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INTRODUCTION

Abstract

The present study investigates global transcriptional changes in frontal cortex area 8 in
incidental Lewy Body disease (iLBD), Parkinson disease (PD) and Dementia with Lewy
bodies (DLB). We identified different coexpressed gene sets associated with disease stages,
and gene ontology categories enriched in gene modules and differentially expressed genes
including modules or gene clusters correlated to iLBD comprising upregulated dynein genes
and taste receptors, and downregulated innate inflammation. Focusing on DLB, we found
modules with genes significantly enriched in functions related to RNA and DNA production,
mitochondria and energy metabolism, purine metabolism, chaperone and protein folding
system and synapses and neurotransmission (particularly the GABAergic system). The
expression of more than fifty selected genes was assessed with real time quantitative
polymerase chain reaction. Our findings provide, for the first time, evidence of molecular
cortical alterations in iLBD and involvement of several key metabolic pathways and gene
hubs in DLB which may underlie cognitive impairment and dementia.

associated with pre-motor symptoms although in most cases the

Lewy body diseases (LBDs), which include Parkinson’s disease
(PD) and dementia with Lewy Bodies (DLB), are neurodegenera-
tive disorders, characterized by the presence of intracytoplasmic
neuronal inclusions named Lewy bodies (LB) and abnormal neu-
rites containing a-synuclein species and aggregates (32, 41, 46, 49,
64). Nonmotor symptoms such as sleep disorders, loss of olfaction
and autonomic alterations may precede the appearance of motor
symptoms; cognitive impairment and dementia can occur at
advanced stages of PD, and dementia is compulsory in DLB. Braak
stages of a-synuclein pathology distribution are useful to delineate
a framework to interlink LBDs into a spectrum. Stages 1-3 can be
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presence of LBs and neurites in selected regions of the medulla
oblongata, pons and midbrain is an incidental finding at autopsy.
The term incidental PD or Lewy Body disease (LBD) (iPD or inci-
dental LBD [iLBD]) refers to those early stages of LBD pathology
with no apparent clinical symptoms, corresponding to the early
stages of LBD spectrum (22). PD is usually manifested at stages 4
and 5 once the involvement of the substantia nigra reaches determi-
nate thresholds of neuronal loss and dopaminergic denervation of
the striatum is manifested. Cognitive impairment can be detected at
stages 5 and 6 in PD, whereas DLB cases are categorized as Braak
stages 5 and 6 of LB pathology (11, 84). However, no exact
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correlation exists between Braak stages and clinical symptoms
linked to cognitive impairment and dementia (14, 23, 28, 47, 48,
65, 77), this fact suggesting that factors other than LBs and neurites
play a cardinal role in the pathogenesis of LBDs. Concomitant
pathologies, particularly those linked to Alzheimer’s disease (AD),
have also been suggested to explain variations in the degree of cog-
nitive impairment in DLB (8, 17, 47, 50, 70, 71).

Decreased dopaminergic, noradrenergic serotoninergic and cho-
linergic innervation of the cerebral cortex are contributory factors
to the appearance of cognitive impairment and dementia in PD.
They are due to the loss of vulnerable neurons in the substantia
nigra, locus coeruleus, raphe nuclei and nuclei of the basal fore-
brain including the basal nucleus of Meynert, respectively (13, 43,
45, 53, 54, 62, 89). However, recent studies demonstrate the pri-
mary impairment of several metabolic pathways in the cerebral cor-
tex in PD and other LBDs, such as synaptic transmission,
mitochondria and energy metabolism, purine metabolism, protein
synthesis, lipid composition of membranes and inflammation,
among others (19, 20, 26, 28, 31, 34-36, 61, 63, 68, 74, 79, 94).

Studies of transcriptomic profiling in LBDs have been mainly
focused on the typically affected subcortical regions such as sub-
stantia nigra, locus coeruleus and striatum in PD (7, 18, 40). Corti-
cal regions have received much less attention with studies limiting
their outcome to lists of differentially expressed genes (DEGs)
(59). Still, this approach has allowed the discovery of the brain
expression of olfactory and taste receptors and their deregulation in
the cerebral cortex and substantia nigra in PD (33, 42).

Here, we set out to investigate global transcriptomic changes
occurring in the frontal cortex of cases of iLBD, PD and DLB rela-
tive to middle-aged individuals with no neurological symptoms and
with no alterations at the postmortem examination. We focused par-
ticularly on identifying gene coexpression modules showing corre-
lation with the spectrum of LB disorders. By applying weighted
gene coexpression network analysis (WGCNA) (57) to microarray
data, we determined the transcriptome structure in the frontal cortex
and identified coexpression modules correlated to iLBD, PD and
DLB. Validation of hubs and selected altered pathways was carried
out with real time quantitative polymerase chain reaction (RT-
qPCR).

MATERIAL AND METHODS BRAIN
SAMPLES

Brain tissue was obtained from the Institute of Neuropathology
Brain Bank (HUB-ICOIDIBELL Biobank) and the Hospital Clinic-
IDIBAPS Biobank following the guidelines of Spanish legislation
on this matter and of the local ethics committee. Processing of brain
tissue has been detailed elsewhere (29, 80). The postmortem inter-
val between death and tissue processing was between 3 h and 15 h.
One hemisphere was cut in 1-cm-thick coronal sections, and
selected areas of the encephalon were rapidly dissected, frozen on
metal plates over dry ice, placed in individual air-tight plastic bags,
numbered with water-resistant ink and stored at —80°C until use
for biochemical studies. The other hemisphere was fixed by immer-
sion in 4% buffered formalin for 3 weeks for morphologic studies.
Neuropathological diagnosis was categorized following current
staging classifications for LBD (1, 10, 78). For AD-related pathol-
ogy, neurofibrillary tangles (NFTs) (9) and phases of AD-related 3-
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amyloid plaques (91) were assigned. Only cases with “typical”
staging of LBD pathology were selected for study.

