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Abstract

Mass spectrometry (MS) serves as the centerpiece technology for proteome, lipidome, and 

metabolome analysis. To have a better understanding of the multi-faceted networks of myriad 

regulatory layers in complex organisms, an integration on different layers of multi-omics is up-

and-coming, including joint extraction methods of diverse biomolecular classes and 

comprehensive data analyses of different omics. Despite the versatility of MS systems, fractured 

methodology drives nearly all MS laboratories to specialize in analysis of a single ome at the 

exclusion of the others. Although liquid chromatography-mass spectrometry (LC-MS) analysis is 

similar for different biomolecular classes, the integration on the instrument level is lagging behind. 

The recent advancement on high flow proteomics enables us to take a first step on integration of 

proteins and lipids analysis. Here, we describe a technology to achieve broad and deep coverage of 

multiple molecular classes simultaneously through multi-omic single-shot technology (MOST) 

requiring only one column, one LC-MS instrument and a simplified workflow. MOST achieved 

great robustness and reproducibility. Its application on a Saccharomyces cerevisiae study 
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consisting of 20 conditions revealed 2,842 protein groups and 325 lipids, and potential molecular 

relationships.

Graphical Abstract

Myriad regulatory layers involving tens of thousands of biomolecules – including nucleic 

acids, proteins, lipids, and metabolites – modulate the cellular processes that govern 

complex organisms. Untangling these multi-faceted networks will require innovative 

technologies to globally monitor diverse classes of biomolecules. For example, gene 

expression profiles have failed to fill unresolved gaps in many biosynthesis pathways 

implicated in many human diseases. Mass spectrometry (MS) has propelled systems biology 

by offering access to the proteome, lipidome, and metabolome. For each of these classes, 

remarkably similar MS methods, consisting of chromatographic separation, mass 

measurement, and tandem MS1,2,3, have been developed and are used widely. Despite this 

methodological common ground, nearly all MS laboratories specialize in niche applications 

targeting a single ome.

This arrangement causes two major problems. First, the confinement to a single ome across 

published data impoverishes the MS community’s understanding of their interplay4,5,6,7; a 

PubMed search of publications from the last five years reveals that though multi-omic 

studies have tripled in that time, less than ~ 7.5% of MS-based omic studies incorporated 

multi-omic analysis in 2019. Second, the majority of existing multi-omic analyses are 

conducted across laboratories, potentially leading to noise introduced by sample 

heterogeneity, variable sample handling, and instrument variance that can then obscure 
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otherwise strong biomolecular associations8,9,10,11. We posit that an integrated workflow 

could both improve data quality and unlock more comprehensive coverage of the biological 

system.

Thus, in contrast to the fragmented single-ome status quo, we envision an integrated 

technology for the metabolome, lipidome, and proteome that allows these omes to be jointly 

extracted and prepared from a single sample; loaded onto and separated by a single LC 

column; and jointly mass analyzed as they elute on a single MS platform. We term this 

method multi-omic single-shot technology (MOST). As researchers have been trying to 

overcome the bottleneck of co-extraction of multiple molecular classes such as metabolites, 

lipids and proteins12,13,14, here, we demonstrate that an integrated analysis of proteins and 

lipids is possible. To our knowledge, MOST is the first technology that integrates proteome 

and lipidome analysis in a single LC-MS run using a single reverse-phase (RP) column and 

a binary mobile phase system15,16,17 – i.e., without the need to maintain dedicated LC-MS 

systems or work across multiple laboratories.

EXPERIMENTAL SECTION

Materials and reagents.

Solvents and reagents are listed in the Supporting Information with vendor and catalog 

number (Supplementary Text S1).

Yeast cultures.

Details of yeast cultures are described in the Supporting Information (Supplementary Text 

S2).

Sample preparation for mass spectrometry.

The procedure was adapted from previous literature18. Frozen cell pellets were thawed on 

ice and mixed with 250 μL of methanol, 750 μL of methyl tert-butyl ether (MTBE), and 200 

μL of water. The samples were vortexed for 10 s and sonicated for 5 min. Phase separation 

was completed after centrifugation (12,000 g, 5 min, 4 °C). 200 μL of the upper hydrophobic 

layer was aliquoted into a glass insert amber autosampler vial, dried, and reconstituted in 

100 μL of ACN/IPA/H2O (65:30:5, v/v/v).

