
XGBoost: An Optimal Machine Learning Model with Just Structural
Features to Discover MOF Adsorbents of Xe/Kr
Heng Liang, Kun Jiang, Tong-An Yan, and Guang-Hui Chen*

Cite This: ACS Omega 2021, 6, 9066−9076 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The inert gases Xe and Kr mainly exist in the used nuclear fuel
(UNF) with the Xe/Kr ratio of 20:80, which it is difficult to separate. In this
work, based on the G-MOFs database, high-throughput computational
screening for metal−organic frameworks (MOFs) with high Xe/Kr adsorption
selectivity was performed by combining grand canonical Monte Carlo
(GCMC) simulations and machine learning (ML) technique for the first time.
From the comparison of eight classical ML models, it is found that the
XGBoost model with seven structural descriptors has superior accuracy in
predicting the adsorption and separation performance of MOFs to Xe/Kr.
Compared with energetic or electronic descriptors, structural descriptors are
easier to obtain. Note that the determination coefficients R2 of the generalized
model for the Xe adsorption and Xe/Kr selectivity are very close to 1, at 0.951
and 0.973, respectively. In addition, 888 and 896 MOFs have been successfully
predicted by the XGBoost model among the top 1000 MOFs in adsorption capacity and selectivity by GCMC simulation,
respectively. According to the feature engineering of the XGBoost model, it is shown that the density (ρ), porosity (ϕ), pore volume
(Vol), and pore limiting diameter (PLD) of MOFs are the key features that affect the Xe/Kr adsorption property. To test the
generalization ability of the XGBoost model, we also tried to screen MOF adsorbents on the CO2/CH4 mixture, it is found that the
prediction performance of XGBoost is also much better than that of the traditional machine learning models although with the
unbalanced data. Note that the dimension of features of MOFs is low while the quantity of MOF samples in database is very large,
which is suitable for the prediction by model such as XGBoost to search the global minimum of cost function rather than the model
involving feature creation. The present study represents the first report using the XGBoost algorithm to discover the MOF
adsorbates.

1. INTRODUCTION
The noble gases xenon (Xe) and krypton (Kr) are widely used
in industrial production and daily life due to their special
physical and chemical properties. For instance, Xe can be used
in commercial lighting,1,2 medical imaging,3 anesthesia,4,5 and
neuroprotection,6,7 while Kr is widely used in the electronics
industry, electric light source industry, as well as in gas lasers
and plasma streams. The content of xenon and krypton in the
atmosphere just covers a minor proportion, and they mainly
exist in used nuclear fuel (UNF) with a Xe/Kr ratio of 20:80.
The radioisotopes of 135Xe and 85Kr in the process of UNF
reprocessing are significant gas fission nuclides,8 with strong
radiation and important applications in nuclear fuel cycling9

and nuclear environmental monitoring. Note that Xe/Kr
selective adsorption separation is also a key step in the
reprocessing of the UNF.
At present, the inert gases Xe and Kr are generally produced

through separation by large-scale air separation equipment,
using cryogenic distillation separation according to the
difference in the boiling points of Xe and Kr (the boiling
points of Xe and Kr are 161.7 and 115.8 K, respectively). The
large energy consumption and high cost greatly limit the

applications of Xe and Kr, and the development of a novel
separation method of Xe−Kr binary gas mixture under mild
conditions has always been the focus. Compared to cryogenic
distillation, the utilization of solid adsorbents to achieve gas
adsorption and separation is environmentally more friendly
and economical. However, the separation of Xe and Kr using
traditional solid adsorbents such as zeolite and activated
charcoal10−12 has poor adsorption selectivity and capacity, so
scientists have been committed to the development of new
adsorption materials.
Compared with traditional adsorption materials, metal−

organic frameworks (MOFs) are nano-multifunctional pore
materials emerged in the past two decades, which have a lot of
advantages such as highly diverse crystal structures and
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adjustability of structural properties.13 In recent years,
increasingly more works on the adsorption and separation of
Xe and Kr14 have shown that MOF materials are much
superior compared to traditional zeolite and activated charcoal
in the adsorption and separation of Xe−Kr binary mixture.
High-throughput screening is an effective method to obtain

high-performance materials, and it is also an effective method
to deeply understand the structure−adsorption property
relationship of candidate adsorption materials. Generally,
high-throughput computational screening is carried out by
molecular simulations in a database with a large number of
material samples to rapidly predict the adsorption property on
gases.15 So far, nearly 70 000 different MOFs have been
synthesized, and there are also thousands of MOFs that have
been predicted theoretically but have not yet been synthe-
sized.16−19 In 2016, using molecular simulation and high-
throughput screening among 120 000 MOFs, Banerjee et al.20

