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ABSTRACT: The first objective of this study is to assess the predictive
capability of the ALBA (ALgae-BActeria) model for a pilot-scale (3.8 m2) high-
rate algae-bacteria pond treating agricultural digestate. The model, previously
calibrated and validated on a one-year data set from a demonstrative-scale
raceway (56 m2), successfully predicted data from a six-month monitoring
campaign with a different wastewater (urban wastewater) under different
climatic conditions. Without changing any parameter value from the previous
calibration, the model accurately predicted both online monitored variables
(dissolved oxygen, pH, temperature) and off-line measurements (nitrogen
compounds, algal biomass, total and volatile suspended solids, chemical oxygen
demand). Supported by the universal character of the model, different scenarios
under variable weather conditions were tested, to investigate the effect of key
operating parameters (hydraulic retention time, pH regulation, kLa) on algae
biomass productivity and nutrient removal efficiency. Surprisingly, despite pH regulation, a strong limitation for inorganic carbon
was found to hinder the process efficiency and to generate conditions that are favorable for N2O emission. The standard operating
parameters have a limited effect on this limitation, and alkalinity turns out to be the main driver of inorganic carbon availability. This
investigation offers new insights in algae-bacteria processes and paves the way for the identification of optimal operational strategies.
KEYWORDS: Microalgae-bacteria process modeling, wastewater remediation, long-term validation, alkalinity, greenhouse gas emissions

1. INTRODUCTION

High Rate Alga-Bacterial Pond (HRABP) is a promising
technology for wastewater treatment.1,2 The process over-
comes some critical aspects of conventional biological
processes by reducing the oxygen demand and opening new
routes for nitrogen and phosphorus recovery. Indeed, the
photosynthetic activity of microalgae can provide the necessary
oxygen to support bacterial needs and therefore avoid the
energy consumption associated with external aeration.3−6

In addition, combining removal of nitrogen and phosphorus
by algae and nitrifying bacteria can enhance the nitrogen
conversion capacity of the system. By providing oxygen to
nitrifiers,7 algae substantially increase the overall ammonium
removal capacity of the system,8 while nitrifiers reduce the
oxygen level below the inhibition thresholds for algae.9

Nitrification, in turn, helps by keeping the ammonium
concentration low, thus reducing the risk of free ammonia
inhibition on algae, especially when high strength wastewaters
are to be treated.10,11 Nitrifiers convert ammonium into nitrate
that can be uptaken by the algae. The combination between
algae and nitrifying bacteria has also some drawbacks, inducing
negative interactions like the competition for CO2 or
micronutrients12 or the inhibition of bacterial growth when
the photosynthesis increases the pH level.13 These complex
interplays make the overall dynamics of nitrifiers/algae

especially challenging to understand and predict, as well as
highly dependent on the composition of the wastewater to be
treated and on the operation parameters.14 The HRABP
efficiency is also seasonal-dependent, and low temperature and
solar radiation conditions can seriously affect the overall
microalgae growth and its synergy with bacteria,15 potentially
leading to the collapse of the system.16 Moreover, the overall
dynamics of the algae/bacteria community can affect
atmospheric emissions, not only in terms of free ammonia
stripping but also by modulating the conditions promoting
N2O emission.17−19

These inherent complexities explain why contrasting
conclusions have been drawn on the synergy and competition
between algae and bacteria.
Mathematical models are powerful tools for understanding,

predicting, and optimizing bioprocesses, especially for
unraveling the complex nonlinear interactions among micro-
organisms. As for anaerobic digestion and activated sludge
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processes, reference validated models ADM120 and ASMs21

turned out to be efficient tools currently used for supervision
and process operation. To date, more than 300 models are
available focusing on microalgae metabolism.22 However, only
a minority of them were developed for modeling mixed algal-
bacterial cultures in raceway ponds. Most of them were not
calibrated and/or validated on a long-term data set (i.e.,
beyond 1 week of experimental data in outdoor conditions). In
addition, only nine models for wastewater remediation adopted
the IWA standard nomenclature with an explicit stoichiometric
matrix, thus facilitating their integration with plant-wide
modeling platforms.
The ALBA model23 integrates all the physical (temperature,

evaporation, gas−liquid exchange, hydraulics), chemical (acid/
base equilibria and pH), and biological (algal and bacterial
growth and decay) submodels required to efficiently predict
the system behavior. The ALBA model was first presented in
Casagli et al.23 The model was built up to simulate algal-
bacterial synergistic interactions and competitions, to evaluate
the HRABP remediation performances, and to explore the
feasibility of integrating it in existing WasteWater Treatment
Plants (WWTPs) to convert them into Water Resource
Recovery Facilities (WRRFs).
The biological dynamics of the ALBA model is driven by the

functions representing the influence of environmental factors
(light, temperature, pH, oxygen) and of nutrient availability
through the Liebig’s minimum law. The ALBA model can be
compared with existing reference models for bacteria (ASMs)
and for algae-bacteria consortia,24−29 as reported in Table 1.
For most of the models, the dependence of biomass growth on
nutrient availability is modeled by the typical Monod-like
kinetics. Only the modified ASM3 includes a version
implementing phototrophic growth on nitrogen storage
compounds. Other published models on algae metabolism
adopt the Droop model, such as the ASM_A,30 though they do
not include interactions with bacteria and are therefore not
reported in Table 1. Among the models in Table 1, only the
modified RWQM1, the BIO_ALGAE2 and the ALBA models
account for multiple nutrient limitations (nitrogen, phospho-
rus, and inorganic carbon).
To be accurate, models of outdoor processes must be proven

successful in predicting the behavior over all four seasons and
daily dynamics, induced by the solar and meteorological cycles
for the fast-changing variables, such as dissolved oxygen (DO)
and pH. The ALBA model was validated over a period of 413
days covering all the seasons both for daily and seasonal
dynamics. Furthermore, none of these models are fully
predictive because the temperature of the pond needs to be
measured.
In this paper, the ALBA model−previously validated on a

synthetic urban wastewater23 −was tested on a pilot-scale
HRABP processing an agricultural digestate and located in a
piggery farm in Northern Italy. The first objective was to
challenge the ALBA model and its current calibration on a long
time scale, including the start-up phase, with a different type of
influent and different environmental conditions (Csb instead of
Csa climatic area, according to the climatic classification
proposed by Peel et al.31). Moreover, a simple but accurate
sub-model was included to allow the ALBA model to forecast
the in-pond temperature from air temperature data, making it a
locally predictive tool to assess seasons or climate effects on a
yearly time frame.

