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How much deep learning is enough for automatic identification to be

reliable?

A cephalometric example

Jun-Ho Moona; Hye-Won Hwangb; Youngsung Yuc; Min-Gyu Kima; Richard E. Donatellid; Shin-Jae
Leee

ABSTRACT
Objectives: To determine the optimal quantity of learning data needed to develop artificial
intelligence (AI) that can automatically identify cephalometric landmarks.
Materials and Methods: A total of 2400 cephalograms were collected, and 80 landmarks were
manually identified by a human examiner. Of these, 2200 images were chosen as the learning data
to train AI. The remaining 200 images were used as the test data. A total of 24 combinations of the
quantity of learning data (50, 100, 200, 400, 800, 1600, and 2000) were selected by the random
sampling method without replacement, and the number of detecting targets per image (19, 40, and
80) were used in the AI training procedures. The training procedures were repeated four times. A
total of 96 different AIs were produced. The accuracy of each AI was evaluated in terms of radial
error.
Results: The accuracy of AI increased linearly with the increasing number of learning data sets on
a logarithmic scale. It decreased with increasing numbers of detection targets. To estimate the
optimal quantity of learning data, a prediction model was built. At least 2300 sets of learning data
appeared to be necessary to develop AI as accurate as human examiners.
Conclusions: A considerably large quantity of learning data was necessary to develop accurate AI.
The present study might provide a basis to determine how much learning data would be necessary
in developing AI. (Angle Orthod. 2020;90:823–830.)
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INTRODUCTION

In recent years, there has been growing interest in
using artificial intelligence (AI) in the medical field.1,2

Among the various applications of AI in orthodontics,
effort has been applied to develop a fully automatic
cephalometric analysis that would be capable of
reducing the manpower burden of cephalometric
analyses.3–20 A recent study on fully automatic identi-
fication of cephalometric landmarks based on the latest
deep-learning method showed higher detecting accu-
racy than other machine-learning methods.14 The AI
system demonstrated perfect reproducibility and also
performed landmark identification as accurately as
human experts did.6 The latest AI was developed by
applying 1028 sets of learning data during the training
procedure.6,14

Previous AI demonstrations commonly limited the
quantity of learning and test data to 150 and 250
images, respectively. Conventionally, the images
carried 19 annotated landmarks including 15 skeletal-
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and 4 soft-tissue anatomical points.3,18,19 The im-

proved accuracy of the latest AI studies was likely

partly due to the increased quantity of learning data

implemented during the AI training procedure. How-

ever, an important question was still remaining: How

much learning data are actually necessary to suffi-

ciently train AI? What would happen if the quantity of

learning data doubled, tripled, or increased up to 10-

fold? One could conjecture that a greater quantity of

learning data in the AI training procedure would

produce more accurate AI performance. However,

manually detecting and annotating multiple landmarks

on the massive original images for use during the

training procedure for AI would be extremely labori-

ous. When it comes to determining the sufficient

quantity of learning data, the number of detecting

targets per image (ie, the number of cephalometric

landmarks in the cephalometrics example) was

purported to play an important role and should also

be taken into account.6

The purpose of this study was to investigate how

much learning data might be necessary to sufficiently

train a deep-learning system for practical use as AI. By

comparing the accuracy of each AI according to (1) the

quantity of learning data and (2) the number of

detecting targets per image, an optimal quantity of

learning data was attempted to be determined.

MATERIALS AND METHODS

Learning Data Sets

Figure 1 summarizes the experimental design
implemented in this study. A total of 2400 lateral
cephalometric radiographs were collected from the
Picture Aided Communication System server (Infinitt
Healthcare Co Ltd, Seoul, Korea) at Seoul National
University Dental Hospital, Seoul, Korea. A total of 80
cephalometric landmarks in each of 2400 images were
identified and annotated manually by a single examiner
(examiner 1, SJL). Of these, 2200 images were chosen
as the learning data to train AI. The institutional review
board for the protection of human subjects at Seoul
National University Dental Hospital reviewed and
approved the research protocol (ERI 19007).