To the lower hydrophilic layer, 200 μL of 6M GnHCl and 100 mM tris (pH = 8.0) was 

added. The samples were boiled at 100 °C for 5 min, rested at room temperature for 5 min, 

were boiled at 100 °C for 5 min again. Proteins were precipitated by addition with methanol 

to 90%, vortex for ~ 10 s, and centrifugation at 12,000 g for 5 min. The resulting protein 

pellet was re-suspended in the lysis buffer containing 8M urea, 10 mM tris(2-

carboxyethyl)phosphine, 40 mM chloroacetamide, and 100 mM tris (pH = 8.0). The samples 

were digested with lysyl endopeptidase (1:50, enzyme/protein) for 4 hrs. The samples were 

diluted four times by 50 mM tris and incubated with trypsin (1:50, enzyme/protein) for 

overnight digestion. The samples were acidified and desalted using Strata cartridges. A 

quantitative colorimetric peptide assay (Thermo Scientific) was performed to measured 

peptide concentration.
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MOST LC-MS.

LC–MS analysis was performed on a Waters C18 reverse-phase BEH column (150 mm × 1.0 

mm × 2.1 μm particle size) at 50 °C and 60 μL/min flow rate. Mobile phase A consisted of 

0.2% formic acid in H2O. Mobile phase B consisted of 0.2% formic acid and 5 mM 

ammonium formate in IPA/ACN (90:10, v/v). 5 μL of lipid extracts were injected followed 

by the injection of 20 μg of peptides at 0% of mobile phase B. For the gradient, mobile 

phase B was held at 0% for 1 min, increased to 28% over 52 min, reached to 70% at 60 min, 

increased to 100% over 20 min. The washing step at 100% mobile phase B was 5 min. and 

then the re-equilibration step at 0% mobile phase B was 14 min. Eluting molecules were 

subjected to electrospray ionization using the heated electrospray ionization source (HESI 

II) on a Q Exactive HF mass spectrometer (Thermo Scientific). Sheath gas and auxiliary gas 

were set to 30 units and 6 units, respectively. The spray voltage was set to ±4.5 kV. Capillary 

temperature and aux gas heater temperature were set to 275 °C and 300 °C, respectively. A 

34 gauge spray needle was used.

For peptides scanning, only positive mode was used. MS1 data acquisition was from 0–60 

min at a resolution of 60,000 with the automatic gain control (AGC) target set to 3 × 106, 

m/z range to 300–1350, and maximum injection time (IT) to 50 ms. MS2 data were acquired 

at a resolution of 30,000 with the AGC target set to 1 × 105, maximum injection time to 60 

ms, and loop count to 10 (top10). For lipids scanning, polarity switching was used. MS1 

data acquisition was from 60–90 min at a resolution of 30,000 with the AGC target set to 1 × 

106, m/z range to 200–1600, and maximum IT to 100 ms. MS2 data were acquired at a 

resolution of 30,000 with the AGC target set to 1 × 105, maximum injection time to 50 ms, 

and loop count to 2 (top2).

Data processing.

For proteomics, raw data files were processed by MaxQuant19 (Version 1.5.8.3). The 

database of reviewed yeast proteins plus isoforms was downloaded from Uniprot on July 23, 

2019. Searches used target-decoy strategy20 and the Andromeda21 search algorithm. Default 

parameters in MaxQuant were used. Label-free quantification (LFQ) was calculated with 

minimum ratio count of 2. The match between runs was on. MS/MS spectra were not 

required for LFQ comparisons. Imputation was based on normal distribution using mean and 

standard deviation of the lowest 1% of LFQ values by Perseus (Version 1.6.0.7). Triplicate 

protein LFQ values were pooled, log2 transformed, averaged, and then normalized against 

the WT (mean log2[Δgene/WT], n = 3). P values were obtained from two-tailed t-tests.

For lipidomics, raw data files were processed using Compound Discoverer 2.1 (Thermo 

Scientific) and Lipidex22. The parameters were mainly adapted from previous 

literature23,24,25,26. Lipid retention time range was set to 60.1–89.0 min (0.5 min tolerance) 

and the precursor mass range was set to 100–5000 Da (10 ppm mass tolerance) for 

aggregation of chromatographic peaks into distinct compound groups. Peak detection 

required a signal-to-noise ratio of 1.5, a minimum peak intensity of 5 × 105, and a maximum 

peak width of 0.75 min. Peaks were marked as background if they had a < 5-fold intensity 

increase over blanks. An in-silico generated lipid spectral library (48 lipid classes and 3.5 × 

104 molecular compositions) was used for MS/MS spectra searching. Spectral matches were 
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excluded with a < 500 dot product score and a < 700 reverse dot product score. MS/MS 

spectra were identified at the individual fatty acid substituent level of structural resolution 

with a minimum spectral purity of 75%. MS/MS spectra were identified at the sum of the 

fatty acid substituents level of structural resolution when individual fatty acid substituents 

were unresolved. Triplicate lipid intensities were pooled, log2 transformed, averaged, and 

then normalized against the WT (mean log2[Δgene/WT], n = 3). P values were obtained 

from two-tailed t-tests.