The second objective of this work is to optimize algal
productivity and nutrient removal rates, while considering
environmental impacts including atmospheric emissions.
Specifically, the effect of key operation parameters such as
hydraulic retention time (HRT), pH control set-point, and
volumetric liquid/gas mass transfer coefficient (kLa) were
considered. Simulations revealed the competition for inorganic
carbon between nitrifiers and microalgae which not only
degrades the system performance but also triggers conditions
favorable for N2O production.

2. MATERIALS AND METHODS
2.1. Case Study and Experimental Data Set. A detailed

description of the experimental setup, field data collection,
level of experimental replication, and treatment performances
can be found in Pizzera et al.32 The HRABP, with a surface of
3.8 m2 and an operational volume of 0.88 m3, was installed on
a large-scale piggery farm located in Northern Italy. In this
farm, the excess sludge produced by the local WWTP was
codigested with other agricultural wastes (chopped corn and
barley, poultry manure, and olive pomace) in a biogas plant.
The liquid fraction of the digested sludge (centrate) was
separated by centrifugation and fed to the HRABP, after
dilution with tap water to reduce nutrient concentrations. The
HRABP was operated continuously for 189 days (31/05/
2016−06/12/2016). Different dilution factors were applied to
the centrate (i.e., a dilution factor of 5, until 17/09/2016, and a
dilution factor of 3 until the end of the experimentation). The
inflow rate was set to achieve an average HRT of 10 days until
11/10/2016; then, the HRT was increased to 20 days to
compensate for temperature reduction. The mixing was
ensured by a paddle wheel, operated at 20 rpm. The volumetric
mass transfer coefficient (kLa) of the HRABP was exper-
imentally determined during abiotic tests, resulting in a final
value of 30.5 d−1 (as detailed in SI.12) which is very close to
34 d−1 estimated for the 56-m2 pond on the basis of which the
model was calibrated.23 The reactor was equipped with a
contact cylinder for CO2 bubbling to reduce pH when it
overpassed a threshold (pHthreshold = 8 until 16/06/2016, then
pHthreshold = 7.5). Influent characteristics were monitored once
a week by measuring the organic matter content (total and
soluble COD), inorganic nitrogen compounds (Total
Ammoniacal Nitrogen, TAN and nitrate, N-NO3

−), Total
Kjeldahl Nitrogen (TKN), phosphate (P-PO4

3−), and Total
Suspended Solids (TSS). The mixed liquor in the HRABP was
monitored twice a week, and the analyses were performed by
spectrophotometric test kits on the following: TAN, nitrite (N-
NO2

−), nitrate, phosphate, and COD (total and soluble
fractions). Optical density at 680 nm (to provide an estimate
of the chlorophyll-a content), TSS, and volatile suspended
solids (VSS) were measured once a week, together with algal
cell counts. The reactor was also equipped with two online
probes recording pH, temperature, and DO concentration
(refer to Pizzera et al.32 for more details).
Standard deviations for on-line probes and off-line measure-

ments were computed through the variation coefficient
(further detailed in SI.2.).

2.2. ALBA Model Overview. All details on the ALBA
model can be found in Casagli et al.23 and are recalled in SI.11.
The biological sub-model (17 variables, 19 processes)
considers a mixed culture of algae, heterotrophic bacteria,
and nitrifiers, the latter including Ammonium Oxidizing
Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB). The
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mass conversions are comprehensively described by the
Petersen matrix, through which the conservation of COD, C,
N, O, P, and H is verified. The photosynthesis response to
irradiance is described by a reparametrized Haldane function
and accounts for light penetration through the Beer−Lambert
equation.33 A minimum law is used to describe the growth
limitation from multiple substrates (carbon, nitrogen, and
phosphorus). The pH sub-model is based on dissociation
equilibria and ionic species mass balances, according to the one
proposed in the ADM1 model.20 The CO2, NH3, and O2
stripping/dissolution were included, quantifying their rates
through the kLa. The influence of pH on algae and bacteria
metabolism is implemented using the function proposed by
Rosso et al.,34 i.e., the Cardinal pH Model (CPM). The
temperature dependence for growth and respiration rates is
considered for all the biomasses and modeled by the Cardinal
Temperature Model with Inflection (CTMI),35 while the
Arrhenius function is chosen for modeling decay rates (see
Table SI.11.6).

2.2.1. Pond Temperature Submodel and pH Regulation
Scheme. In order to simulate the process behavior under any
meteorological condition, a simple model was developed to
predict the temperature in the raceway.
This model estimates the in-pond temperature from the

available air temperature data, and it was calibrated on this case
study. More specifically, the pond temperature was calculated
according to the following regression (eq 1, R2 = 0.98)

T t T t T t( ) 0.46 ( ) 0.49 ( 4) 2.18POND AIR AIR= · + · − + (1)

where TPOND(t) [°C] is the calculated pond temperature at
time t, TAIR(t) is the measured air temperature at time t, and
TAIR(t−4) is the air temperature measured 4 h before time t.
The 4 h delay turned out to be optimal to best predict the
pond temperature, see details in SI.7. Although more
mechanistic models exist,36,37 they were not considered in
this study. Unlike typical full-scale raceway ponds, the pilot-
scale raceway was not lying on the ground (no conductivity
with the ground). Developing a thermal model for this reactor
would have required dedicated developments though without
upscaling perspectives.
On top of the ALBA model, a pH control system simulated

the operation conditions applied in the pilot plant under study.
The pH control scheme was based on the injection of a pure
CO2 flow when the pH value exceeded the set-point. The CO2
flow rate was proportional to the difference between the pH
value and the pH set-point (SI.8).