Two series of cases were used. The first one served for microar-
ray studies. RNA samples from frontal cortex (area 8) of middle
aged (MA) (n = 8, 4 men, 4 women,; age: 67.5 * 12.8 years), iLBD
(n =4, 1 men, 3 women; age: 71.2 = 4.5 years), PD (n = 8, 4 men,
4 women, age: 67.8 =8.8 years) and DLB (=28, 5 men, 3
women; age: 72.3 * 8.6) cases were analyzed using the Affymetrix
microarray platform and the Genechip Human Gene 1.1 ST Array
(Affymetrix, Santa Clara, CA, USA). The second series of cases
was used for RT-qPCR validation of altered expression of selected
genes. Cases used for gene validation were iLDB (n =5, 4 men, 1
woman; age: 66.8 = 8.9 years) at stages 3 and 4, and PD cases
(n =9, 3 men, 6 women; age: 77.1 = 4.7 years) at stages 5 and 6,
DLB cases (n =9, 8§ men, 1 woman; age 76.44 = 5.77 years). PD
cases had suffered from parkinsonism and had received treatment
during the duration of the disease but did not have dementia. MA
cases had not suffered from neurological disease and the neuropath-
ological examination did not reveal abnormalities (n = 15, 6 men,
9 women, age 64.4 = 15.5 years). In addition, four cases with rapid
clinical course DLB (rapid course DLB [rpDLB]; two years of less
of disease duration) (2 men and 2 women, age 73.7 = 2.2 years)
were chosen for a few selective studies (37, 38).

Cases with associated pathologies such as vascular diseases
(excepting mild atherosclerosis and arteriolosclerosis), TDP-43 pro-
teinopathy, infection of the nervous system, brain neoplasms, sys-
temic and central immune diseases, metabolic syndrome and
hypoxia were excluded from the present study. Regarding AD-
related pathology, rare NFTs and B-amyloid deposits were found in
iLBD (Braak stages O-II; Thal phases 0-I); Braak stages I-III and
Thal phases 0-3 were observed in PD; Braak stages 0—V and Thal
phases 05 occurred in DLB. MA cases had not suffered from neu-
rologic, psychiatric or metabolic diseases (including metabolic syn-
drome), and did not have abnormalities in the neuropathological
examination excepting NFT pathology stages I-II and phases 0-2
of B-amyloid plaques.

RNA EXTRACTION

Purification of RNA was carried out with RNeasy Lipid Tissue
Mini Kit (Qiagen, Hilden, Germany) following the protocol pro-
vided by the manufacturer. During purification, samples were
treated with RNase-free DNase Set (Qiagen) to avoid later amplifi-
cation of genomic DNA. The concentration of each sample was
obtained from A260 measurements with Nanodrop 1000. RNA
integrity was tested using the Agilent 2100 BioAnalyzer (Agilent
Technologies, Santa Clara, CA, USA). Values of RNA quality
(RNA integrity number [RIN] values) were from 7 to 8.8 in the first
series and from 6.2 to 8.2 in the second series.

MICROARRAY ANALYSIS

Affymetrix microarray platform and the Genechip Human Gene
1.1 ST Array was used to analyze gene expression patterns on a
whole-genome scale on a single array with probes covering several
exons on the target genes. Starting material was 200 ng of total
RNA from each sample. Sense ssDNA was generated from total
RNA with the Ambion WT Expression Kit from Ambion
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(Carlsbad, CA, USA), according to the manufacturer’s instructions.
Sense ssDNA was fragmented, labeled and hybridized to the arrays
with the GeneChip WT Terminal Labeling and Hybridization Kit
from Affymetrix. Chips were processed on an Affymetrix GeneTi-
tan platform.

Preprocessing of raw data and statistical analyses were per-
formed using Bioconductor packages in R programming environ-
ment. We read CEL files from Affymetrix arrays, corrected the
background and summarized and normalized the data with the
robust microarray method implemented in the Bioconductor
Limma package (81). Then, fold change and SEs were assessed by
fitting a linear model (using the ImFit function in Limma package)
for each gene. Genes with empirical Bayes ¢ test P-values at a level
0f'0.01 were selected. Multiple testing correction was performed by
adjusting P-values for false discovery rate (FDR) using the Benja-
mini and Hochberg method (BH).

GENE ENRICHMENT SCORE

The average expression values of different transcripts of the same
gene were used for gene enrichment scores and weighted gene
coexpression network analysis. Only genes in the upper 25% per-
centile of standard deviation of expression among samples were
assessed. For probes mapping to multiple genes we fused all gene
ids into one and that was considered a “gene” in the network analy-
sis but not for functional annotation, gene ontology (GO) enrich-
ment and protein—protein interactions (PPI) analysis, for which all
individual ids were used.

An enrichment score per gene (5), which is a measure of speci-
ficity of a gene for a particular group, disease state in our study,
was calculated relative to the rest of the groups tested. Briefly, the
method is based on computing linear model coefficients contrasting
all groups pair-wise. These coefficients represent a measure of dif-
ference between two groups in which more distant categories pres-
ent higher coefficient values usually associated with lower P-
values. The enrichment score of a gene in a group is the sum of its
significant coefficients against all other groups.

The enrichment score for each of the 5114 genes under study
was calculated after obtaining the linear models for microarray data
with the LIMMA package (81) considering a linear coefficient stat-
istically significant at uncorrected P-value lower than 0.01.

WEIGHTED GENE COEXPRESSION
NETWORK ANALYSIS

WGCNA was done in R using the WGCNA library (57). We first
constructed a gene coexpression network based on pair-wise corre-
lation of gene expression using all samples at the same time or
independently for each disease condition. Not all network topolo-
gies fitted with the scale-free topology model (i.e., the iLBD net-
work). Therefore, all subsequent analysis based on the
coexpression network constructed with all samples used a soft-
power threshold of 5. We identified modules of genes based on
their topological overlap dissimilarity with their connection
strengths in the weighted network (44, 66). Using the dynamic
tree-pruning algorithm, 23 initial modules were obtained; genes not
assigned to any module were labeled in gray. After merging
all modules with highly correlated eigengenes (Pearson correlation
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>/= 0.8), 13 final modules were obtained. Module eigengenes
were correlated to LBD diagnostic. The P-values were obtained
from a general multivariate lineal model including additional con-
trol variables (i.e., age, sex, RIN, PMI and batch).