found that the Xe uptake and Xe/Kr selectivity of SBMOF-1
are very large at 1.39 and 16.00 mmol/g, respectively. In 2018,
Gong et al.21 designed and synthesized Z11CBF-1000-2, with
an improved Xe/Kr selectivity of 19.70, but the adsorption
capacity of Xe is just 0.02 mmol/g. Due to the variety of MOFs
and the large number of samples, high-throughput screening
for high-quality MOFs is also an expensive and time-
consuming process.
In recent years, with the coming of the era of Big Data, the

importance of data-driven machine learning (ML) technique
has been recognized by most of the people. Unlike traditional
calculation methods, ML is based on statistics rather than
solving physical equations, which can predict material
properties quickly at a low cost.22 So far, ML-related models
constructed by simple structural features of MOFs can predict
material adsorption property quickly. For example, the Snurr
group23 utilized mix logistic regression (MLR), least absolute
shrinkage and selection operator (LASSO), and ridge models
to establish the relationship between geometric structures of
MOFs and hydrogen storage capacity and found that the
LASSO model has a better description on the hydrogen
storage in MOFs; with 20 000 different nanoporous materials
on the selective adsorption of Xe/Kr as training data, Smit et
al.24 utilized the random forest (RF) decision tree model to
screen for the high-performance nanoporous separation
materials in the testing set with 655 000 samples. However,
the calculated mean-square error (MSE) is large, i.e., 1.41; in
2020, the Luo group25 predicted the adsorption of MOFs on
H2 using the deep neural networks (DNN) model, whose
transfer leads to an increase in the determination coefficient to
0.98 for the screening of MOF adsorption on CH4, but this
transfer ML model failed to screen for Xe/Kr-separated MOFs,
with the determination coefficient dropped from 0.92 to 0.41.
In this work, we tried to screen for the MOF selective

adsorption of Xe/Kr based on the G-MOFs database (Material
Genomic MOFs Database) self-assembled using MGPNM
program.26 This database is available at: https://figshare.com/
s/ec378d7315581e48f1e4. Note that for the first time the G-
MOFs database is used for the screening for MOF selective
adsorption of Xe/Kr. The relationship between MOF features
and Xe/Kr selective adsorption property was established using
ML algorithms, including ridge regression,27 LASSO,28 Elastic
Net,29 Bayesian regression,30 support vector machine
(SVM),31 artificial neural network (ANN),32 RF,33 and
XGBoost.34 Finally, the XGBoost model with just structural
descriptors successfully predicted 38 top MOFs of larger Xe/

Kr adsorption selectivity and Xe uptake than recently reported
SBMOF-120 and Z11CBF-1000-2,21 which overcomes the
defects of random forest24 and transfer machine learning
model.25 In addition, to test the generalization ability of the
XGBoost model, we also tried to screen for MOF adsorbents
on a more complex CO2/CH4 mixture and found that the
prediction performance of XGBoost is also much better than
that of the traditional machine learning models.

2. COMPUTATIONAL DETAILS
In this work, the high-throughput screening for MOFs selective
adsorption of Xe/Kr was performed among the G-MOFs
database. Note that totally 303 991 structures in G-MOFs are
self-assembled using 17 different metal clusters and 9
functional groups connected by 32 different organic linkers
with the Material Genomics program MGPN.26 To date, 162
thoroughly different MOF structures have been synthesized
experimentally in G-MOFs.26

2.1. Grand Canonical Monte Carlo (GCMC) of
Adsorption Simulation. Grand canonical Monte Carlo
(GCMC)35,36 method with the μVT ensemble was applied
to simulate the adsorption of Xe and Kr on MOFs. The
absorbates are regarded as rigid molecules during the
adsorption process at 298 K and 1 bar, with a 20:80 ratio of
Xe/Kr as the real UNF environment. Several different types of
motion of molecules are considered, including translation,
regrowth, deletion, and exchange. The adsorption process
involves only the nonbonding interactions, and the interaction
between adsorbates and MOFs is calculated using the
Lennard-Jones (LJ) potential in eq 1.
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where ij i jε ε ε= and σij = σi + σj/2, with σi and εi being the

diameters with depth of i, with the cutoff distance of the LJ
interaction at 14.0 Å. For every simulation process, totally 2 ×
107 cycles were performed with the former 1 × 107 cycles used
to equilibrate system and the latter one used to calculate the
related thermodynamic properties. The UFF37 force field was
applied to describe the atoms of adsorbent, while the TraPPE38

force field was used for the krypton and xenon atoms, which
have been successfully employed to describe the adsorption of
Kr and Xe on MOF materials.39 Our group40,41 also utilized
such force fields to describe UTSA-280 and Mg-SBMOF-1 on
the Xe/Kr selective adsorption. The high-throughput GCMC
simulations in this work were performed with the HT-
CADSS26 program.
For the adsorption and separation process, adsorption

selectivity is an important parameter to judge the separation
property. For the two-component gas mixture of Xe and Kr,
the selectivity SXe/Kr can be expressed by eq 2

S x x y y( / )( / )Xe/Kr Xe Kr Kr Xe= (2)

where x and y are the mole fractions of the adsorption-phase
and volume-phase components, respectively.
The thermal stabilities of top MOF materials were evaluated

using Forcite module42 in the Materials Studio program.43 The
entire annealing process is increased from 300 to 1800 K in the
NVT ensemble, with five cycles in five picoseconds.