To measure intra- and interexaminer reliability, 200
images were selected, and landmark identification was
repeated by a different examiner (examiner 2, HWH).
The mean difference in identifying cephalometric
landmarks within and between human examiners was
0.97 6 1.03 mm and 1.50 6 1.48 mm, respectively.
The mean difference and the landmark detection error
were measured in terms of radial error (also called the
point-to-point error).

The characteristics of the learning and test data
images used are listed in Table 1. These characteris-
tics seemed to be consistent with the present trends

Figure 1. Experimental design.
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regarding the malocclusion types among patients
visiting a university hospital.21,22 The subjects demon-
strated a higher percentage of patients with severe
dentofacial deformity.

To compare the detection errors according to the
quantity of learning data (N), subset data sizes of 50,
100, 200, 400, 800, 1200, 1600, and 2000 were
selected by the random sampling method without
replacement. These subsets were used during the AI
training procedure. The data sizes of 100 and 200 were
chosen to mimic the quantity of learning data from
previous studies.3,18,19

To compare the detection errors according to the
number of detecting targets per image (M), subset
landmarks sizes per image of 19, 40, and 80 were
selected. The smallest number of detecting targets
tested in this study was the 19 conventional landmarks
widely used in previous public AI challenges.3,12,18,19

The landmarks selected for the 40 subsets are
generally used in clinical orthodontic practice. The
greatest number of detecting targets (80) was selected
because those were known to be essential for
accurately predicting posttreatment outcomes.23–27 A
detailed description of landmarks is listed in Table 2.

Deep-Learning Method and Resultant AIs

The resolution of all images was 150 pixels per inch,
and the image size was 1670 3 2010 pixels. The AIs
were built on a desktop computer with ordinary
specifications commonly available in the current
market. The platform used was NVIDIA Computer
Unified Device Architecture, a parallel computing
platform for GPUs (Ubuntu 18.04.1 LTS with NVIDIA
GeForce GTX 1050 Ti GPU, NVIDIA Corporation,
Santa Clara, Calif). The AI algorithm was based on the
latest deep-learning method, a modified You-Only-
Look-Once version 3 algorithm. This is a deep-learning
algorithm developed for real-time object detection.6,14,28

The AI training time was about 12 hours when the
number of learning data sets was greater than 1600. In
cases in which the number of learning data sets was
less than 1200, the training time varied approximately
between 1 and 8 hours. During the training process,

about 80% of the total memory of the GPU was
occupied, which was approximately 3.2 GB.

According to the quantity of learning data and the
number of landmarks, a total of 24 combinations (N 3

M¼ 8 3 3¼ 24) of learning data sets were used in the
AI training procedures. These procedures were re-
peated four times. In total, 96 different AIs were
produced.

Test Procedure and Accuracy Measures

A total of 200 radiographs, which were not included
in the 2200 learning data sets, were selected as test
data in the present study. Each landmark in the 200
test images was identified by the 96 different AIs.

The accuracy of landmark identification of AI was
evaluated by the mean radial error (MRE). The radial
error (ie, the Euclidean distance between a landmark
identified by human and by AI), was defined as

eij ¼ jjPij�Qij jj; 1 � i � 200; 1 � j � M;

where Pij, Qij represented the position of j th landmark of
the i th image identified by human and AI, respectively;
M was the total number of landmarks used to train AI;
and jj jj stands for the Euclidean distance measure
calculated in millimeter units.

Statistical Analysis

To compare the accuracy according to the quantity
of learning data and the number of detecting targets
per image implemented during the training procedure
of AI, and to determine the optimal number required to
sufficiently train the AI, multiple linear regression
analysis was conducted. The regression equation
was formulated by setting MRE as a dependent
variable and the quantity of learning data and the
number of detecting targets as independent variables.
All statistical analyses were performed by using
Language R.29 The significance level was set at P ,

.05.