Gene enrichment analysis

GO enrichment analysis was performed using GOstats (27). Differ-
entially expressed genes with uncorrected P-values <0.01 for each
contrast were used for GO analysis. All genes belonging to a partic-
ular gene coexpression module were also used for independent GO
analyses. P-values for categories were adjusted considering FDR
using BH with the p.adjust function in R.

PROTEIN-PROTEIN INTERACTION
NETWORK

Assumed protein—protein interaction was obtained with Bio-
Grid, latest release. Subnetworks of genes were obtained using
the function-induced subgraph from the R library rTRM (73).
Only nodes with evidence of physical interaction in humans
were considered. Networks were analyzed and visualized using
Cytoscape (87).

REAL-TIME PCR

RT-qPCR assays were conducted in duplicate on 1000 mg of
cDNA samples obtained from the retrotranscription reaction,
diluted 1:20 in 384-well optical plates (Kisker Biotech, Steinfurt,
GE) utilizing the ABI Prism 7900 HT Sequence Detection System
(Applied Biosystems). Parallel amplification reactions were carried
out using 20x TagMan Gene Expression Assays and 2x TaqgMan
Universal PCR Master Mix (Applied Biosystems). TagMan probes
used in the study are shown in Supporting Information Table 1.
The reactions were performed using the following parameters:
50°C for 2 minutes, 95°C for 10 minutes, 40 cycles at 95°C for 15 s
and at 60°C for 1 minute. TagMan PCR data were captured using
the Sequence Detection Software (SDS version 2.2, Applied Bio-
systems). Subsequently, threshold cycle (CT) data for each sample
were analyzed with the double delta CT (AACT) method. First,
delta CT (ACT) values were calculated as the normalized CT val-
ues for each target gene in relation to the endogenous controls 3-
glucuronidase (GUS-B) and X-prolyl aminopeptidase P1
(XPNPEP1). These housekeeping genes were selected because
they show no modifications in several neurodegenerative diseases
in human postmortem brain tissue (4, 25). A similar pattern was
observed using GUS-f3 and XPNPEP1 for normalization (data not
shown). The mean of GUS-3 and XPNPEP1 was used for correc-
tion and representation. Finally, AACT values were obtained with
the ACT of each sample minus the mean ACT of the population of
control samples (calibrator samples). The fold-change was deter-
mined using the equation 2-AACT (33).

STATISTICAL ANALYSIS FOR RT-QPCR

The normality of distribution of the mean fold-change values
obtained with RT-qPCR for every region and stage between con-
trols and PD cases was analyzed with the Kolmogorov—Smirnov
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test. The nonparametric Mann—Whitney test was performed to com-
pare each group when the samples did not follow a normal distribu-
tion and the unpaired student’s 7-test was used for normal
variables. Statistical analysis was performed with GraphPad Prism
version 5.01 (La Jolla, CA, USA) and Statgraphics Statistical Anal-
ysis and Data Visualization Software version 5.1 (Warrenton, VA,
USA). Differences between groups were considered statistically
significant at P-values: *P < 0.05, **P < 0.01 and ***P < 0.001.
Additionally, BH-FDR adjusted P-values were obtained using the
p-adjust function in R.

RESULTS

Differential gene expression and gene
enrichment score in frontal cortex area 8 in
iLBD, PD and DLB

We contrasted gene expression values of all possible pair-wise
comparisons among all diagnostic groups. We selected differen-
tially expressed genes or DEGs (see methods). We found most
DEGs occurred between DLB and the rest of groups; in particular,
most were genes downregulated in DLB compared to controls, fol-
lowed by genes upregulated in DLB. Considering nominal P-val-
ues lower than 0.01, PD and iLBD showed fewer DEGs than DLB.
Considering multiple-testing adjusted P-values < 0.05, only DLB
cases produced differential expressed genes (DEG) genes compara-
ble to controls, and no gene survived that threshold in iLBD and
PD (Supporting Information Table 2).

We performed GO enrichment analysis focused on biological
process categories for each group of DEGs independently in upreg-
ulated and downregulated genes (Supporting Information Table 3).

To summarize all pair-wise group comparison in one statistic,
we calculated a gene enrichment score for each of the 5114 genes
analyzed. The advantage of this approach is the possibility of high-
lighting genes that are differentially expressed in one group relative
to all other groups. The score of a given gene summarizes differen-
ces in expression levels between comparisons among all four
groups of samples. Positive or negative scores are associated with
an increase or a reduction in expression, respectively, of each gene
in a given group relative to the rest of the groups. We obtained
1914 genes with an enrichment score other than 0 in at least one of
the groups. As revealed by clustering analysis, we found that DLB
presented the highest number of genes with higher enrichment
scores (Figure 1A). In agreement with the proportion of DEGs
described above, gene scores in DLB were mostly negative (Figure
1A). The fifty top upregulated and top downregulated genes in
DLB are listed in Supporting Information Table 4.

The main upregulated genes in frontal cortex in iLBD were asso-
ciated with axonemal dynein complex assembly and taste receptors,
whereas the main downregulated genes were linked to inflamma-
tion (Table 1).

The main upregulated genes in frontal cortex in DLB compared
with controls were categorized into cellular development and
DNA/RNA metabolism genes. The main downregulated genes in
frontal cortex in DLB compared with controls were grouped into
synapsis and neurotransmission, chaperone and protein folding,
mitochondria and energy metabolism, purine metabolism and
inflammation (Table 2).
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Weighted gene coexpression network analysis

Weighted gene coexpression network was constructed using the
expression values of 5114 genes with variable expression among
the 28 samples. Thirteen uncorrelated (» < 0.8 gene modules were
identified and labeled by colors and numbers (M1 to M13). The
genes not assigned to any particular coexpression module were
assigned to MO or “gray” (Figure 1B).