2.2. Machine Learning. 2.2.1. Selection of Descriptors.
Generally, ML model can predict objective property with
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continuous data of features. The structural parameters of
MOFs including seven different features [large cavity diameter
(LCD), pore limiting diameter (PLD), global cavity diameter
(GCD), pore volume (Vol), density (ρ), specific surface area
(Sa), and porosity (ϕ)] were calculated with the Zeo++ 0.344

software.
From the histograms of the relationship between adsorption

property (Xe uptake and Xe/Kr selectivity) and physical
parameters as plotted in Figure S1, it is shown that the seven
structural parameters [LCD, PLD, GCD, Vol, ρ, Sa, and ϕ] of
MOFs in the G-MOFs database have a wide continuous
distribution as plotted in Figure S1a−g, respectively, which
may be used as the input variable features of the ML model.
For the ML technique, the effectiveness and relevance of

descriptors will directly determine the accuracy of the model.
Generally, descriptors (features) should possess the following
three characteristics:45 (1) correlation with the output to some
extent; (2) the lowest possible dimension; and (3) easy to
obtain. The suitable features can be selected by calculating the
Pearson correlation coefficient46 according to eq 3
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where xi and yi represent two different features, and x̅ and y̅
represent the mean values of different features, respectively.
Note that the Pearson correlation coefficients of r is between
−1 and 1. When r takes a negative value, the feature shows a
negative correlation to target property; when it takes a positive
value, the feature shows a positive correlation. The absolute
value of r locates between 0.5 and 1, which represents a strong
correlation, while that between 0.3 and 0.5 represents medium
correlation; the absolute values of r between 0.1 and 0.3 as well
as less than 0.1 denote weak correlation or no correlation.
We initially tested the correlation between the physical

parameters and the gas adsorption property of MOFs to screen

for the features from the correlation diagram as shown in
Figure 1. For the adsorption capacity of Xe or selectivity of Xe/
Kr, the above-mentioned seven physical parameters have
moderate correlation with the Pearson correlation coefficients
of r greater than 0.33 to the adsorption capacity of Xe and
strong correlation with r greater than 0.58 to Xe/Kr selectivity,
which meet the requirement as descriptors as input data.

2.2.2. Algorithm Selection and Evaluation. The data
trained in the training set is a mapping from the structures to
the adsorption property of the MOFs to find an objective
function that can accurately predict the adsorption property in
the testing set. Our dataset is composed of continuous input of
physical parameters and output corresponding to the
adsorption properties of MOFs including Xe uptake and Xe/
Kr selectivity. Therefore, we tried to build supervised learning
models using ridge regression, LASSO, Elastic Net, SVM,
Bayes regression, ANN, RF, and XGBoost.
The criteria to evaluate the quality of the regression model

are mean-square error (MSE), mean absolute error (MAE),
root-mean-square error (RMSE), and determination coefficient
R2 as expressed in eqs 4−6, respectively

M
y yMSE

1
( )

m

M

1

2∑= − ̂
= (4)

where M represents the quantity of samples, ŷ represents the
estimated value by the model, and MSE stands for the
expectation of the square of the difference between the true
value47 and the estimated value. The larger the MSE value, the
worse the prediction.
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Figure 1. Correlation diagram of material features and adsorption properties of Xe/Kr based on the G-MOFs database. Note that the color bars
represent the size of the Pearson correlation coefficients.
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where MAE represents the difference between the true value
and the estimated value. The larger the MAE value, the worse
the prediction.

M
y yRMSE
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=

where RMSE represents the difference between the true value
and the estimated value under the root sign. The larger the
RMSE value, the worse the prediction and the RMSE is more
sensitive to outliers.
For adsorption capacity, the units of MSE, MAE, and RMSE

are mmol2/g2, mmol/g, and mmol/g, respectively.
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where ŷ represents the true value and y̅ denotes the average of
the true value. Note that the numerator of the expression is the
sum of the squared difference between the true value and the
predicted value, while the denominator represents the
difference between the true value and the average value. The
closer is the determination coefficient R2 to 1, the better is the
performance of the predicted result. When R2 in the testing set
is much larger than that in the training set, the model is
considered as overfitting, otherwise, it is an underfitting model;
note that when the division of the testing set is classified
properly, the R2 value in the training set is larger than that in
the testing set. These three parameters were utilized to
evaluate the performance of models, where R2 is the primary
criterion, while MAE, MSE, and RMSE are the auxiliary ones.
The choice of different ML models has a great influence on

the final prediction effect, but a few researchers elaborated on
the advantage and disadvantage of different ML models, which
brings inconvenience of their application.