2.2.2. Numerical Integration. The software platform used
for numerical simulations is AQUASIM,38 which has been used
by many authors for modeling biological wastewater-treating
systems.25,27,39 The raceway was simulated as a completely
mixed reactor. Indeed, the mixing of the smaller raceways used
in this study turned out to be close to ideal. However, large-
scale ponds can be imperfectly mixed, and a more complicated
hydrodynamics model must then be used (e.g., Demory et
al.40).

2.2.3. Model Validation and Evaluation Criteria. The
ALBA model was previously calibrated and validated for 443
days from a demonstrative-scale raceway (56 m2) in France,
treating synthetic municipal wastewater.23 More details
regarding the calibration strategy can be found in our previous
work.23 Briefly, a sensitivity analysis was first conducted by
running simulations under typical seasonal conditions and
following a periodic regime for the most relevant environ-T
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mental conditions (i.e., light, temperature, and evaporation
rate). This allowed the identification of a subset of most
sensitive parameters, that were subsequently ranked according
to the value of the absolute-relative sensitivity functions. A
similar sensitivity analysis was performed here and provided
similar results.
These parameters were then calibrated in Casagli et al.23 and

were not modified here, even though the two case studies differ
from the process design, wastewater type, and climate.
The parameter error propagation was computed using the

sensitivity functions (see SI.13), and 95% confidence intervals
on the modeled predictions were assessed.
Model performances were evaluated with the modified

Theil’s Inequality Coefficient (TIC, eq 2)41

y y

y y
TIC

(sat ( , ))i i i

i i i i

s, m,
2

s,
2

m,
2

=
∑

∑ + ∑

σ

(2)

where ys,i is the simulated value at the time-point i; ym,i is the
measured value; and satσ(ys,i,ym,i) is a function assuming a value
of zero, when both ym,i and ys,i are lower than the standard
deviation of the associated measurements (identifying an ideal
fit) and assuming the value satσ(ys,i,ym,i) = ys,i − ym,i otherwise.
The TIC value was computed for the whole set of

experimentally observed variables (i.e., pH, DO, ammonium,
nitrite and nitrate nitrogen, TSS, soluble COD, and algal
biomass), either for the entire experimental campaign or
season by season. The difference between simulated and
observed values is normalized according to the amplitude of

the variable, and the model is considered to have a good fit
when the efficiency criterion approaches zero.

2.3. Meteorological Data and Climatic and Opera-
tional Scenarios. Meteorological data−including incident
irradiance, air temperature, air humidity, wind speed, and
rainfall−were provided by the Lombardy Environmental
Protection Agency (ARPA Lombardia, www.arpalombardia.
it). The evaporation rate was also investigated and computed
on the basis of the available meteorological data (see SI.4),
through the model provided by Bećhet et al.36 A good
prediction of the evaporation contribution is indeed
fundamental because it significantly influences the hydraulic
balance, hence the in-pond concentrations, further affecting
light penetration and process rates.42

Four different climatic scenarios representative of each
season were developed computing the most relevant environ-
mental conditions (i.e., light, pond temperature, and
evaporation rate), by averaging hourly weather data over
each season. In this way, a typical daily pattern was defined and
extended to run simulations under established periodic regime
(see Figure 1). The same average influent wastewater
characteristics were considered for all seasons (Table 2).
Subsequently, several operational scenarios were tested by
varying the HRT, pH set point, kLa, and total alkalinity (TA),
as reported in Table 3. Two extreme kLa values were selected,
consistently with Casagli et al.23 The first value, kLa = 34 d−1, is
typical of a condition of strong mixing in pilot-scale ponds, in
which the algal-bacterial suspension is agitated through the
paddle wheel and a high mass transfer rate is obtained. This

Figure 1. Average daily variation for each seasonal scenario: light (A), temperature (B), and evaporation rate (C).

Table 2. Summary of the Measurements Taken during the Monitoring Campaign: Influent Characteristics, Online Reactor
Probes, and Environmental Conditions

Influent characteristics

CODT CODs TAN N-NO3
− P-PO4

3− TAN/TKN TSS Turbidity

Unit mgCOD L−1 mgCOD L−1 mgN L−1 mgN L−1 mgP L−1 mgN mgP−1 mgTSS L−1 FAU
Value (mean ± st.dev.) 514 ± 190 381 ± 114 310 ± 91 12 ± 5 14 ± 4 0.85 ± 0.1 146 ± 0.1 127 ± 145
Frequency once a week

In-reactor probes

Parameter Value

Probe O2 pH T
Unit mg L−1 - °C
Value (mean ± st.dev.) 8.6 ± 3.3 7.1 ± 0.5 20.9 ± 7.7

Environmental conditions (maximum; average)

Spring Summer Autumn

Incident irradiance [μmol m−2 s−1] 1572; 470 1742; 529 825; 196
Source ARPA Lombardia meteo data set
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high kLa value was estimated for the 56-m2 pond used to
calibrate the ALBA model,23 in line with other studies at
similar scale.43−45 The second value, kLa = 0.5 d−1, represents a
condition of reduced mass transfer. This lower kLa value
represents poor agitation with limited atmospheric gas
exchange that is typical of either full-scale ponds or raceway
reactors provided with alternative mixing systems (such as
submerged propellers), that guarantee appropriate mixing
while minimizing the gas transfer.46 This lower value has also
been recorded for raceway channels and shallow ponds.47−49

2.4. System Performance Criteria. The raceway
performances were assessed based on the resulting algal
biomass productivity and nutrient removal rates (ammoniacal
nitrogen and orthophosphates) (Figure 7), computed as:

X Q

S
ALG gTSS m d : 0.64productivity

2 1 ALG out[ ]
·

·− −
(3)