Molecule covariance network analysis.

Pearson’s correlation coefficients (r) were obtained by Pearson’s correlation analysis using 

fold changes for molecules from all strains. P values were obtained by two-tailed t-tests and 

were corrected for multiple hypothesis testing (Benjamini-Hochberg). Correlations with |r| ≥ 

0.8 and P < 0.001 were kept. Gephi Open Graph Visualization Platform (version 0.9.2) was 

used to visualize the entire correlation network, where the layout was set to Fruchterman–

Reingold with area of 10,000 and gravity of 30. Where applicable, nearest neighbor 

covariance networks for certain molecules are visualized through igraph() function27 in R 

statistical environment28.

RESULTS AND DISCUSSION

To test our hypothesis that peptides and lipids can be co-analyzed in a single LC-MS 

methodology, we first sequentially loaded a complex mixture of lipids and then peptides 

from a yeast cell lysate onto an RP LC column. Note for highest compatibility with 

developed lipid separation methods, we elected to use a higher flow separation setup – a 

one-millimeter inner diameter column with microliter flow rates. It is also robust, because 

typically the column can separate > 800 samples while maintaining good peak shapes and 

without substantial increase in backpressure. We observed no clogging or other LC-related 

issues developing the method and running samples. Recent work by Kuster et al. and others 

have demonstrated such high flow conditions can work well for peptides separations, though 

they do come at the cost of reduced sensitivity and sampling depth29,30,31,32. In our case, 

high flow led to 33.7% less unique peptides and 30.7% less protein groups compared to 

nano flow loaded with 10-fold less samples. Using a modified gradient lasting 90 minutes, 

we eluted first the peptides (0–60 mins) and then the lipids (60–90 mins) into a quadrupole 

Orbitrap hybrid MS (Figure 1, Supplementary Figure S1a). Given the hydrophobicity 

differences of peptide and lipids, these two molecule classes are easily separated temporally 

for durations we control using our MOST gradient. During peptide elution, the MS was 

operated in positive-ion mode and peptides were selected for tandem MS using a data-

dependent top-ten method. Then, when mostly lipids begin to elute at approximately 60 

minutes, the MS is instructed to begin collecting in polarity-switching mode, now collecting 

with a data-dependent top-two method. Note best performance was achieved with a gradient 

comprising 90% isopropanol and 10% acetonitrile, a gradient commonly used for lipid 

separations3,33.

Encouraged by these initial proof-of-concept results, we next sought to optimize the balance 

between peptide and lipid detection and instrumentation demands. First, to achieve an 
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optimal peptide injection amount under high flow conditions, we assessed serial dilutions 

(Supplementary Figure S1b) and determined that an optimal load of 20 μg of peptides 

produced > 18,000 unique peptide identifications corresponding to > 2,200 protein groups. 

In that same experiment, we typically detect ~ 150 lipids, a number comparable to the 

amount observed when we perform lipidomics separately on yeast (Supplementary Figure 

S1c) as well as published data for triplicate wildtype34. For both omes, we analyzed 

approximately equivalent amounts of starting material. Using MOST for mammalian cell 

line analysis, we identified and quantified > 2,600 protein groups and > 500 lipids from a 

HAP1 cell line. These results were achieved without the addition of dimethyl sulfoxide 

(DMSO)31,32,35. Although DMSO enhances ionization and increases identification, in our 

case those benefits were short-term, as it rapidly caused instrument fouling. To restore the 

performance, cleaning of the front part of the mass spectrometer (i.e., S-lens and ion transfer 

tube) was needed, usually followed by ~ one day of vacuum regeneration, bakeout, and 

calibration procedure. Considering the instrument downtime and the frequency of cleaning, 

we decide against using DMSO. Additionally, in contrast to other high flow proteomic 

methods31,32, we incorporated ammonium formate to the mobile phase. Ammonium salt is a 

common additive to lipidomics analyses to improve neutral lipid detection. Here, its use led 

to a slight reduction in peptide identifications but a substantial increase in lipid 

identifications compared to no-ammonium analyses: 5.8% fewer unique peptides and 3.3% 

fewer protein groups as compared to an 11.6% gain in lipid identifications. It also led to the 

detection of key lipid classes, including cardiolipins (CLs) and triglycerides (TGs) 