3. RESULTS AND DISCUSSION
3.1. Evaluation of Different Machine Learning

Models. To verify the reliability of the different models, the
GCMC simulations of Xe uptakes and Xe/Kr selectivity were
performed on all MOF samples as plotted in Figure S2. It is
found that almost all MOFs have the Xe/Kr selectivity over 1,

indicating that most of the MOFs prefer to adsorb Xe rather
than Kr, which is also in line with our purpose to discover the
MOFs selective adsorption of Xe in UNF. Note that seven
structural features were selected as descriptors for training
from the calculations of Pearson correlation coefficient. The
present strategy aims at minimizing the training set and
maximizing the testing set to build the model. At the same
time, it is of significance to extract the subset of the overall
distribution from all of the samples as the training set, which
thus can be used to represent the overall distribution.
According to the learning curve in Figure 2, we found that
accompanied by the increase of training set data, the R2 value
on the testing set increases gradually, while the degree of
overfitting of the model decreases gradually. When using 30%
data as the training set, the degree of overfitting of the model
to the adsorption properties is below 5%. According to the
above strategy and the adsorption property calculated by
GCMC, 30% of the samples are used as the training set and the
remaining 70% of the samples are included in the testing set.
Therefore, the sampling method ensures that our training set
materials fully cover our seven-dimensional feature space. In
this principle, eight different models including ridge regression,
LASSO, Elastic Net, SVM, Bayesian regression, ANN, RF, and
XGBoost with seven descriptors were tested by the fivefold
cross-validation, grid search, and hyperparameter tuning in the
training set, with the relevant data of R2, RMSE, MSE, and
MAE listed in Table S1. The parity plots representing the
predicted and simulated adsorption selectivity and capacity of
MOFs data for the above models are shown in Figure S3a−h as
(x − 1) and (x − 2), respectively.
As for the linear models, the R2 of LASSO and ridge

regression are both close to 0.688, as listed in Table S1,
indicating that the data possess few linear characteristics, as
verified by the parity plots of Figure S3a,b, respectively. Note
that the effect of improved LASSO and ridge regression
models with the addition of L1 and L2 paradigms of the linear
regression model is approximately equal to the Elastic Net
model. However, the R2 value of the Elastic Net model is just
0.687, as shown in the parity plot of Figure S3c, indicating that
the regularization coefficient has no great influence on the
model. Tuning on the L1 and L2 paradigms has no apparent
effectiveness on features. Thus, the linear model is not suitable
for the G-MOFs database.

Figure 2. Adsorption properties learning curve with increased training set data volume. Red represents the R2 value of the training set, while green
represents the R2 value of the testing set for (a) Xe/Kr selectivity and (b) Xe uptake.
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As for nonlinear models, the R2 value of the SVM regression
model is just 0.660 with the relevant parity plots shown in
Figure S3d. Note that this model performs very well on a small
number of samples in high-dimensional space, which extremely
depends on the selection of the kernel function. When the
sample amount is relatively large, the effect of the model
plummets. Note that the current dataset is characteristic of low
dimension with a large data volume, thus leading to the poor
performance of the SVM model; for the Bayesian regression
model, the calculated R2 value is 0.687, as shown in Table S1
and the parity plots of Figure S3e. The Bayesian model can fit
the data of small-scale samples well to obtain the probability
distribution of the test data rather than specific values.
However, when the data increases to a large amount such as
more than 300 000 in G-MOFs, the model reduces the
influence of the distribution to a linear one. Therefore, this
model is not suitable for the large amount of data in the G-
MOFs database.
As for the ANN model of deep learning, the determination

coefficient R2 reaches 0.831 with the relevant parity plots
shown in Figure S3f. Note that two hidden layers are used to
train and build the ANN model after feature selection and
adsorption performance mapping. It is shown that the model
has high accuracy and weak dependence on the data structure.
However, the training procedure of this model generates
massive combined features and thus reduces the model
interpretability, leading to difficulty in judging the effect of
physical parameters on the adsorption property. As for the RF
model, the determination coefficient R2 reaches 0.933 with the
parity plots shown in Figure S3g. Note that the RF model
consists of a large number of individual decision trees, where
each tree will issue a category prediction, and the category with
the most votes will be the prediction of our model. But when
there are repetitive values in some feature of MOFs leading to
a lot of noises in the dataset, RF cannot accurately predict the
values of the objective function.
However, note that the determination coefficient R2 of the