We obtained the most representative pattern of gene expres-
sion across all samples for each one of these modules by calcu-
lating the eigengene (i.e., the first principal component). The
eigengene of each module was then correlated with the LBD
spectrum (iLBD, PD and DLB) obtaining an eigengene signifi-
cance for each module (Figure 2A). Three modules, M4-
lightcyan (157 genes), M6-tan (215 genes) and M10-darkred
(23 genes) were negatively correlated with iLBD. M3-green
(226 genes), M11-royalblue (23 genes) were positively and
M10-darkred negatively, correlated to PD were negatively cor-
related with iLBD. M3-green (226 genes) and M11-royalblue
(23 genes) were positively and M10-darkred negatively, corre-
lated to PD. Three other modules, M3-green, M5-brown and
MO9-salmon, correlated significantly with DLB. M5-brown cor-
related negatively with DLB and contained 766 genes. M3-
green and M9-salmon correlated positively with DLB and con-
tained 226 and 51 genes, respectively (Figure 2B). None of our
identified disease-correlated modules were also correlated with
age, indicating that our disease associated modules are not sig-
nificantly confounded by transcriptomic changes produced by
normal ageing. Of note, one module, M7-midnightblue, was
negatively correlated with age.

Module characterization

Four strategies were used: (1) Identification of top highly con-
nected genes (or hubs) in each module, (2) Assessment of over-
laps with available published brain modules to correlate present
LBD-associated modules to brain-related biological categories,
(3) Identification of enriched GO among genes in each module
and (4) Subdivision of each module into subnetworks based on
available knowledge concerning physical PPI networks of
human proteins.

Top hub genes

MSN, UGT2B11, lysosomal protein transmembrane 5 (LAPTMY)
gene was the top hub genes in the iLBD-associated modules M4-
lightcyan, M10-darkred and M6-tan, respectively. MSN encodes
for Moesin, a molecule that links cytoskeleton to membrane and
which is a suggested phosphorylation target of LRRK2. UGT2B11
encodes a UDP-glucuronosyltransferase and LAPTMS is a lysoso-
mal gene recently identified as a hub node in the protein-interaction
network obtained from DEGs in locus ceruleus in PD patients vs.
healthy donors (18). Hub genes in M3-green and M11-royalblue,
PD-associated modules, are genes with unknown function.
ATP6VIB2 and ATPase, H+ transporting, lysosomal 70 kDa, V1
subunit A (ATP6V1A) and stress-induced-phosphoprotein 1
(STIP1) were top hub genes for MS5-brown and M9- salmon,
respectively, linked to DLB modules. ATP6V1A encodes a compo-
nent of vacuolar ATPase which mediates the acidification of intra-
cellular organelles including endosomes, lysosomes, the trans-
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Figure 1. A. Heatmap representation of the enrichment scores of
1914 genes having at least one group of samples with enrichment
scores other than 0. MA: middle-aged, iLBD: incidental Lewy body
disease, PD: Parkinson disease, DLB: dementia with Lewy bodies.
B. Weighted gene coexpression network analysis of the frontal cortex
transcriptome using 5114 gene expression values of 28 assessed
samples identifies 13 gene modules. Modules are labeled by color
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and number (M1 to M13). Genes not assigned to any particular coex-
pression modules were labeled MO or gray. Dendrogram obtained by
hierarchical clustering of genes based on their topological overlap is
shown at the top. Bottom rows indicate the correlation value of each
gene expression and the spectrum of LBD pathology. Blue to red indi-
cates negative to positive correlation values. None of our identified
modules correlated with age.
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Table 1. Main deregulated gene clusters in frontal cortex in iLBD.

Santpere et al

Cluster Gene names Count Size Odds Ratio P-value Deregulation
Adaptive immune response C3AR1 C3 C1QC C1QB INPP5D PTPN6 10 58 12.64 0.00 Down
ADA FCER1G CTSC TGFB1
Antigen processing and presentation SEC23A RAB3B PSMD8 PSMC2 PSMB2 24 65 2.85 0.00 Down
ACTR1B LGMN RAB7A PSMB3 RAB3C
DCTN6 AP1S1 PSMD12 DCTN2 DCTN3
PSMA5 AP2M1 PSMB6 PSMC4 PSMA3
PSMA4 DYNC111 KIFSA APTM1
Axonemal dynein complex assembly LRRC6 1 2 353.08 0.01 Up
Cell activation involved in immune response APBB1IP TYROBP VAMP8 ADA LCP1 8 52 10.72 0.00 Down
FCER1G HLA-DMB TGFB1
Detection of chemical stimulus involved in TAS2R4 TAS2R14 2 5 256.67 0.00 Up
sensory perception of bitter taste
Granulocyte activation TYROBP FCER1G 2 7 21.94 0.01 Down
Innate immune response CSF1R HLA-DPB1 AIF1 C3 TYROBP C1QC 18 277 4.53 0.00 Down
C1QB HLA-DPA1 TREM2 TRIM22 ITGB2
PTPN6 CYBB FCER1G RPS6KA1 VSIG4
TGFB1 CXCL16
Lymphocyte activation involved in immune APBB1IP ADA LCP1 FCER1G HLA-DMB 6 31 13.83 0.00 Down
response TGFB1
Mononuclear cell proliferation HLA-DPB1 AIF1 LST1 HLA-DPA1 INPP5D I 54 15.77 0.00 Down
ITGB2 PTPN6 ADA HLA-DMB VSIG4
TGFB1
Myeloid dendritic cell activation TGFBR2 CD37 TGFB1 3 8 33.34 0.00 Down
Positive regulation of mast cell activation VAMPS8 FCER1G 2 7 21.94 0.01 Down
Regulation of B cell mediated immunity C3 PTPN6 FCER1G TGFB1 4 8 56.34 0.00 Down
Regulation of immunoglobulin production CD37 TGFB1 2 8 18.28 0.01 Down
T cell activation involved in immune response APBB1IP LCP1 FCER1G HLA-DMB 4 13 25.01 0.00 Down

Golgi network and synaptic vesicles, thus enabling a plethora of
functions such as zymogen activation, endocytosis, synaptic trans-
mission and protein transport (12). STIP1 (HOP) is implicated in
assisting the function of chaperone protein interaction with HSP70
and HSP90 (72) (Supporting Information Table 5).

