification of tumor burden is described in the section “Stress-like cells in 

vivo and in vitro functional assays”. All statistical tests outputs (p-value) are described in 

figures legends, adjusted using Benjamini-Hochberg correction and significance was defined 

as p-value<0.05.

Graphs and illustrations were performed with Matlab, Python and Illustrator software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

a. Melanomas exhibit 3 cell states: neural-crest, mature melanocyte and stress-

like.

b. The stress-like cancer cell state is conserved across tumor types and species.

c. Stress-like cancer cells are pro-tumorigenic and efficient at seeding new 

tumors.

d. Stress-like cancer cells hold drug-resistant properties induced by heatshock.
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Figure 1. Single-cell RNA-Seq on zebrafish melanoma.
(A) Eight tumor biopsies were processed from three distinct tumors using scRNA-Seq. (B) 

tSNE analysis of 7,278 individual cells from tumor 1. Color indicates the inferred cell type. 

(C) PCA on the cancer cells revealed three transcriptional cell states, indicated by the 

colored circles. (D) Heatmap showing the Pearson’s correlation coefficients between the 

three cell states across all eight biopsies. Biopsy samples cluster according to states and not 

tumor or animal of origin. (E) Serial biopsies were taken from the same tumor (tumor 1), at 

one week intervals. The tumor at each time point is shown in the micrographs. The stacked 

bar plot indicates the proportions of the transcriptional cell states detected in panel (C) for 

each biopsy.
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Figure 2. Transcriptional program underlying melanoma cancer cell states.
(A) Normalized expression levels of the differentially expressed genes across the cancer 

cells of tumor 1. Genes are colored by function based on GO annotations indicated at the 

bottom. Bottom panel - expression of mitfa, egfra, ngfra, ngfrb and crestin, all associated 

with melanoma cell lines program (B) PCA of bulk melanocyte differentiation from 

previously reported data (Mica et al., 2013), colors indicate expression levels of SOX2 
(purple) and DCT (green). In the heatmap, the Pearson’s correlation levels are shown 

between the three human melanoma cell type programs and the developmental 

transcriptomes of stem cells, neural crest, and mature melanocytes. (C,D) Comparison 

between zebrafish melanoma transcriptional program and (C) human melanoma 

transcriptional program (Tirosh et al., 2016a) and (D) patient-derived xenografts (Rambow 

et al., 2018; Tirosh et al., 2016a) (*, P<10−2; ***, P<10−4; ****, P<10−5).
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Figure 3. The transcriptional programs of the cancer cell states are enriched in cancer areas and 
detected at the protein level across cancer types.
(A) Hematoxylin and eosin stain of a zebrafish transplanted tumor section. Red and blue 

dotted lines mark cancer and non-cancer areas, respectively. (B) Gene expression profiles of 

the indicated genes obtained by spatial transcriptomics performed on a section adjacent to 

the one shown in panel A. (C) Violin plots indicating the enrichment of each gene (Man-

Whitney test, −log10 of the P-value) in each of the indicated gene programs. Genes shown in 

panel B are indicated by arrows in each program. Negative control represents a randomly 

selected set of 200 genes. (D) FOS protein is localized in the cell nuclei (white arrows) as 

shown by the DAPI nuclear staining (blue, left), FOS immunofluorescence staining (green, 

middle) and a merged image (right). (E) PCA on PDAC (Moncada et al., 2020), TNBC (Kim 

et al., 2018), oligodendroglioma (Tirosh et al., 2016b) and melanoma (Tirosh et al., 2016a) 

tumor cancer cells. Color indicates normalized expression levels of the stress-like program, 

significantly enriched in one vertex (*, P<10−2; **, P<10−4).
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Figure 4. Zebrafish ubbhigh cells form higher burden tumors and induction of the stress-like 
state increases drug resistance.
(A) The ZMEL1-GFP;ubb-tdTomato system to track and select for the cells in the stress-like 

state. (B) ZMEL1-GFP;ubb-tdTomato cells were sorted to high and low levels of tdTomato 

intensities and injected into zebrafish for tumor initiation assay followed by quantification of 

GFP intensity (additional representative images can be found in Figure S4J). (C) Boxplot of 

tumor burden quantified by GFP intensity of the two different levels of tdTomato compared 

to parental unsorted cells as a control (mix of population with no selection). Tumor sizes 

were significantly higher when high tdTomato cells were injected (Mann-Whitney test; *, 