RESULTS

According to the Quantity of Learning Data

The relationship of the detection errors (or MRE) of
AI to the quantity of learning data is illustrated in the top
of Figure 2 by the number of detecting targets used in
training. Multiple linear regression analysis showed
that detection errors of the AI were significantly
associated not only with the quantity of learning data
but also with the number of detecting targets per image
(P , .0001, Table 3). The more data that were
implemented during the training procedure of AI, the
smaller the detection errors observed. The resulting

Table 1. Characteristics of the Learning and Test Data

Study Variable n (%)

Learning data 2200 (100)

Gender Female 1143 (52.0)

Skeletal classification Class II 383 (17.4)

Class III 1624 (73.8)

Test data 200 (100)

Gender Female 103 (51.5)

Skeletal classification Class II 28 (14.0)

Class III 168 (84.0)
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graph indicated that the relationship between the

detection errors and the quantity of learning data

seemed more likely to be nonlinear than linear. Upon

inspecting the skewness of the graph, a logarithmic

transformation was applied to the number of learning

data sets. This resulted in a more plausible linear

relationship (Figure 2, bottom). After applying the

logarithmic transformation, the determination coeffi-

cient of the multiple regression model (R2), which is an

indicator of the goodness-of-model-fit, also called the

power of explanation, changed from R2¼ 0.679 to R2¼
0.834. Consequently, the logarithmic transformation of

the number of sample sizes indicated a more suitable

explanation than the raw data modeling.

According to the Number of Detecting Targets per
Image

According to the number of detecting targets per
image, the opposite relationship was observed; the
detection errors increased as the number of detecting
targets increased (Figure 2). The regression coeffi-
cients, bNumber of Learning Data and bNumber of Detecting Targets , from
the multiple linear regression analysis underwent
statistical tests under the null hypothesis if (1)
bNumber of Learning Data � 0 and (2) bNumber of Detecting Targets � 0.
This was to confirm statistically the previously men-
tioned relationships. As a result of the hypothesis tests,
both null hypotheses were rejected. Consequently, this
implied that the detection errors of AI decreased as the
number of learning data sets increased, and the