XGBoost model for Xe adsorption and Xe/Kr selectivity
reaches 0.951 and 0.973, with MSE at just 0.003 and 0.065,
MAE at just 0.029 and 0.147, and RMSE at just 0.055 and
0.255 in the testing set, respectively, as listed in Table S1 and
shown in the parity plots of Figure S3h. For the XGBoost
model, we carried out fivefold cross-validation and grid search
to tune the hyperparameters. The main parameters optimized
by XGBoost model are eta (0.1), max_depth (10),

min_child_weight (0.5), and subsample (0.8). From the
statistical point of view, the prediction performance of the
XGBoost model is much superior to the above ones.
Note that XGBoost is an algorithm based on boosting tree,

with a regularization term added to the optimization objective
function, which is described according to eq 7
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Among them, Ψ represents the objective function, yi represents
the input value of the data, f(Xi) stands for prediction value,
and N represents the number of features. In addition, to
prevent the overfitting, the XGBoost model is performed using
regularization with γ and λ as regularization coefficients
controlling the complexity of the model and the output of
the objective function. When γ and λ are both equal to 0, the
model has only the same loss function as the objective
function. Lm represents the number of leaf nodes and ωm
represents the influence of the mth leaf node on the model.
Note that the addition of a regularization coefficient will not
improve the accuracy but prevents the model from overfitting
in the iterative process.
The XGBoost model uses second-order Taylor approxima-

tion of the loss function and speeds up the process of searching
for the global minimum through the first and second
derivatives of loss function. The specific derivation can be
found in the related literature.48

Compared with other ML models, the better performance of
the XGBoost in predicting adsorption of MOFs is not only due
to the addition of the regularization coefficient in the cost
function and the second-order Taylor expansion of the cost
function to overcome the overfitting but also with just the
easily available structural descriptors we can achieve accurate
prediction of adsorption properties. Note that these structural
features do not have a very strong correlation with the
adsorption properties, while Ridge, Lasso, Elastic Net,
Bayesian, and ANN models cannot predict accurately without
strong correlation characteristics.
In summary, the R2 value of the testing set of the XGBoost

model for Xe adsorption and Xe/Kr selectivity prediction is
close to 1 and much larger than those of the other models.
MAE, MSE, and RMSE are also close to 0, which meets the
requirement of an excellent regression model. Therefore, we

Figure 3. Parity plots for training and testing sets data from the G-MOFs database using XGBoost model for the (a) Xe/Kr selectivity and (b) Xe
uptake at 1 bar and 298 K. Each dot represents one MOF structure from the G-MOFs database. The red and blue dots represent the training set
and testing set data, respectively.
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finally chose the XGBoost model with seven structure
descriptors to predict MOFs with selective adsorption property
of Xe/Kr in the following.
3.2. Construction and Verification of XGBoost Model.

The 30% and the remaining 70% MOF samples are selected as
the training and testing sets, respectively, as listed in Table S1.
We just included the seven structural descriptors including
LCD, PLD, GCD, Vol, ρ, Sa, and ϕ.
Through fivefold cross-validation, grid search, and hyper-

parameter tuning of the training set, it is found that when the
XGBoost model is constructed with structural descriptors, the
determination coefficients R2 of the adsorption capacity of Xe
and the selectivity of Xe/Kr in the training set are 0.976 and
0.986, with RMSE at 0.032 and 0.182, respectively, while the
determination coefficients are 0.951 and 0.973, with RMSE at
0.055 and 0.255 for the testing set, respectively. Obviously,
there is also no overfitting or underfitting for the XGBoost
model with the effect, as shown in the parity plots of Figure
3a,b, respectively. In addition, the predicted top 10 MOFs in
Xe/Kr selectivity are completely consistent with those
screened out by GCMC simulations, as shown in Table 1
and the parity plots of Figure 4a,b, respectively. Note that the
top 2 MOFs in selectivity predicted by the model are the same
as those by GCMC simulations in sequence, corresponding to
Al2O6-fum_B_No3 and Al2O6-ADC_B-fum_B_No112. The
adsorption property differences of these two MOFs between
the GCMC simulations and prediction by the XGBoost model
were compared as listed in Table 1 and Figure 4, respectively.

Note that the simulated Xe/Kr selectivities of the two MOFs
are 27.68 and 27.45, respectively, while the model predicted
selectivities of the two MOFs to Xe/Kr are 26.98 and 26.26,
with relative errors to those of GCMC simulations just 2.53
and 4.34%, respectively. In addition, the predicted adsorption
capacities for Xe of the three MOFs are 2.49 and 2.44 mmol/g,
with the relative errors at just 0.28 and 1.77%, respectively. To
learn the stability of top 2 materials including Al2O6-
fum_B_No3 and Al2O6-ADC_B-fum_B_No112, we carried
out simulation annealing and found that at 1600 K, they still
keep the stable structures without collapse. The calculated
Henry coefficients of these top 2 materials for Xe are 24.77 and
26.23 mmol g−1 bar−1, respectively. The Henry selectivities for
Xe/Kr are 22.76 and 27.36, indicating that these two materials
have remarkable desorption properties.
From Table 2, it is found that 8 MOFs in the G-MOFs are