Overlap of modules with reported brain-related
categories: specific cell populations and
particular diseases

Module M6-tan and M4-lightcyan were highly enriched in markers
of microglia (15). MS5- brown and M9-salmon DLB-associated
modules were found enriched in neuronal and microglial markers
(24, 58) (Figure 3, Supporting Information Table 6). Other modules
identified in our study, but not correlated with LBD, showed
enrichment in particular cell types. For instance, M2-blue module
was enriched in oligodendrocyte markers whereas M1-cyan and
M7-midnightblue were enriched in neuronal and glial cell markers.
These observations support the biological consistency of our net-
work and the robustness of the method to build similar transcrip-
tomic modules using different sources of data.

Mo-tan modules presented enrichment in genes that was also
deregulated at early stages of AD (75). Moreover, module M5-
brown showed overlap with deregulated gene sets and modules
reported in AD (6, 60). These confluences suggest commonalities
involving multiple processes in these neurodegenerative diseases.
In fact, DLB is largely associated with AD-related pathology, and
DLB cases in the present series had associated AD pathology.

320

Identification of enriched GO among genes in
each module

We also attempted to relate genes in modules to particular GO.
Consistent with the microglial nature of this module, genes in M6-
tan were highly enriched in GO categories related to immune sys-
tem and inflammation. Similarly, M4-lightcyan was also enriched
in categories related to inflammatory defence response. Module
MS5-brown showed highly significant enrichment in GO categories
related to synaptic transmission and energy metabolism, among
others. Genes in M9-salmon module presented a highly significant
enrichment in GO categories related to protein folding and heat-
shock chaperone activity. Interestingly, the age associated M7-
midnightblue module was enriched in GO categories such as hor-
mone response, oxidative stress and learning, among others. Sup-
porting Information Table 7 shows the full list of categories in
modules 3, 5, 6, 9 and 11. Only few genes composed M11-
royalblueand M10-darkred for proper GO analysis, but those mod-
ules contained taste 2 receptor members (TAS2R10, TAS2R4,
TAS2R50) and nine olfactory receptors, respectively.

Putative subnetworks of protein-protein
interactions

We intersected genes from each coexpression module with PPI
databases to identify putative subnetworks with biological rele-
vance within modules. Genes in M6-tan, M4-lightcyan, M5-brown
and M9-salmon each produced notable PPI subnetworks composed
of 44, 51, 302 and 21 genes, respectively (representing 25.7%,
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Table 2. Continued.

Deregulation

P-value

Size Odds ratio

Count

Gene names

Cluster

Down

0.00

123 2.1

37

ERLEC1 USP5 KCTD13 PSMD8 PSMC2 PSMB2 USP11 PSMB3 PARK2

Ubiquitin-dependent protein

NDFIP1 USP10 UBXN11 FBXO9 PRICKLE1 FBXL2 PSMD12 PLK2

catabolic process

RLIM RNF185 VPS25 PSMA5 VPS4B PSMB6 UBE2N PSMC4 COPS3
UCHL1 UBE2W PSMA3 GSK3B PSMA4 GLMN BBS7 RNF14 RNF4

UCHL5 NEDDA4L
VPS33B RAB3B SCFD2 RAB3C NSF SNAP25 RAB3A VPS33A STXBP1

Down

4.19 0.00

28

13

Vesicle docking

RAB27B RALB STX12 BLOC1S6
VPS11 VPS33B SNX4 SEC23A COPG1 NSG1 RAB7A SNAP25 COPZ1

Down

2.12 0.00

79

24

Vesicle organization

RAB3A VAMP1 PRKCI PTPRN STXBP1 VPS4B SNX10 BLOC1S2

VAMP2 STX12 VTA1 BLOC1S6 HMP19 APTM1 SYP

Santpere et al

35.4%, 47.2% and 45.7% of the genes in the module listed in the
PPI database). Regarding M6-tan module PPI subnetwork, spleen
tyrosine kinase (encoded by SYK) appeared with 16 interacting
partners as the nucleating gene with highest degree (Figure 4A).
M4-lightcyan included a subnetwork with CDK2, MSN and TP53
as top degree nodes (Figure 4B). Heat-shock related proteins
encoded by genes STIP1, heat shock 70 kDa protein 5 (glucose-
regulated protein, 78 kDa) (HSPAS), AHSA1 and heat shock 70
kDa protein 1A (HSPA1A) were the highest connected nodes in
the M9-salmon PPI subnetwork (Figure 4C). M5-brown module
contained a large PPI subnetwork with several nodes including pro-
teins encoded by tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta polypeptide (YWHAB),
TP1A, glycogen synthase kinase 3 beta (GSK3B), proteasome
(prosome, macropain) subunit, alpha type, 3 (PSMA3) and SNCA,
among others (Figure 4D).

These results allow for better characterization of selected LBD-
associated modules. M5-brown globally downregulated in DLB
and enriched in neuronal markers and in genes mostly related to
synaptic  transmission and energy metabolism presented
ATP6V1B2 and YWHAB as top hub genes in the transcriptomic
and PPI networks, respectively. Other highly connected molecules
were GSK3B, PSMA3, ATP6VODI, triosephosphate isomerase 1
(TPI1), ATP6VIA and SNCA. Finally, an M9-salmon module,
globally upregulated in DLB, was characterized by significant
enrichment in genes involved in heat-shock protein folding and
microglial markers, and was nuclearized around the hub gene
STIP1 in both transcriptomic and PPI networks. Other highly inter-
acting proteins were encoded by DnaJ (Hsp40) homolog, subfamily
A, member 1 (DNAJA1), DnaJ (Hsp40) homolog, subfamily B,
member 1 (DNAJB1), DnaJ (Hsp40) homolog, subfamily B, mem-
ber 4 (DNAJB4), HSPAS, HSAPA6, AHSA1 and HSPATA.