Table 2. List of 80 Landmarksa

Landmark No. Landmark Explanation 19 40 Landmark No. Landmark Explanation 19 40

1 Vertical reference point 1 (arbitrary) 41 Pterygoid =

2 Vertical reference point 2 (arbitrary) 42 Basion =

3 Sella = = 43 U6 crown mesial edge

4 Nasion = = 44 U6 mesiobuccal cusp

5 Nasal tip = 45 U6 root tip

6 Porion = = 46 L6 crown mesial edge

7 Orbitale = = 47 L6 mesiobuccal cusp

8 Key ridgeb 48 L6 root tip

9 Key ridge contour intervening point 1b 49 glabella =

10 Key ridge contour intervening point 2b 50 glabella contour intervening pointb

11 Key ridge contour intervening point 3b 51 nasion =

12 Anterior nasal spine = = 52 nasion contour Intervening point 1b =

13 Posterior nasal spine = = 53 nasion contour intervening point 2b =

14 Point A = = 54 supranasal tip =

15 Point A contour intervening pointb 55 pronasale =

16 Supradentale = 56 columella

17 U1 root tip = 57 columella contour intervening pointb

18 U1 incisal edge = = 58 subnasale = =

19 L1 incisal edge = = 59 cheekpoint

20 L1 root tip = 60 point A =

21 Infradentale = 61 superior labial sulcus =

22 Point B contour intervening pointb 62 labiale superius

23 Point B = = 63 upper lip = =

24 Protuberance menti 64 upper lip contour Intervening pointb

25 Pogonion = = 65 stomion superius =

26 Gnathion = = 66 stomion inferius =

27 Menton = = 67 lower lip contour Intervening pointb

28 Gonion, constructed = = 68 lower lip = =

29 Mandibular body contour intervening point 1b 69 labiale inferius

30 Mandibular body contour intervening point 2b 70 inferior labial sulcus

31 Mandibular body contour intervening point 3b 71 point B

32 Gonion, anatomic = 72 protuberance menti

33 Gonion contour intervening point 1b 73 pogonion = =

34 Gonion contour intervening point 2b 74 gnathion =

35 Articulare = = 75 menton =

36 Ramus contour intervening point 1b 76 menton contour Intervening pointb

37 Ramus contour intervening point 2b 77 cervical point

38 Condylion = 78 cervical point contour intervening point 1b

39 Ramus tip 79 cervical point contour intervening point 2b

40 Pterygomaxillary fissure 80 terminal point

a The 19 and 40 subsets are marked with the symbol =.
b Arbitrarily defined points for smooth delineation of anatomical structures. Capital letters represent hard-tissue landmarks, and lowercase

letters represent soft-tissue landmarks.
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detection errors of AI decreased when the number of

detecting targets decreased (Table 3).

Estimation of Optimal Quantity of Learning Data

To estimate the optimal quantity of learning data, a

prediction model based on the previously mentioned

multiple linear regression model was built. Through the

logarithmic transformation, there was a gain in the

power of explanation from 67.9% to 83.4%. The

decision criteria for clinically acceptable MRE was the

interexaminer difference between human clinicians.

Through the estimation procedure, at least 2300

learning data seemed to be necessary to develop AI

as accurate as human examiners (Figure 3).

Figure 2. (Top) Mean radial error (MRE) in millimeter units according to the quantity of learning data. (Bottom) Logarithmic transformation with

base 2 was applied to the number of learning data sets.

Table 3. Detection Errors of AI According to the Quantity of Learning Data and the Number of Detecting Targets Implemented During the

Training Processa

Number of Learning Data (N)

Number of Landmarks (M) n ¼ 50 n ¼ 100 n ¼ 200 n ¼ 400 n ¼ 800 n ¼ 1200 n ¼ 1600 n ¼ 2000

m ¼ 19 First trial 3.74 2.54 2.80 1.89 2.19 1.84 1.66 1.63

Second trial 2.78 2.71 2.39 2.07 1.73 1.96 1.55 1.64

Third trial 2.82 2.88 2.68 2.56 2.17 2.09 1.76 1.59

Fourth trial 2.98 2.59 2.49 2.45 1.84 1.72 1.50 1.58

Average 3.08 2.68 2.59 2.24 1.98 1.90 1.62 1.61

m ¼ 40 First trial 3.31 2.9 2.67 1.98 2.18 1.75 1.74 1.52

Second trial 3.79 2.63 2.99 1.95 1.87 1.89 1.96 1.89

Third trial 4.48 3.55 2.89 2.43 1.82 1.99 1.80 1.79

Fourth trial 2.93 2.98 2.63 2.50 2.27 1.79 2.05 1.85

Average 3.63 3.02 2.80 2.22 2.04 1.86 1.89 1.76

m ¼ 80 First trial 3.51 3.38 3.08 2.52 2.14 1.98 2.27 1.76

Second trial 3.21 3.27 2.43 2.55 2.26 2.13 1.98 1.94

Third trial 3.75 2.78 3.15 2.44 2.32 2.15 2.09 2.15

Fourth trial 3.58 3.12 3.19 2.99 2.41 2.36 1.91 1.76

Average 3.51 3.14 2.96 2.63 2.28 2.16 2.06 1.90

a The values are mean radial error (MRE) by each trained AI in millimeter units for 200 test data sets. For each N, M combination, four random
samples of size N were drawn from 2200 images.
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DISCUSSION

The present study was the first study that examined

the effect of the quantity of learning data and the

number of detecting targets on the accuracy of AI. Most

AI studies primarily focused on developing and

improving accuracy.2,3,6,14,20 However, previous studies

implemented varying numbers of learning data sets

and landmarks during the training procedure of AI,

making it difficult to compare the resulting benchmarks

among the studies (Table 4). Therefore, the primary

purpose of the present study was shifted from the AI

training method itself to the quantity of data that might

sufficiently train AI, not only for research purposes, but

also for use in clinical practice. As anticipated, the

greater the quantity of learning data, the better the
accuracy of AI. In addition, more detecting targets
required a greater quantity of learning data to achieve a
comparable level of accuracy (Figure 2). By applying a
statistical simulation procedure, the study showcased
how to determine the optimal quantity of learning data
needed to develop AI as accurate as human examin-
ers.