better than Z11CBF-1000-2 and 38 MOFs are better than
SBMOF-1 in both adsorption capacity and selectivity. Note
that the Xe/Kr adsorption selectivities and Xe capacities of
SBMOF-120 and Z11CBF-1000-221 are 16, 19.70 and 1.39,
0.02 mmol/g, respectively. Meanwhile, from GCMC simu-
lations, we found that 30 of such 38 MOFs have been covered
in the testing set. We referred Woo’s work,49 by comparing the
top 1000 MOFs predicted by the XGBoost model with GCMC
simulations, and found that XGBoost-predicted 888 MOFs are
in the range of GCMC-simulated top 1000 ones in Xe
adsorption capacity and the predicted 896 MOFs are among
the GCMC-simulated top 1000 ones in Xe/Kr selectivity as

Table 1. Comparison of Xe/Kr Adsorption Property of Top 10 Materials between GCMC Simulations and XGBoost Model
Predictiona

XGBoost GCMC RE (%)

MOFs Nxe SXe/Kr Nxe SXe/Kr Nxe SXe/Kr

Al2O6-fum_B_No3 2.490 26.98 2.483 27.68 0.28 2.53
Al2O6-ADC_B-fum_B_No112 2.437 26.26 2.481 27.45 1.77 4.34
Al2O6-ADC_B-fum_B_No107 2.599 25.43 2.804 26.37 7.31 3.56
Al2O6-ADC_B-fum_B_No102 2.544 20.15 2.837 25.84 10.33 22.02
Al2O6-fum_B_No6 2.589 20.14 2.680 22.49 3.40 10.45
Al2O6-ADC_B-fum_B_No100 2.377 19.92 2.617 22.23 9.17 10.39
CuN4-SiF6-irmof20_No1 2.155 19.31 2.657 20.48 18.89 5.71
ZnN4-SiF6-irmof20_No5 1.983 18.45 2.657 20.31 25.37 9.16
Al2O6-fum_B-irmof6_B_No27 2.374 18.25 2.056 19.40 15.47 5.93
Al2O6-BDC_B-fum_B_No125 2.269 17.76 2.172 19.31 4.47 8.03

aNote that the uptakes of NXe are in mmol/g. RE = |(GCMC − XGBoost)|/GCMC × 100%.

Figure 4. Schematic plots with comparison of top 10 materials between GCMC simulation and XGBoost prediction on (a) Xe/Kr selectivity and
(b) Xe uptake.
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listed in Table 3, both accounting for almost 90%. Therefore,
the present XGBoost model with seven descriptors can
accurately predict the high-performance MOFs selective Xe/
Kr.

The XGBoost model was developed by the Guestrin group34

in 2016, which has quickly become well known in the ML-
related competitions and now widely used in the fields of
diagnosis and materials due to its fast and accurate character-
istics. For example, the Ni group50 tried four different
regression models, taking the atomic volume, mass density,
unit cell volume, and lattice type of the crystal materials as
features, and accurately predicted the thermal conductivity of
the crystal materials; the Karanicolas group51 built a drug
scoring function based on the XGBoost model, which is much
higher than the traditional scoring function, and successfully
found the novel targeted drugs for AChE. As the gas
adsorbents, features of MOF sample are in low dimension,
and it is suitable to use a model that can accurately search for
the global minimum of the cost function, rather than the model
involving feature creation. Note that covalent organic frame-
works (COFs) and zeolites are also materials with low-
dimensional structural features. We hope the present XGBoost
model just with structural descriptors may assist the screen and
design not only MOF adsorbents but also other porous
material adsorbents such as covalent organic frameworks
(COFs) and zeolites in future. Thus, the XGBoost model
stands out from the comparison with different ML algorithms
including transfer machine learning25 and random forest24

models due to its excellent performance, although which has
not been reported in the field of discovery of materials for gas
adsorption separation. Compared with screening for MOF
adsorbents using features of AP-RDF49 and Qst,52 the present
XGBoost model successfully found the high-performance
MOF adsorbents just using structural descriptors.
3.3. Influence of Structural Features on Adsorption

Performance. To understand the impact of different
structural parameters of MOFs on the Xe/Kr adsorption
property, we also compared the weight coefficients of different
features on the Xe adsorption capacity and Xe/Kr selectivity in
the XGBoost model by the histogram as plotted in Figure 5,
and it is shown that the features that significantly affect both
the Xe uptake and Xe/Kr selectivity are Vol, ρ, ϕ, and LCD.
To explore the range of the four features corresponding to

the optimal adsorption property, we plotted features−

adsorption property relationship in parity plots, in Figure
6a−d. It is shown that the density (ρ) of the MOF
corresponding to large Xe/Kr selectivity and Xe adsorption
capacity is about 1.0, while the other three features are
negatively correlated to the adsorption property.
To find the specific ranges of the four features [including