RT-gPCR validation

LAPTMS, a top gene in M6, was found not to be deregulated in
iLBD, PD and DLB. ATP6V1A, one of the top genes in M5, was
downregulated in DLB (1.03 = 0.25 vs. 0.57 = 0.52, P = 0.007).
The expression of STIP1, one top gene in M9, was not significantly
altered in DLB but only in a subset of rpDLB (see later) and in PD
(1.03 = 0.28 vs. 1.75 0.70, P = 0.006); however, mRNA expres-
sion of DNAJA1 and DNAIJBI, other top genes in the same mod-
ule, was significantly increased in DLB (see later). SYK, the
principal PPl in M6 was not deregulated in iLBD, PD and DLB
(MA: 1.06 =0.51, iLBD: 0.81 =0.58, PD: 1.02 = 0.38, DLB:
1.47 £ 0.93).

TPI1, a PPI member of module 5, was upregulated in PD
(1.02 £0.20 vs. 1.29 = 0.14, P=0.004). No significant modifica-
tions in the expression mRNA levels were observed for selected PPI
members of M5 and M9 modules in DLB. However, several mem-
bers were deregulated in a subpopulation of DLB cases characterized
by their rapid course and classified as rpDLB. Regarding M5, upreg-
ulated genes in rpDLB were GSK3B (1.03 = 0.22 vs. 1.62 = 0.88,
P=0.046), whereas PSMA3 (1.01 £0.15 vs. 0.57%+0.05,
P =0.000) and YWHAB (1.01 = 0.15 vs. 0.69 + 0.22, P = 0.007)
were downregulated. Genes representative of PPI in M9 were upreg-
ulated in rpDLB: HSPAIA (1.01 =040 vs. 3.10*2.00,
P =0.007), HSPAS5 (1.06 = 0.38 vs. 2.14 £ 0.83, P =0.003) and
STIP1 (1.03 = 0.28 vs. 2.07 = 1.10, P = 0.009).
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Figure 2. A. Module eigengenes for each module by LB spectrum.
B. Correlation values (univariate) and P-values for the relationship
between each module eigengene and each LBD stage compared
separately with MA or various control variables. P-values for LBD

Abnormal regulation of the dynein cluster was assessed by RT-
qPCR in LBDs with particular attention on iLBD. TASRs were
assessed in iLBD, PD and DLB. Three biological functions, RNA/
DNA metabolism, chaperone and protein folding, and synaptic
neurotransmission, were selected for validation in DLB. We
extracted those pathways and clusters from each of those categories
that appeared in the corresponding module and disease in which
the category appeared as significantly enriched.

Regarding dyneins, dynein axonemal assembly factor 1
(DNAAF1), dynein axonemal heavy chain 11 (DNAH11), dynein
axonemal heavy chain 2 (DNAH2), dynein axonemal heavy
chain 7 (DNAH7) and dynein axonemal intermediate chain 1
(DNAI1), but not dynein axonemal heavy chain 5 (DNAHS5) and
dynein axonemal heavy chain 9 (DNAH9), were significantly
upregulated in iLBD when compared with MA. Interestingly,
upregulation also occurred in PD and DLB. Taste receptor
TAS2RS and TAS2R13 were upregulated and downregulated,
respectively, in iLBD; TAS2R10 upregulated in PD, and
TAS2R4, TAS2R5, TAS2R14, TAS2R10 and TAS2R13 signifi-
cantly upregulated in DLB (Table 3).

Moving on to iLBD, expression of allograft inflammatory factor
1 (AIF1) (which encodes IBA-1) was downregulated, as predicted,
in frontal cortex (control: 1.07 =0.41, iLBD: 0.57 = 0.20,
P =0.018). Focusing on DLB, polyribonucleotide nucleotidyltrans-
ferase 1 (PNPT1), poly(A) polymerase alpha (PAPOLA), RELA
(proto-oncogene, NF-kB subunit) and DOT1 like histone lysine
methyltransferase (DOT1L) mRNAs, all of them involved in RNA/
DNA metabolism, but not lysine acetyltransferase 2A (KAT2A),
were significantly upregulated in DLB (Table 4). Importantly,
PNPT1 and RELA were upregulated in iLBD, and KAT2A was
added in PD (Table 4).

Chaperone members DNAJA1, Dnal (Hsp40) homolog, subfam-
ily A, member 4 (DNAJA4), DNAJBI1, heat shock 70 kDa protein
4 (HSPAA4), heat shock 70 kDa protein 6 (HSP70B) (HSPA6) and
heat shock 60 kDa protein 1 (chaperonin) (HSPDI1), but not
DNAJB4, HSPA1A, HSPAS and MOB family member 4, phocein
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stages correspond to partial coefficients in the multivariate analysis.
Color code indicates the significance of the correlation. Seven
modules significantly correlate with different stages of LBD.

(HSPE1), were significantly upregulated in frontal cortex area 8 in
DLB when compared with MA (Table 4). No modification in the
expression of these genes was found in iLBD, but DNAJAI,
HSPA4 and HSPAS5 mRNA expression was significantly increased
in PD (Tables 3 and 4).

Finally, neurotransmission-related ~ components  gamma-
aminobutyric acid B receptor, 2 (GABBR2), gamma-aminobutyric
acid A receptor, alpha 1 (GABRALI), glutamate decarboxylase 1
(brain, 67 kDa) (GAD1) and synaptic proteins neuropilin and
tolloid-like 1 (NETOL1), as well as synaptophysin (SYP) mRNAs,
were found to be significantly downregulated in DLB when com-
pared with MA. The expression of glutamate receptor, ionotropic-
methyl p-aspartate 2A  (GRIN2A) and glutamate receptor,
ionotropic-methyl p-aspartate 2B (GRIN2B), and synaptic proteins
member RAS oncogene family (RAB3A), Rabphilin 3A homolog
(mouse) (RPH3A), synaptosomal-associated protein, 25 kDa
(SNAP25), syntaxin binding protein 1 (STXBP1), synaptotagmin [
(SYT1), synaptotagmin XIII (SYT13) and Synaptotagmin XVI
(SYT16), was not altered in DLB (Table 4).