Q Q

S
Apparent TAN gN m d :

TAN TAN
removal rate

2 1 in in out out[ ]
· − ·

_
− −

(4)

Q Q V

S

Actual TAN gN m d

:
TAN TAN QNH

removal rate
2 1

in in out out 3,strip

[ ]
· − · + ·

_
− −

(5)

P
Q Q

S
gP m d :

SPO SPO
removal rate

2 1 in 4in out 4out[ ]
· − ·

_
− −

(6)

where XALG is the algae concentration (gCOD m−3); 0.64
gTSS gCOD−1 is the conversion factor for algal biomass from
COD to TSS computed from the algal stoichiometry; Qin and
Qout (m

3 d−1) are the inflow and outflow rates; TANin and
TANout (gN m−3) are the ammoniacal nitrogen concentration
entering and leaving the system; SPO4in and SPO4out (gP m−3)
are the soluble P concentration as orthophosphate entering
and leaving the system; QNH3,strip (gN-NH3 m

−3 d−1) is the
ammonia transfer rate to the atmosphere (negative term
representing the ammoniacal nitrogen fraction leaving the
system through stripping, see Table SI.11.7); and S (m2) is the
raceway surface. The apparent TAN removal rate (eq 4) was
estimated by accounting for the influent and effluent TAN

loads in the liquid only, while the actual TAN removal rate (eq
5) was computed by excluding the stripped N-NH3.

2.5. Alkalinity Computation. In order to clarify the role
played by alkalinity, we computed the total alkalinity according
to Dickson50 and Wolf-Gladow et al.51:

TA HCO 2CO H PO HPO 2PO

OH NH H HNO HNO H PO
3 3

2
2 4 4

2
4

3

3 2 3 3 4

= + + + +

+ + − − − −

− − − − −

− + (7)

An extension of this formula is given in SI.9, in order to
account for a digestate which would contain volatile fatty acids
(VFA) and hydrogen sulfide, which can be further used for a
more general plant-wide model, coupling anaerobic digestion
and HRABP models.

3. RESULTS AND DISCUSSION

3.1. Long-Term Model Validation. The predictions of
the ALBA model, and their 95% confidence intervals, were
derived from the set of parameters previously calibrated23 and
compared with the data from the six-month experimental
campaign (Figure 2). The model performances were quantified
using the TIC criterion (Table 4). The model quality score
confirmed the good predicting ability of the model, considering
that the model is said to be accurate for TIC values below
0.3.41,52 For all the tested seasons, experimental data were well
simulated. Only the results obtained in spring for nitrogen
forms were less accurate (Figure 2A and Figure 2B). This is
due to the fact that experimental data in spring mainly belong
to the start-up phase, during which nitrite tends to accumulate
and simulations are affected by the selection of the initial
conditions. The highest accuracy is obtained for the online
measurements of pH, DO, and temperature, with a total TIC
of 0.05, 0.15, and 0.09, respectively. This is probably the
consequence of the calibration strategy based on these
cornerstone variables.
The nychthemeral oscillations of DO (Figure 2E) are

generally well captured by the model, even if the predicted
extreme values sometimes differ from the measurements.
In Figure 2C, the simulated algal biomass concentration is

compared with the estimates derived from the optical density
at 680 nm (see SI.3). The overall algal trend is well predicted
by the ALBA model, as confirmed by the values of the TIC
criterion (0.19−0.24). During the summer period, algal
biomass strongly decreased. This was due to the setting up
of a shading net in the period between 30/07/16 and 24/08/
16, to reduce solar radiation and potential light inhibition.
However, the shading-net effect was too strong and negatively
affected algae growth, so that it was eventually removed. The
predicted algae concentration responded markedly to these
changes, and the predictions well fit the observed trend. In
September, the model underestimates algal biomass, as
confirmed by the higher TIC value. The observed misfit is
probably partially due to the loose relationship between
absorbance at 680 nm and algal biomass, which can vary due to
photoacclimation, depending on light intensity, temperature,
and nitrogen availability.53 Moreover, metagenomic analyses as
well as microscopic observations (data not shown) evidenced
sudden blooms of algal biomass predators (especially of
Vorticellae), in particular between 20/6 and 30/6, which
caused a significant reduction in the algal biomass concen-
tration. Predators’ dynamics is not included in the ALBA
model, and this could have caused local discrepancies.

Table 3. Parameters Set for the Selected Operational
Scenarios

Parameter tested Scenario no. HRT (d) pH set-pointa kLa (d
−1)

kLa S1 10 7.5 34
S2 0.5

HRT S3 2 7.5 34
S4 5
S5 15
S6 20

pH S7 5 6.5 34
S8 7
S9 8
S10 NCc

TAb S11 5 7.5 34
aThe pH control system was implemented in the model as reported in
SI.8, simulating one where the maximum pH value set was regulated
with pure CO2 injection.

bIn this scenario, the concentration of TA
(expressed in mol m−3) in the influent was increased. cNC: no pH
control.
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Figure 2A and Figure 2B show the trend in nitrogen
compounds. After about 20 days from the start-up, there was a
switch from partial to total nitrification. Through the ALBA

model, this remarkable event was effectively predicted. The
same phenomenon was observed in the HRABP treating
synthetic municipal wastewater that was previously used to