Vol, ρ, ϕ, and LCD] that affect the adsorption property, we
utilized the regression decision tree53 scheme and three
different datasets were used to train the decision tree model.
The datasets of all MOFs are defined as Class A, while those of
selectivity larger than 10 and uptakes larger than 1 mmol/g are
defined as Class B, which represents promising materials with
large Xe/Kr selectivity; after excluding Class B from Class A,
the remaining section is defined as Class C, representing poor
performing MOFs with low Xe/Kr selectivity and uptakes.
Through fivefold cross-validation, grid search, and hyper-
parameter selection of regression tree model, the data of the
three types of MOFs are analyzed as collected in Table S2, and
we can find that deferent from Class A and B, there is no
overfitting for Class C materials within the decision tree model,
with the MSEs for the Xe uptakes and Xe/Kr selectivity at just
0.204 and 1.718, respectively. Therefore, we choose Class C as
the dataset of the decision tree model. The regression model
with a maximum depth of 3 is used to describe the data, and
the maximum adsorption capacity and selectivity are selected
as high-quality adsorption criteria through the corresponding
tree model, as plotted in Figure 7. Note that the maximum
average adsorption capacity for the tree with 376 samples is
2.495 mmol/g, corresponding to the volume (Vol) less than
1023.375 m2/cm3 and the density (ρ) between 0.731 and
0.985 g/cm3 as plotted in Figure 7a. In addition, when the
density (ρ) of the materials is larger than 0.929 g/cm3 and the
PLD is less than 7.244 Å, 15 281 samples with a large average
selectivity of 6.094 were screened as plotted in Figure 7b.
To investigate the effect of the different metal centers and

organic ligands on the adsorption property, the GCMC-
simulated top 500 MOFs in Xe adsorption capacity or Xe/Kr
selectivity were screened out, and it is found that there is an
intersectional part of 602 different materials with the
proportions of the metal centers and organic ligands of each
adsorption material represented in a pie chart, as shown in
Figure 8a,b, respectively, where the weight of every metal
center and ligand is set as 1.0 for statistics, while the weight of
dual ligands is set as 0.5. In the G-MOFs database assembled
by the HT-CADSS program, it is shown that almost all of the

Table 2. Predicted MOFs Based on G-MOFs Have Better
Performance on Selective Adsorption Separation Xe/Kr
compared with SBMOF-1 and Z11CBF-1000-2a

adsorption property

MOFs SXe/Kr Nxe SXe/Kr and NXe

SBMOF-1 38 1169 38
Z11CBF-1000-2 8 190 191 8

aNote that SXe/Kr represents Xe/Kr selectivity, while Nxe represents
Xe adsorption.

Table 3. Number of Top XGBoost Prediction Property Out
of N Thousand that in the GCMC Top 1000 Materials

1000 2000 3000 4000 5000

S(Xe/Kr) 896 974 996 999 1000
N(Xe) 888 972 993 996 1000

Figure 5. Histogram of the influence of seven structural features in
the XGBoost model.
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materials with good adsorption and separation property for
Xe/Kr contain Al2O6 cluster and FUM ligand as shown in
Figure 8a,b. It is noted that Al2O6-fum_B_No3 is combined by
Al2O6 cluster and FUM ligand, corresponding to the largest
Xe/Kr adsorption selectivity and Xe uptakes at 21.99 and 2.52
mmol/g.
3.4. Model Generalization. To learn the application

range of the XGBoost model, we decide to screen for
adsorbent on other gas mixture in G-MOFs. Note that coal
is usually gasified under high temperature and high pressure to
produce a large amount of mixed gas, mainly composed of
CO2 and CH4, with the gas content ratio of about 1:1.54 The
capture of carbon dioxide before combustion can effectively
improve the utilization of methane. Therefore, it is very
important to find suitable MOF materials to selectively capture
CO2 in CH4. The screening of MOFs adsorptive separation
from Xe/Kr to CO2/CH4 is just a process from simple to
complex mixture, which can further reflect the suitability of our
ML model.
With the ratio of CO2/CH4 in mixture at 50:50, the

adsorption on MOFs was simulated with GCMC method at
298 K and 1 bar using the same method as in Xe/Kr. Note that
the best separation material in the G-MOFs database is Zn2O8-
BTC_B-irmof7_A_No16,26 corresponding to the selectivity of
CO2/CH4 at 50.5 and uptake of CO2 at 4.0 mmol/g, which is
lower than SAJFEO with the CO2/CH4 selectivity at 210.33
and uptake of CO2 at 6.31 mmol/g.55 Through the data
analysis as listed in Table S3, we found that the calculated
adsorption properties in G-MOFs datasets are obviously
imbalanced, especially for the adsorption selectivity of CO2/
CH4. For the machine learning model, a good dataset is that
the number of positive samples basically equals that of the