DISCUSSION

This study presents the first transcriptome analysis of the frontal
cortex integrating the whole spectrum of LBDs. In addition to per-
forming a traditional gene-based differential expression analysis we
considered a system biology approach based on coexpression net-
works. In particular, we applied WGNCA which allows the identi-
fication of modules of genes that are coexpressed across samples.
These modules have to be interpreted with the understanding that
such coexpression reflects a common biological function (e.g.,
from biochemical pathways to cell type defining signatures). We
have identified some modules that correlate with LBDs. A propor-
tion of genes included in those modules are also differentially
expressed in a traditional gene-based comparative approach using
the same microarray data and using independent case series for
RTqPCR quantification and validation. The present study has also
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Figure 3. Enrichment score (-log10 P-value) of genes in selected modules in previously published brain gene sets associated with cell types or
brain regions. Module-brown (M6) is enriched in neuronal genes; module-tan (M5) is enriched in microglial genes; module-salmon (M®6) has non-
specific enrichment.
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Figure 4. Putative subnetworks of protein—-protein interactions. A.
M6-tan module PPl subnetwork showing that spleen tyrosine kinase
(encoded by SYK) interacting with 16 partners is the gene with the
highest degree of nucleation. B. M4-lightcyan module subnetwork
showing high degree proteins such as CDK2, MSN and TP53. C. M9-
salmon PPl subnetwork shows a large connected node related to
heat shock proteins encoded by STIP1, DNAJA1, DNAJB1, DNAJB4,

identified several hubs and PPI which raise the alert about putative
biomarkers and targets for therapeutic intervention.

Lack of comorbidities in the present series implies the selection
of a limited number of cases which minimizes the risk of bias. PD
and DLB cases have concomitant AD-related pathology which was
variable from one case to another. Thal phases were used to evalu-
ate B-amyloid plaques; however, no distinction was made between
diffuse and neuritic plaques.

Discussion is centred on selected genes, among those identi-
fied by differential expression analysis and weighted correlation
networks, whose mRNA expression was assessed with RT-
gPCR. The transcriptome is relatively conserved in iLBD and
PD as no genes surpass the threshold of significance when
P-values are adjusted for multiple testing. This is in contrast
with DLB where hundreds of genes show multiple testing-
corrected significant expression differences when compared
with MA individuals.

Brain Pathology 28 (2018) 315-333
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HSPA5, HSAPAB, AHSA1 and HSPA1A, among others. D. M5-brown
module contains a large PPl subnetwork with several nodes including
proteins encoded by YWHAB, GSK3B, PSMA3, ATP6VOD1, TPI1,
ATPBV1A and SNCA, among others (circular network representation is
shown in the small panel proteins ordered by degree, a zoom in the
top degree proteins is shown in the larger panel).

Dyneins are one deregulated cluster in LBDs. Five of seven
assessed members are upregulated in iLBD and PD, and three of
seven in DLB. Because of their ATP hydrolysis-mediated involve-
ment in cytoplasmic transport (82), early alteration of the cargo
transport along neurites may be suggested in the frontal cortex
within the LBD spectrum.

Expression of taste and olfactory receptors and down-stream
obliged functional signaling pathways in the CNS and their deregu-
lation in neurodegenerative diseases is intriguing. It is possible that
these receptors in brain are not involved in the perception of odors
and taste but rather correspond to new central chemoreceptors look-
ing for putative ligands or interacting complementary receptors
(30). TASRs are significantly upregulated in frontal cortex in PD
and DLB (33, 38), and our findings further indicate that deregula-
tion of TASRSs in frontal cortex occurs in iLBD as well. Previous
studies have shown altered protein synthesis machinery in the fron-
tal cortex in PD and DLB from the nucleolus to the ribosome (36,
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Table 3. Quantification of the expression of selected genes corresponding to axonema and taste receptors clusters in MA, iLBD, PD and DLB.
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P-value

P-value

P-value

Adjusted MA VS PD Adjusted MA vs DLB Adjusted

iLBD PD DLB MA vs iLBD

MA

Probes

0.987973
0.043544
0.944451
0.944451
0.039284
0.147016
0.021154
0.035171

0.987973
0.011763
0.899477
0.886887
0.007938
0.084009
0.000592
0.004187
0.001261

0.078162
0.078162
0.085253
0.196495
0.471895
0.085253
0.085253
0.471895
0.814114
0.231675
0.250023
0.078162
0.814114

0.005583
0.003889
0.010576
0.060820
0.227373
0.012179
0.008326
0.247183
0.639661
0.077225
0.089294
0.002611

0.013524
0.039207
0.061973
0.245494
0.068678
0.339706
0.0135624
0.5603086

0.000481
0.005601

1.04+0.36
3.27+243
1.05+0.38
1.05+0.51

2.06 +1.03
1.96 +0.51
2.40+1.50

2.18+0.72
3.17+1.94
2.03+0.97
1.76 £0.89
1.84 +£0.69
2.39+225
2.13+0.32

1.04 +0.31

DNAAF1

Axonema

1.16 +0.57
1.07 +£0.41

DNAH11
DNAH2
DNAH5
DNAH7
DNAH9
DNAI1

0.012770
0.064296
0.016352
0.105147

1.69+0.83
1.356+0.51
2.36*+1.25
3.09+2.22

1.08 +0.44
1.08 +0.42
1.16 +0.63
1.07 +£0.43
1.03 +0.27
1.03+0.25
1.15+0.57
1.08 +0.40
1.13+0.50
1.11+0.49

1.67 +0.45
1.67 +0.56
2.96*+1.44

0.000644
0.203630

1.82+0.78
2.25+1.03
2.51+1.59

1.33+0.80
1.14+0.67

2.44 +2.31
0.65*+0.65
4.50+3.33

1.48+1.12
0.61+0.33

TAS2R4

Taste receptors

0.021154
0.043544
0.321787
0.080480
0.080850

TAS2R5

0.012441
0.229848
0.038324
0.042350

0.690133
0.319998
0.628649
0.021966

0.427225
0.091428
0.371381

0.89 +=0.54
0.68+0.42

TAS2R14

1.54+1.15

TAS2R50

1.68+0.64
1.63£0.62

1.49+1.09

7.27 =5.99

TAS2R10

0.625557

0.002092

0.99 = 0.50

TAS2R13

Green, indicates downregulation; Red, indicates upregulation.