(Supplementary Figure S1d–e). Finally, we tested two types of RP columns, C18 BEH and 

C18 CSH. The BEH column led to more identifications in both proteomic and lipidomic 

analyses: 1.3% more unique peptides and protein groups, 14.9% more lipids (Supplementary 

Figure S1f–g).

MOST showed excellent reproducibility as measured by quantification and retention time 

(RT) stability (Figure 2a; Supplementary Figure S2a). Importantly, protein quantification (R2 

= 0.995) and peptide RT (R2 = 1) were not affected by the presence of lipids on the column. 

Similarly, lipid quantification (R2 = 0.994) and lipid RT (R2 = 0.996) were identical (Figure 

2b; Supplementary Figure S2b). In addition, comparable results were obtained for mass 

error (0.40 vs. 0.41 absolute median ppm for peptides and 2.73 vs. 2.72 absolute median 

ppm for lipids) and identifications (< 10 identified protein groups or lipids differed between 

single-ome high flow platforms and our newly developed MOST platform) (Supplementary 

Figure S2c–e).

As one objective of MOST is to deliver high throughput multi-omic measurements, we next 

applied our system to study the yeast lipid metabolism – an enterprise that benefits from 

quantitative measurement of both proteins and lipids. We examined 20 Saccharomyces 
cerevisiae strains with mitochondria- and lipid-related gene deletions (Δgene) in biological 

triplicate. Using MOST, we identified and quantified a total of 2,842 protein groups and 325 

lipids among 20 S. cerevisiae strains from a single LC-MS method. Again, capability of 

measuring fold change (up to three orders of magnitude) and CV (15–16% median CV) 

were comparable. Highlighting the high level of agreement between these datasets, the 

distribution of gene strains in principal component analysis (PCA) followed the same pattern 

in both platforms. Finally, by every one of these metrics in this expanded comparison, there 
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is no difference in performance of MOST when both lipids and peptides are present on the 

column as compared to when they are loaded individually.

Having validated the quality of multi-omic data generated by MOST, we next aimed to 

assess what it can reveal about the biological system of interest, particularly perturbations to 

lipid biosynthesis pathways. The Δgene strains studied here can be divided into three 

categories based on their target pathway: coenzyme Q6 (CoQ6) biosynthesis, cardiolipin 

(CL) biosynthesis, and those of uncharacterized function. We discovered that on average 647 

molecules (575 protein groups and 72 lipids, 20.4% of total measured) were perturbed with 

each gene deletion as compared to wild-type. For example, the gene products of tam41 and 

taz1 function in the early and late stage of CL biosynthesis, respectively. Accordingly, we 

observed significant changes in both protein and lipid abundances in Δtam41 and Δtaz1, 

which results an ultimate reduction of CL levels (Figure 3a). Similarly, for CoQ6 

biosynthesis-related Δgene strains, we observed expected dramatic changes in CoQ6 

biosynthesis proteins, the lipid CoQ6 itself, and its upstream intermediates (Figure 3b). To 

our knowledge, this is the first time such multi-omic data has been acquired simultaneously.

Serving the multi-omic nature of our MS profiles, we determined pairwise covariance 

between proteins and lipids to infer gene function (Supplementary Figure S4). Examination 

of correlations across all proteins and lipids revealed numerous molecular relationships of 

this multi-omic covariance network, visualized as nodes for molecules and edges for 

correlations. After applying strict correlation thresholds (Pearson |r| ≥ 0. 8, Benjamini-

Hochberg adjusted p-value < 0.001), a striking 477,090 edges between 2,618 nodes 

remained. For example, loss of Mho1 leads to a severe respiratory deficiency, decreased 

abundance of prominent mitochondrial proteins, and increased abundance of di- and 

triacylglycerides (Figure 3c–d). We observed that the poorly characterized yeast protein 

Mho1 correlates with Rtn1 and Ant1 (Figure 3e), which are important mediators of 

peroxisomal biogenesis and metabolic activity36,37,38. The mammalian homolog of Mho1, 

MEMO1, is a copper-binding enzyme that produces O2− and regulates microtubule stability 

during cell migration39,40. One hypothesis drawn from our covariance analysis is that Mho1 

exerts a similar enzymatic activity in yeast and produces ROS that signals to and controls 

peroxisome homeostasis. While further experimentation is required to verify whether a 

functional connection exists between Mho1 and peroxisomal organization, we present 

MOST as an MS approach that can deliver multi-omic data expeditiously and thereby 

accelerate biochemical discovery.