Figure 2. Long-term evolution of simulated (continuous line) versus measured values (dots): total ammoniacal nitrogen (A), nitrite and nitrate
(B), algal concentration expressed in COD compared with measurements derived from optical density (C), soluble COD and TSS concentrations
(D), DO (E), and temperature (F). Error bars on experimental measurements illustrate the standard deviations. Shaded areas on model predictions
show the 95% confidence intervals.
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calibrate and validate the ALBA model.23 Here, complete
nitrification was reached only after 70 days from start-up. The
very different context of these two algal-bacterial raceways
(climate, operational strategies, influent characteristics, initial
nitrifying biomass) explains the difference in the time horizon
to achieve the complete oxidation of the ammoniacal nitrogen.
Accurately simulating the dissolved inorganic nitrogen
compounds is challenging, since these variables can be affected
by almost all the processes taking place in the reactor. It is also
worth noting that the decrease in algal concentration during
midsummer because of the presence of the shading net (Figure
2C) did not significantly affect the ammonium removal and

that nitrifiers remained mainly responsible for ammonium
uptake. Indeed, in the same period, temperature and pH were
close to the optimal values for nitrifiers growth. In addition,
DO has never been a limiting factor, since algal photosynthesis,
together with gas/liquid mass transfer, supplied enough oxygen
to support the metabolism of nitrifiers.
Moreover, the predictions for the different dissolved

inorganic nitrogen compounds are in acceptable ranges.
From a practical perspective, the model has therefore a good
predictive ability.
It should be highlighted that the TIC value for nitrite in

autumn (0.80) is artificially high due to the very low measured
and simulated values. Indeed, the TIC criterion is known to
amplify small model misfits when values are close to zero.54 In
fact, the model predicts values which significantly differ from
the measurements only for five points out of 17. In the other
seasons, TIC is always lower than 0.4. The simulated nitrite
had a yearly average of 17.8 ± 33.8 g N m−3, while the
measured nitrite was on average 14.7 ± 23.1 g N m−3.
This overall ability of the model to capture, without any

recalibration, the system dynamics can be further appreciated
in SI.14 (correlation between measurements and predictions,
residuals analysis).
In summary, the model efficiently predicts both qualitatively

and quantitatively the observations. This evidence demon-
strates the model’s sound prediction capability.

Table 4. Model Efficiency Evaluated for Each Season

Theil’s Inequality Coefficient − TIC

Total Spring Summer Autumn

Temperature 0.09 0.09 0.10 0.10
DO 0.15 0.14 0.15 0.16
pH 0.05 0.04 0.04 0.08
SNH 0.20 0.31 0.21 0.20
SNO2 0.34 0.38 0.30 0.80
SNO3 0.10 0.55 0.08 0.10
XALG 0.20 0.24 0.19 0.21
TSS 0.21 0.27 0.18 0.22
CODS 0.06 0.07 0.07 0.05

Figure 3. Short-term model validation: measured and simulated oxygen trend in spring (A), summer (B), and autumn (C). Gray shaded areas
represent the standard deviation of DO online measurement. Red shaded areas represent the 95% confidence intervals of model predictions for
DO.
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3.2. Ecosystem Structure. A close look at the simulated
dynamics of the involved microorganisms definitely confirms a
structurally different system. To better identify the behavior of
the system under consistently different conditions, the
fractionation of the total biomass concentration was calculated
by taking advantage of the capability of the ALBA model to
predict the concentrations of the algal, heterotrophic, and
nitrifying populations. Indeed, one of the most difficult aspects
in mixed algae-bacteria systems is to experimentally determine
the evolution of bacterial populations, since the quantification
of the algal biomass is generally the only available measure-
ment in the microbial community. Therefore, the percentage of
each microbial guild on the overall biomass was computed.
This result was compared with the microbial community
composition simulated by the ALBA model.23 In the study
reported in Casagli et al.,23 the HRABP was fed on synthetic
urban wastewater, and microalgae were 76.8% of the biomass,
heterotrophs were 21.8%, and nitrifiers were 1.4%, on average.
In the current case study, the total biomass concentration was
similar, but nonetheless, the composition was significantly
different. Indeed, microalgae dominate (90.2%) the microbial
community, while heterotrophs and nitrifiers are found in
similar proportions (3.8% and 6.0% on average, respectively,
see Figure SI.6.1A,B). Therefore, the ecosystem is definitely
more autotrophic. Specifically, model simulations revealed that
the AOB percentage on the total biomass was 4.9 ± 3.7%, and

these predictions match the measurements (2.8 ± 1.7%)
carried out by Mantovani et al.6 on a similar raceway located in
the same area and processing digestate.

3.3. Model Universality for Significantly Different
Conditions. Validating the model for a different case study
(treating different wastewater with pH regulation and different
climate) without modifying the set of parameters is definitely
challenging and not at all straightforward.
The ALBA model could be better tailored to the current

case study. For instance, some improvements could be
achieved by tuning parameters affected either by the microbial
composition (i.e., the light extinction coefficient) or by the
process design (typically the kLa). Also, the parameters could
be adapted to seasonal variability to track the changes in the
microbial community evolution.
However, the quality of its performance does not motivate

any further fine-tuning utilizing the data from the monitoring
campaign, demonstrating the universality of the ALBA model
and its parameters.

3.4. Short-Term Oxygen Dynamics. In Figure 3, two
selected weeks from the data set are shown in order to better
appreciate the daily dynamics of DO in different seasons. In
general terms, the model provided a very good agreement with
experimental values. It can be observed that the model is able
to follow the day/night cycles and that DO concentrations are

Figure 4. Percentage of influent and effluent carbon (A) and nitrogen (B) fluxes, under normal and reduced mass transfer conditions (S1, kLa = 34
d−1 and S2, kLa = 0.5 d−1). The S1 and S2 scenarios were analyzed according to seasons: spring, summer, autumn, and winter. In Figure 4A, C-
ORG, PARTICULATE is the organic carbon present in XS and XI fractions; C-ORG, SOLUBLE is the organic carbon present in SS and SI
fractions; C-ALG, C-NIT, and C-HET are the organic fractions present in the algal, nitrifying (AOB and NOB) and heterotrophic biomass,
respectively. In Figure 4B, N-ORG is the organic nitrogen present in XS, XI, SS, and SI fractions; N-ALG, N-NIT, and N-HET are the organic
nitrogen fractions present in the algal, nitrifying (AOB and NOB) and heterotrophic biomass, respectively. The computed fluxes of N2, NH3 and
CO2 are gaseous, while all other are liquid fluxes.
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effectively predicted during each season. This also occurs in the
summer, when the shading net was applied.
The 95% confidence interval on model predictions is wider