negative ones. The imbalanced data refer to the large gaps of
cost function among the large number of samples. In the data
of MOFs selective adsorption of CO2/CH4, there are a few
highly selective materials. This will be biased toward the low
selectivity range, which is not beneficial to the prediction of
materials. As for Xe/Kr adsorption selectivity, there is no
obvious imbalance problem for the data in the G-MOFs
database. The XGBoost model can define the ratio of different
data and overcome the problem of imbalance from the
perspective of adsorption characteristics. Based on the
adsorption data of G-MOF to CO2/CH4, we initially tested
the correlation between the physical parameters and the gas
adsorption property on MOFs of CO2/CH4 with the
correlation diagram as shown in Figure S4. For the adsorption
capacity of CO2 or selectivity of CO2/CH4, seven physical
parameters including LCD, PLD, GCD, Vol, ρ, Sa, and ϕ are
moderately correlated to adsorption property with Pearson
correlation coefficients of r greater than 0.3, which is the same
as that of the Xe/Kr system.
The seven material features [including LCD, PLD, GCD,

Vol, ρ, Sa, and ϕ] were also used as descriptors with samples in
the training set:testing set at 30:70 to build the model, and the
fivefold cross-validation and grid search method is used to tune
the hyperparameters of the model. The prediction of the G-
MOFs database of CO2/CH4 adsorption performance is
depicted in the parity plots shown in Figure S5a,b, respectively.
From Table S4, it is found that the determinant coefficients R2

XGBoost model for selectivity and uptake of CO2 are 0.6836
and 0.8817, respectively, which are much larger than those of
other models, indicating that the prediction accuracy in the
adsorption property of XGBoost is much better than
traditional machine learning models, including Ridge,

Figure 6. Schematic scatter plots of the four main structural features that influence the Xe uptake and Xe/Kr selectivity, including (a) ρ, (b) ϕ, (c)
Vol, and (d) PLD of MOFs.
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LASSO, Elastic Net, SVM, Bayesian, ANN, and RF, although
the prediction performance is not as good as Xe/Kr adsorption
separation.

4. CONCLUSIONS
In this work, a high-throughput screening for MOFs selective
adsorption of Xe/Kr in the G-MOFs database with more than
300 000 materials was performed using GCMC simulations
and machine learning technique for the first time. It is found
that the XGBoost model with structural descriptors can
successfully predict the top materials with the high adsorption
selectivity of Xe/Kr.

Based on seven structural parameters [including LCD, PLD,
GCD, Vol, ρ, Sa, and ϕ] of MOFs, eight machine learning
models, including ridge regression, LASSO, Elastic Net, SVM,
Bayesian regression, ANN, RF, and XGBoost, were tried to
predict the adsorption and separation property for Xe/Kr
within the G-MOFs database. Compared with energetic or
electronic descriptors, structural descriptors are easier to
obtain. With 30% of training set and 70% of testing set of
the samples, it is found that the XGBoost is the optimal model
in predicting the adsorption capacity of Xe and selectivity of
Xe/Kr for MOFs. For example, the determination coefficient
R2 in the testing set of Xe adsorption capacity and Xe/Kr

Figure 7. Influence of the four main structural features including ρ, ϕ, Vol, and PLD of MOFs on (a) Xe uptake and (b) Xe/Kr selectivity, under
the decision tree model.

Figure 8. Pie chart of the structural characteristics of the top 500 MOFs in Xe uptake and Xe/Kr selectivity: (a) the proportion of different metal
cluster and (b) the proportion of different organic ligands.
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selectivity are 0.951 and 0.973 for the testing set. In addition,
the XGBoost model successfully predicted top 8 MOFs with
higher adsorption capacity and selectivity than Z11CBF-1000-
2, and 38 MOFs are better than SBMOF-1. For the top 2
MOFs in selectivity including Al2O6-fum_B_No3 and Al2O6-
ADC_B-fum_B_No112, the predicted Xe/Kr selectivities are
26.97 and 26.26, respectively, which are close to the GCMC-
simulated 27.68 and 27.45, respectively. In addition, the
XGBoost feature engineering showed that four features,
including ρ, ϕ, Vol, and PLD, mainly determine the high-
performance MOFs selective adsorption of Xe/Kr. By verifying
the model through a more complex CO2/CH4 mixture, we
found that even if there exists the imbalanced problem of data,
the prediction performance of XGBoost is still much better
than those of the traditional machine learning models.
As gas adsorbents, features of MOF material are continuous

data in low dimension, it is suitable to use a model like
XGBoost that can accurately search for the global minimum of
the cost function, rather than the model involving feature
creation. This work represents the first machine learning study
using the XGBoost model for the screening of MOF gas
adsorbents, which is better than the other ML models
including the formerly used transfer machine learning33 and
random forest model.25 We hope the present XGBoost model
just with structural descriptors may assist the screen and design
not only MOF adsorbents for Xe/Kr in UNF but also other gas
mixture adsorbents among porous materials such as covalent
organic frameworks (COFs) and zeolites in future.
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