Prior to the beginning stage of the present study, the
pattern of detection errors had been expected to
decrease as the number of data sets increased. If a
plateau with a significantly reduced error was detected,
it could have been identified as an optimal point.
However, there was no plateau. Instead, a linear
relationship between the accuracy of AI and the log-

Figure 3. Result of estimating an optimal number of learning data sets. To develop reliable AI that might be as accurate as human examiners, at

least 2300 learning data sets seemed to be necessary.

Table 4. Previous Reports Regarding Automated Identification of Cephalometric Landmarks

Research Group Year Number of Learning Data Number of Test Data Number of Landmarks Mean Radial Error, mm

Hwang et al.6 2019 1028 283 80 1.46

Lee et al.10 2019 935 100 33 Not reported

Wang et al.20 2018 150 150 19 1.69

Arik et al.3 2017 150 150 19 Not reported

Lindner et al.12 2016 400 None 19 1.2

Kaur and Singh9 2015 135 85 18 1.86

Lindner and Cootes11 2015 150 150 19 1.67

Ibragimov et al.8 2015 150 150 19 1.84

Ibragimov et al.7 2014 100 100 19 1.82–1.92

Vandaele et al.16 2014 100 100 19 1.95–2.20

Mirzaalian and Hamarneh13 2014 100 100 19 2.35–2.61

Chu et al.5 2014 100 100 19 2.68–2.92

Chen and Zheng4 2014 100 100 19 2.81–2.85
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transformed number of learning data sets was ob-
served (Figure 2). In a previous deep-learning example
based on picture files, the performance of image
detection was reported to increase linearly over the
log-transformed number of learning data sets.30 In
mathematics, the logarithmic graph is one of the most
well-known monotone increasing functions. Therefore,
both in reality and in theory, it could be conjectured that
the detection errors would gradually decrease as more
and more data were implemented. However, in
practice, because of the limitation of collecting and
collating a huge amount of data, it might be reasonable
to find an optimal point by examining the accuracy-data
size tradeoffs. In the present study, this was accom-
plished by visually determining the optimal quantity of
data on the graph. An interexaminer reliability measure
could be applied that could be considered as a means
to verify whether the AI created by a certain amount of
data would result in accurate, practical, and clinically
applicable AI. Taking the interexaminer difference of
1.50 mm between human examiners into consider-
ation, the estimated quantity of learning data seemed
to be at least 2300 data sets (Figure 3). Therefore, the
sufficient quantity of learning data calculated in this
study far outnumbered the learning data sizes (40–
1000) that were included in previous publications
(Table 4).

Regarding the number of landmarks identified, most
previous reports detected less than 20 anatomical
landmarks (Table 4). This number might be sufficient to
calculate the cephalometric measurements used in
major orthodontic analyses. However, to obtain smooth
realistic soft-tissue lines connecting neighboring soft-
tissue landmarks and to be capable of predicting
treatment outcomes, considerably greater numbers of
landmarks (ie, more than 70 landmarks) were need-
ed.6,14,23–27,31,32 To predict and visualize facial profile
changes following orthodontic treatment, fewer than 20
landmarks could not provide sufficient soft-tissue
information.3,18–20 Although there have been significant
advances in AI technology, the actual quantity of data
needed for deep learning has not been given sufficient
attention. The success of AI should be a model with
high accuracy and also with considerably large-scale
data sets.

CONCLUSIONS

� The accuracy of AI was directly proportional to the
quantity of learning data and the number of detection
targets.

� It could be conjectured that a considerable quantity of
learning data, approximately at least 2300 learning
data sets, would be required to develop accurate and
clinically applicable AI.
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