in the cloudy days in spring, as it is also confirmed by the
recorded DO oscillations. This phenomenon highlights the
sensitivity of the photosynthesis model to fast change in light
intensity due to the clouds.
It is also interesting to notice that at night, when DO is only

consumed by respiration, DO concentration increases, as
observed in similar open systems.23,55 This apparently
counterintuitive phenomenon, that the model was able to
capture, is mainly due to the oxygen exchange with the
atmosphere, that is enhanced at night by the increased oxygen
solubility at lower temperatures. This results in a sufficient DO
supply to support aerobic processes at night, i.e., the algal and
bacterial respiration, which are, in turn, slowed down at lower
temperatures. The occurrence of anoxic processes at night was
avoided by the high reaeration rate provided by the paddle
wheel (see Figure 2E), as it is generally the case with
HRABPs.2 Indeed, at industrial scale (and lower kLa), lower
oxygen concentration would be reached during the night.
3.5. Carbon, Nitrogen, and Oxygen Fluxes in the

System. The validated ALBA model is a powerful tool to
provide deep insights into the hidden mechanisms behind this
complex dynamic system. A typical operating scenario was
simulated (scenario S1, HRT = 10 d, pH set point = 7.5, kLa =
34 d−1) considering each seasonal condition. To better

understand the role played by oxygen as exchange money
between the various microorganisms in the ecosystem,23 an
alternative system for mixing was simulated using a propeller,46

that would result into appropriate mixing but reduced gas
exchanges with the atmosphere and eventually a lower mass-
transfer coefficient (kLa = 0.5 d−1). The seasonal periodic
regime (see section 2.3, Figure 1) was used to estimate the
fluxes of carbon, nitrogen, and oxygen in the system. The
partitioning of carbon and nitrogen among the different
components in the inflow and outflow (expressed in
percentage of the total liquid inflow) is reported in Figure 4.
Figure 4A shows that, for this operating scenario, a large
fraction of the carbon leaves the system as algal biomass,
especially in spring and summer. The C fraction in the algal
biomass is reduced in autumn and winter, as a consequence of
the lower temperature and irradiance (Figure 1). The marked
reduction in algal growth during these cold and low irradiance
seasons leads to a decrease in the flux of CO2 uptake by
photosynthesis. In spring and summer, a very low flow of CO2

is emitted, while CO2 emission accounts for 30% of the carbon
entering the system in winter. The influent and effluent organic
fractions are similar, since they are hardly affected by seasonal
variability. Coming from an anaerobic digestion process, the
majority of the organic C in the influent is inert (both for the
soluble and particulate forms) and leaves the system without
being chemically or biologically transformed.

Figure 5. Oxygen production rate (OPRALG), oxygen transfer rate (OTR), and oxygen consumption rates (OURALG, OURNIT, OURH) under two
gas−liquid mass transfer conditions: A) scenario S1, kLa = 34 d−1 and B) scenario S2, kLa = 0.5 d−1. S1 and S2 scenarios were analyzed according to
each season and day (left axis)−night (right axis) cycles.
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In this alternative S2 scenario (Figure 4A), the main carbon
outflow is still due to algal biomass, similar to the reference
case. This outflow is slightly higher compared to the reference
case and less CO2 is emitted, especially in the colder seasons,
as the system becomes even a net CO2 consumer. While a CO2
fraction is stripped in the scenario S1 (kLa = 34 d−1), it remains
in the bulk under low kLa, so that more inorganic carbon is
available for algal growth during the day. In autumn and
winter, a larger amount of dissolved inorganic carbon leaves
the system because of the overall lower algal and nitrifying
activities compared to warmer conditions. However, when
considering total liquid and gaseous inorganic carbon outflows,
the two scenarios are not so different. This could mean that gas
exchange induced by the mixing system is not strongly
affecting carbon conversion.
The fluxes of oxygen in the system (separated into oxygen

production rates, OPRs, and oxygen uptake rates, OURs) are
given in Figure 5, distinguishing between day and night
periods. Under the operating conditions S1 (Figure 5A), the
oxygen production during the day is always sufficient to sustain
the oxygen requirements due to the algal respiration and the
bacterial activity, with a significant fraction of oxygen being
wasted through stripping. The OPR is quite high in spring and
summer, with a significant reduction in the cold seasons. The
OUR of nitrifying bacteria is always higher than that of
heterotrophic bacteria, coherently with the typically high TAN
loads and the low levels of degradable carbon in digestates.56,57

The contribution of nitrifiers to the overall OUR is even larger
in autumn and winter, further confirming that these micro-
organisms succeed in carrying out the TAN oxidation under
cold conditions, also supported by the additional CO2
provided by the pH-control system. At night, the main oxygen
input comes from liquid/gas transfer provided by the paddle
wheel, thus supporting the algal and bacterial respiration.
With the S2 scenario simulating a mixing system with lower

liquid/gas transfer (Figure 5B), the OPR is not particularly
affected during the day, with values similar to the standard
case. On the contrary, the nitrifying activity is highly enhanced
in spring and summer, since more inorganic carbon and DO
accumulate in the system, as they cannot be fastly transferred
to the atmosphere. At night, however, the overall flow rates are
reduced by at least one order of magnitude, while DO drops to
zero for almost all the night because it is too slowly refueled
from the atmosphere.
The different outflows of nitrogen are shown in Figure 4B.