We have described a method for integrated multi-omics that enables the co-analysis of lipids 

and peptides. Leveraging this method to analyze a yeast gene deletion collection, we have 

demonstrated its ability to detect coordinated multi-omic perturbations. Next, we wondered 

whether co-processing and co-analyzing proteins and lipids might afford increased ability to 

detect co-regulation across omes. To do this, we compared correlations generated by the 

different LC-MS methods: single-ome LC and MOST. In doing so we obtained a 

comparable density of protein-lipid correlation for MOST compared to single-ome LC 

(Supplementary Figure S4f). In certain cases, the simultaneous analysis of peptides and 

lipids afforded by MOST improved the ability to detect coregulated proteins and lipids, here 
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exemplified by the well-known coenzyme-Q biosynthetic pathway (as shown in the nearest 

neighbor molecule covariance networks in Supplementary Figure S4g–h).

CONCLUSIONS

In conclusion, the MOST method we describe here provides a framework to offer integrated 

multi-omics data acquisition in a simple and robust manner. As compared to traditional 

fractured methodology, this method has the potential to increase analysis efficiency and 

simplicity. Further, we demonstrate that the method generates data of equivalent or higher 

quality to separate approaches in one analysis. That is, with a single LC-MS system, one can 

create proteomic and lipidomic data simultaneously. In its future iteration, we envision 

expanding the platform to nano-flow LC41, applying ultrahigh pressure separation developed 

and improved by Jorgenson group and Kennedy group42,43, which will greatly reduce the 

required sample amounts while boosting proteomic and lipidomic depth, as well as 

integrating metabolite co-analysis for a more comprehensive biological survey. Here we 

envision incorporating the use of ion mobility and intelligent mass spectrometer data 

acquisition to quickly direct MS data acquisition between co-eluting metabolites and 

peptides. Finally, we anticipate that future optimization of sample preparation will allow 

researchers to comprehensively extract and process all three omes from a single sample in a 

single vial12,13,14,44. Such a platform could represent an ideal technology for studies 

constricted by limited sample amount, namely clinical research and, ultimately, single cell 

analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Diagram showing comparison between traditional workflow and MOST workflow.
For traditional proteomics, a 60 min nLC-MS/MS was applied, in which gradient was from 

water to acetonitrile/water (80:20,v/v). For traditional lipidomics, a 30 min HPLC-MS/MS 

was applied, in which gradient was from acetonitrile/water (70:30,v/v). to isopropanol/

acetonitrile (90:10,v/v). For MOST, a special 90 min HPLC-MS/MS was applied, in which 

gradient was from water to isopropanol/acetonitrile (90:10,v/v). Mobile phase additives were 

detailed in Experiment Section.
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Figure 2. Performance characteristics of MOST.
(a) Scatter plot of two MOST runs showing good reproducibility of quantification of 

proteins and lipids. (b) Scatter plot of a MOST run versus a high flow proteomics/lipidomics 

run showing no interference on protein/lipid quantification from each other.
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Figure 3. Biological study by MOST.
(a) Schematic pathway of cardiolipin biosynthsis and volcano plots across related gene 

knockout strains. PA, phosphatidic acid. PG, phosphoglycerol. CL, cardiolipin. MLCL, 

monolysocardiolipin. (b) Schematic pathway of Co-enzyme Q6 biosynthsis and molecule 

abundance across related gene knockout strains. *, p-value < 0.05. **, p-value < 0.01. ***, 

p-value < 0.001. (c) Principal component analysis (PCA) of Δgene strains. (d) Volcano plot 

showing average fold-change in molecule abundances (mean log2[Δmho1/wild-type]) versus 

statistical significance, showing select functional groups (GO terms and lipid class) 

significantly (Benjamini-Hochberg adjusted p-value < 0.05) enriched in either upregulated 

or downregulated molecules. (e) Nearest neighbor covariance network for Mho1.
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