P<0.05). (D) Schematic of ZMEL1-GFP;ubb-tdTomato cells cultured in optimal and heat 

shock conditions and exposed to different drug concentrations. (E) Bar plot of cell viability 

across culturing conditions (optimal/heat shock) and drug treatments. Cell viability is 

significantly higher under drug treatment when cells were cultured in heat shock conditions.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

c-FOS antibody Synaptic systems 226 003

Biological Samples

Melanoma Tumor microarray US Biomax ME1004g

Chemicals, Peptides, and Recombinant Proteins

Dabrafenib Selleckchem #S2807

Trametinib Selleckchem #2673

DPBS, no calcium, no magnesium Themo Fisher 
Scientific

#14190250

Fetal Bovine Serum Themo Fisher 
Scientific

#16000044

Trypsin-EDTA Themo Fisher 
Scientific

#25200056

SuperScript III Reverse Transcriptase Invitrogen #18080085

PrimeScriptTM Reverse Takara Clonetech #2680A

Agencourt RNAClean XP magnetic beads Beckman Coulter #A63987

Agencourt AMPure XP magnetic beads Beckman Coulter #A63881

Critical Commercial Assays

inDrop scRNA-Seq kit 1CellBio 10196

Qubit dsDNA HS Assay Kit Invitrogen Q32851

Qubit RNA HS Assay Kit Invitrogen Q32852

Bioanalyzer RNA 6000 Pico Kit Agilent 5067-1513

Bioanalyzer High Sensitivity DNA Analysis Kit Agilent 5067-4626

NEBNext mRNA Second Strand Synthesis Kit New England 
Biolabs

E6111S

HiScribe T7 High Yield RNA Synthesis kit New England 
Biolabs

E2040S

NextSeq 500/550 75 cycles High output v2 kit Illumina FC-404-2005

Spatial Transcriptomics kits Spatial 
Transcriptomics

10002

CellTiter-Glo Cell Viability Assay Promega G9241

Deposited Data

Raw and analyzed data This paper GSE115140

Zebrafish reference genome GRCz10 Ensemble release 91 ftp://ftp.ensembl.org/pub/
release-91/fasta/danio_rerio/

Zebrafish genome annotation GRCz10 Ensemble release 91 ftp://ftp.ensembl.org/pub/
release-91/fasta/danio_rerio/

Single cell RNA-Seq human melanoma Tirosh et al., 2016a GSE72056

Human melanocyte differentiation microarray Mica et al., 2013 GSE45227

Single cell RNA-Seq human pancreatic adenocarcinoma Moncada et al., 
2020

GSE111672

Cell Syst. Author manuscript; available in PMC 2021 November 18.

ftp://ftp.ensembl.org/pub/release-91/fasta/danio_rerio/
ftp://ftp.ensembl.org/pub/release-91/fasta/danio_rerio/
ftp://ftp.ensembl.org/pub/release-91/fasta/danio_rerio/
ftp://ftp.ensembl.org/pub/release-91/fasta/danio_rerio/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baron et al. Page 32

REAGENT or RESOURCE SOURCE IDENTIFIER

Single cell RNA-Seq human triple negative breast cancer Kim et al., 2018 Navin Lab

Single cell RNA-Seq human oligodendroglioma Tirosh et al., 2016b GSE70630

Single cell RNA-Seq of human melanoma cell line treated with BRAF inhibitor Ho et al., 2018 SRP127328

Experimental Models: Cell Lines

A375 ATCC NA

ZMEL1 White Lab NA

ZMEL1-tdtomato-ubb This paper NA

Experimental Models: Organisms/Strains

BRAFV600E Zebrafish White Lab NA

Oligonucleotides

inDrop PE2-N6 primer: 
TCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNN

IDT N/A

inDrop PE1 primer index 1: 
CAAGCAGAAGACGGCATACGAGATCGTGATCTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 2: 
CAAGCAGAAGACGGCATACGAGATACATCGCTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 3: 
CAAGCAGAAGACGGCATACGAGATGCCTAACTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 4: 
CAAGCAGAAGACGGCATACGAGATTGGTCACTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 5: 
CAAGCAGAAGACGGCATACGAGATCACTGTCTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 6: 
CAAGCAGAAGACGGCATACGAGATATTGGCCTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 7: 
CAAGCAGAAGACGGCATACGAGATGATCTGCTCTTTCCCTACACGA

IDT N/A

inDrop PE1 primer index 8: 
CAAGCAGAAGACGGCATACGAGATTCAAGTCTCTTTCCCTACACGA

IDT N/A

inDrop Custom Read 1 primer: GGCATTCCTGCTGAACCGCTCTTCCGATCT IDT N/A

inDrop Custom Index Read primer: 
AGATCGGAAGAGCGTCGTGTAGGGAAAGAG

IDT N/A

inDrop scRNA-seq: Custom Read 2 primer: 
CTCTTTCCCTACACGACGCTCTTCCGATCT

IDT N/A

Software and Algorithms

inDrop pipeline Yanai Lab https://github.com/flo-
compbio/singlecell

Custom codes for scRNA-Seq analysis This paper https://github.com/
MaayanBaron/
sc_melanoma_Baron2020

STAR mapper Dobin et al., 2013 https://github.com/alexdobin/
STAR

MATLAB R2017a Mathworks https://www.mathworks.com/

MAGIC van Dijk et al., 2018 https://github.com/
KrishnaswamyLab/MAGIC

Bowtie2 Langmead and 
Salzberg, 2012

http://bowtie-
bio.sourceforge.net/bowtie2/
index.shtml
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REAGENT or RESOURCE SOURCE IDENTIFIER

CEL-Seq2 pipeline Yanai Lab https://github.com/yanailab/
celseq2

FlowJo v10.6.0 Tree star https://www.flowjo.com/

HTSeq Anders et al., 2015 https://
htseq.readthedocs.io/en/
master/
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