With paddle wheel standard operating conditions (S1), most of
the nitrogen is oxidized to nitrate, evidencing the favorable
conditions for the development of an algae-nitrifiers’
consortium. Nitrification is also active in cold seasons, thus
contributing to maintain high TAN removal efficiencies all
over the year. However, the unconverted TAN increases in
winter, due to the reduced nitrifiers’ activity. Even if the
nitrifying biomass is always lower than 10% of the algal
biomass, the TAN fraction assimilated by the algae remains
low all over the year, and approximately 56% of the TAN
conversion route is via nitrification, on a yearly average. It
should be noticed that, in spring and summer, the ammonia
stripped from the pond can reach up to 20% of the influent
load, while in the other seasons it is much less marked. This
high NH3 emission has a strong environmental impact in terms
of both eutrophication and greenhouse gas (GHG) emis-
sions.58 This undesirable emission disappears when kLa
decreases. In this case, a significant fraction (35−70% of the

influent load) is still nitrified. However, due to a combination
of temperature and DO limitation at night, that are unfavorable
conditions for NOB, only a partial nitrification occurs in
autumn, with nitrite being the largest fraction of the outflow
nitrogen load. Algal activity is lower in autumn because of the
reduced irradiance compared to winter (Figure 1). The larger
outflow of molecular nitrogen at low kLa is due to the fact that
DO drops to zero at night, making the anoxic growth of
heterotrophic bacteria possible.

3.6. Can Algae and Nitrifiers Work Together without
the Risk of N2O Production? Avoiding inorganic carbon
limitation is necessary for optimizing biomass productivity and
nutrient removal rates.59,60 Working at pH below 7.5 is, in
principle, well-known to guarantee that CO2 is not limiting the
algal growth59,61 and nitrifiers’ activity.62 The model reveals
that this statement does not hold here. Indeed, a closer look at
alkalinity (SI.9) shows a regular drop caused by the
consumption of ammonium as well as by the production of
nitrate and nitrite. Influent alkalinity was 30 mol m−3, which is
too low to support the full nitrification by autotrophic bacteria,
as it has often been described for digestate.63 When the system
reaches a very low alkalinity (0.40 ± 0.23 mol m−3, on average,
according to eq 7), it no longer allows bicarbonate storage in
solution, and the level of dissolved inorganic carbon remains
dramatically low (see Figure SI.9.1). In all the simulated
scenarios in which the pH was lower than 7.5 (and with HRTs
that do not lead to biomass washout), the simulated
concentration of inorganic carbon remained very low (below
8 gC m−3, see tables in SI.10) and resulted in the limited
growth of autotrophic and photoautotrophic populations.
Under these conditions, a strong competition for inorganic
carbon takes place between the algae and the nitrifiers. The
outcome of this competition, which also depends on other
environmental (light and temperature) and chemical (DO, pH,
and alkalinity) factors, contributes to defining the biomass
distribution and the system dynamics.64,65 This analysis shows
that inorganic carbon and alkalinity should be considered as
key parameters to be controlled, especially in algae-bacteria
systems, where the algal population dominates the system.
Conditions of inorganic carbon limitation have been shown

by several authors to enhance cellular maintenance energy of
nitrifiers and become favorable for the production of N2O.

66,67

A wide range of microbial mechanisms has been identified as
favoring N2O production in nitrifying systems, being chiefly
dependent on environmental conditions and on the chemical
characterization of the medium.68,69 N2O production by
nitrifiers was studied by Mellbye et al.67 who observed a 6.3-
fold increase when inorganic carbon became highly limiting. It
is thus of utmost importance to identify the working
conditions which are likely to give rise to a marked inorganic
carbon limitation.
Although mechanistic models of N2O production already

exist,70 further studies would be necessary to integrate the set
of complex conditions triggering N2O emissions into a
predictive model and to validate it under outdoor conditions.
While developing a model able to represent the production of
N2O and integrate it into the ALBA model is beyond the
objectives of this work, the ALBA model can definitely help in
identifying the critical working conditions associated with N2O
production. The accurate modeling of the interplay between
the chemical species driving the pH dynamics was used to
evaluate the periods of strong inorganic carbon limitation,
which have been shown to trigger N2O emissions, i.e., when
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the total inorganic carbon drops below 0.2 mol m−3, as
suggested by Mellbye et al.67 The model therefore provides a
risk index of N2O emissions (Figure 6), quantified as the
percentage of time under which the system was likely to favor
the bacterial N2O production. On the basis of this risk index
quantification, the above investigated scenarios (S1 and S2)
are associated with a high risk of N2O emission, especially in
summer and spring, with more than 40% of the time operating
under inorganic carbon limitation. The next paragraph
investigates optimization strategies, so as to maximize the
HRABP efficiency while avoiding operating under these
dangerous conditions.
3.7. Can Raceway Performances Be Optimized Keep-

ing Gaseous Emissions Low? The ALBA model was used to
explore the impact of different working conditions, simulta-
neously evaluating their effect on the gaseous emissions that
are likely to have high environmental impacts (CO2, NH3,
N2O) and on conventional efficiency parameters (algal
productivity, nutrient removal). In a first stage, operating
parameters classically used at industrial scale (HRT and pH-
control set point) were considered.
3.7.1. Classical Operating Management with HRT and

pH. Various scenarios were run exploring different combina-
tions of HRT and pH (S3 to S10, Table 3), in order to show
how these operational parameters can shape the ecosystem.
Results are shown in Figure 7 (see all the tested conditions in
SI.10). The algal biomass productivity (Figure 7A and Figure
7B) is strongly affected by the HRT. More specifically, by
maintaining a 2-day HRT, productivity can reach values up to
22 and 21 gTSS m−2 d−1 in spring and summer, respectively.
However, such a dilution rate leads to the washout of the algal
biomass in winter, causing N and P removal rates to drastically
drop (Figure 7C and Figure 7E). The best algal biomass
productivity in autumn and winter is obtained for a 5-day
HRT, with 8.5 gTSS m−2 d−1. Playing with pH resulted in a
marginal effect only (Figure 7B), and it was used to further
tune the optimal working modes.
It is worth noticing that the conditions optimizing algal

productivity also maximize nutrient removal rates (Figure 7C
and Figure 7E). For TAN, the apparent removal rate is in the
range of 20 to 24 gN-NH4

+ m−2 d−1 in spring and summer at
HRT = 2 d, while it drops to 10−13 gN-NH4

+ m−2 d−1 in
autumn and winter at 5-day HRT. For phosphorus, it ranges
from 0.24 to 0.29 gP-PO4

3− m−2 d−1 in spring and summer at

2-day HRT, while it drops from 0.1 to 0.15 gP-PO4
3− m−2 d−1

in autumn and winter, both for 2- and 5-day HRT.
Regulating pH at 7.5 seems a good trade-off to minimize the

CO2 injection costeven if CO2 can be recovered after biogas
upgradingwhile keeping a high algal productivity. In autumn
and winter, pH 8 or even unregulated pH are appropriate,
which will be the best solution from an economic point of
view.
Atmospheric emissions must be considered in the

optimization strategy to make sure that the process would be
sustainable from an environmental point of view. The ALBA
model was used to assess the flux of NH3 which is stripped to
the atmosphere. In this view, a lower pH is highly
recommended, especially in spring and summer when algal
activity is higher, so that TAN mostly remains under the
ammonium form and the undesirable flux of NH3 toward the
atmosphere is strongly reduced (from 2−3 gN-NH3 m

−2 d−1 at
pH higher than 7.5 to 0−0.08 gN-NH3 m

−2 d−1 at pH lower
than 7.5, see SI.10). The actual nitrogen removal rate was also
computed excluding stripping from the pond. This significantly
changes the picture. For instance, looking closer at the fraction
of the different populations in the system (see Figure 7G) for a
low HRT, nitrifiers are washed out from the system.
Ammonium is only consumed by algae at a much lower rate,
and the actual TAN removal rate is finally very low. This is the
reason why inorganic carbon was not limiting in these regimes,
i.e., the low nitrification did not exert any pressure on it.
The way to consider the flux of CO2 emitted from the

respiration processes of algae and bacteria is debatable since it
is of biogenic origin. The emissions of the CO2 from the pH
regulation system can be of fossil origin−if not recycled from
the biogas, and more clearly contribute to greenhouse gas
emissions. In any case, only an in-depth LCA study71,72 can
accurately identify the process impact on climate change, but
for sure it will be strongly dependent on the emission of gases
such as NH3 and N2O. These emissions can be strongly
reduced by correctly managing the HRABP, as it is discussed in
the next section.

3.7.2. Introducing Alkalinity in the Management Strat-
egy. Finding a working mode balancing conventional efficiency
parameters and atmospheric emissions is however challenging.
The conditions maximizing both algal productivity and
removal rates put pressure on the inorganic carbon stock,
hence leading to the high risk of N2O production. The risk of

Figure 6. N2O emission risk factor (percentage of time along the day for which N2O formation conditions occur, i.e., inorganic carbon < 0.2 molC
m−3), according to the season.
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N2O production appeared in all the scenarios (SI.10 and
Figure 6), except for scenario S3, where nitrifiers are washed
out of the system resulting in poor actual nitrogen removal.
Spring and summer were the most affected seasons, and none
of the classical operating conditions could avoid limitation by
inorganic carbon for at least 30% of the time. In the scenarios
where a low kLa was set (SI.2 and SI.4.1, also SI.10), the
inorganic carbon limitation and the risk of N2O production
were strongly reduced.
Subsequently, another scenario was considered and run

under the same conditions set for scenario S4 but with influent
alkalinity increased by 20 mol m−3 (named S11). The idea was

to counterbalance the low alkalinity level responsible for the
very low soluble inorganic carbon concentration despite pH
regulation.
Under S11 conditions, the percentage of time for which

N2O formation can occur drops to zero. In addition, in all the
seasons, CO2 emissions are consistently lowered thanks to the
higher capacity to store inorganic carbon in the system, as
confirmed by the higher concentration of dissolved inorganic
carbon (above 100 mol m−3, see SI.10). Simulations show that
this scenario outcompetes most of the other scenarios and
simultaneously maximizes the algal biomass production and
nutrient removal. Moreover, the actual TAN removal rate

Figure 7. Effects of pH and HRT variation on the algae-bacteria cultivation in terms of the following: algal biomass productivity (A: HRT variation,
B: pH variation), apparent TAN removal rate (C: HRT variation, D: pH variation), orthophosphate removal rate (E: HRT variation, F: pH
variation), and TSS percentage fractionation (G: HRT variation, H: pH variation). XS is the particulate slowly biodegradable organic matter, while
XI is the particulate inert organic matter. Simulations at different HRTs were run at a pH set point of 7.5 (scenarios S1, S3−S6, S11), while
simulations at different pH set points were run with HRT = 5 d (scenarios S4, S7−S11).
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increases since the inorganic carbon is no longer limiting as it
was in S4. This finding shows that nitrifiers suffer from the
competition for the available inorganic carbon under alkalinity-
limiting conditions.
Alkalinity was revealed to be a hidden process parameter

that must be definitely controlled to operate the system under
optimal conditions and alkalinity addition is definitely a way to
enhance the system performances.
An economic analysis with NaOH addition to regulate

alkalinity was performed (see details of hypotheses and
computations in SI.15). Treating an additional 30% of nitrogen
(scenario S11 compared to S4), with additional alkalinity, has
an estimated value of 0.03 $ m−2 d−1, computed on the basis of
an operational cost for treating nitrogen of 6 $ kgN−1.73 The
cost of alkalinity addition is 0.0128 $ m−2 d−1, which is
definitely counterbalanced by the value associated with the
increase in nitrogen treatment efficiency. Therefore, alkalinity
addition does make sense even from an economic point of
view.
3.7.3. Toward Advanced Process Control. The process

optimization must be further explored considering a more
complex problem with an efficiency criterion that combines
algal production, nutrient removal rate, atmospheric emissions
(NH3, CO2, N2O), and associated costs by simultaneously
playing with alkalinity and the standard operating parameters
(HRT, kLa, pH set point).
An advanced control problem similar to the one targeted in

the work of de Luca et al.37 will help identify the optimal
operational mode hourly adapted to the metereological
conditions and online adjustment of the operational
parameters. The ALBA model can now be used as a solid
tool for process optimization while limiting emissions toward
the environment.
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