Data are expressed as mean values + SD; significant comparisons between groups are expressed by P-values. Upregulated and downregulated genes are represented by different colors.

P-values have been adjusted using the BH method in each contrast and are indicated next to nominal P-values.
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38). Nuclear alterations include increased nucleolar stress and
altered synthesis of ribosomal RNAs, in addition to altered produc-
tion of mRNAs. Our findings show altered mRNA expression of
different molecules involved in RNA and DNA metabolism such
as KAT2A which is upregulated in PD, and PNPT1, PAPOLA,
RELA and DOTI1Ls which are upregulated in DLB. PNPT1 and
RELA are also upregulated in iLBD. Therefore, genes which
encode proteins involved in the acetylation and methylation of his-
tones, RNA processing and the modulation of NF-kB-mediated
gene transcription are abnormally regulated in DLB and, to a lesser
degree, in other disorders within the LBD spectrum. A primary
effect of a-synuclein can be postulated, as a-synuclein is abnor-
mally localized in the nucleus in neurons, and probably also in glial
cells, in the frontal cortex in PD (36).

Another deregulated cluster in LBD is related to innate inflam-
matory responses. This has been the subject of two detailed studies
in PD and DLB (34, 38). An interesting aspect was the downregu-
lation of cytokines and several mediators of the inflammatory
response in the substantia nigra at early stages of PD (34) and the
relatively low inflammatory response in the frontal cortex in DLB
(38), which is in line with previous observations pointing out the
relatively low inflammatory response and enhanced dystrophic
microglia in DLB (2, 88, 90). This is further supported in the pres-
ent study by downregulation of AIF1, which encodes the microglial
marker IBA-1 in the frontal cortex in iLBD, thus suggesting early
microglial alteration in LBDs.

Another DLB-associated module is related to heat-shock/chaper-
one proteins and is globally upregulated in DLB. Three out of ten
assessed genes are upregulated in the frontal cortex in PD and six
out of ten in DLB. These include DNAJA1, DNAJ4 and DNAJBI,
the products of which act as heat shock protein 70 cochaperones,
and chaperones HSPA4, HSPA6 and HSPD1.

Moreover, STIP1, a copartner in the HSP70/HSP90 activity in
protein folding, is the top hub gene in this module and PPI together
with HSPA1A and HSPAS. DNAJAl and DNAJBI are also
among the top hub genes in this module. Importantly, the expres-
sion of this gene is increased in PD and DLB but significantly
upregulated only in PD. Refolding and clearance of a-synuclein
aggregates requires chaperones and the proteasome system (55).
Our findings are consistent with the presence of abnormally aggre-
gated a-synuclein in the cortex in DLB and also with previous
observations of increased folding proteins and unfolded protein
response in DLB (3, 16).

We found a large gene coexpression module downregulated in
DLB that is enriched in neuronal markers and in genes mainly
involved in synaptic transmission. Synapses are altered in the cor-
tex in PD and DLB (19, 20, 74, 85, 86). a-synuclein is abundant in
the pre-synaptic terminals, where it plays a role in synaptic func-
tion. Abnormal folding and oligomerization and formation of cer-
tain types of aggregates may directly produce synaptic damage,
and may do so indirectly by exerting toxicity on mitochondria,
lysosomes and cytoskeleton (56, 74, 85). Notably, a top degree
gene of the PPI subnetwork from this module is a-synuclein. In
spite of being a PPI hub, SNCA is not a DEG between DLB and
CTL as assessed by Limma, which highlights the importance of the
present higher-complexity level study in revealing genes otherwise
veiled in conventional differential expression methods.

Gene downregulation related to neurotransmission in the frontal
cortex in DLB particularly involves GADI1, the product of which

Brain Pathology 28 (2018) 315-333
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catalyzes the synthesis of y- aminobutyric acid from r-glutamic
acid, and GABA receptors GABBR2 and GABRAI, showing that
the GABAergic system in frontal cortex is vulnerable to DLB.
Other downregulated genes are NETO1, which encodes a protein
involved in synaptic N-methyl-p-aspartic acid receptor complexes,
and SYP, which encodes SYP, a major synaptic protein. In line
with the present findings, loss of post-synaptic GABAreceptor
markers has been reported in the occipital cortex in DLB (52). SYP
expression was previously reported as decreased in the occipital
cortex in DLB as well (67). The identification of deregulated M5
top hub gene, ATP6V1A, the product of which mediates the acidi-
fication of several intracellular organelles including synaptic
vesicles, thereby facilitating synaptic transmission (12), further
points to altered synaptic function.

Other altered pathways identified in the MS5-brown module,
namely energy metabolism and mitochondrial function, and purine
metabolism, have been the subject of previous analysis. Mitochon-
dria and energy metabolism is altered in the frontal cortex in PD
and DLB (37-39, 51, 68, 69, 76, 92). Moreover, decreased enzy-
matic activity of complexes [-IV has been demonstrated in a subset
of PD cases with dementia (38, 69) and in cases with DLB (37,
68). Abnormal a-synuclein is localized in mitochondria in the fron-
tal cortex in PD (38) and in the nucleus (36); thus, a possible link
between altered nuclear and mitochondrial DNA/RNA processing
and aberrant a-synuclein may be considered. The present study
also shows two additional PPIs in module 5. Cytochrome c,
somatic (CYCS) encodes a small heme protein localized in the
inner membrane of the mitochondria which transports electrons
from cytochrome b to the cytochrome oxidase complex (21). Sec-
ond, TPI1 encodes a protein which participates in glycolysis and
glucogenesis (93).

Regarding purine metabolism, our previous RT-qPCR studies
revealed abnormal expression of several enzymes involved in
purine metabolism in PD and DLB (35, 38). No attempt was made
to validate other important altered pathways such as those inked to
the ubiquitin proteasome system (UPS) in LBDs revealed by micro-
arrays, and interpretation of significantly altered regulation of cer-
tain top hub genes in M5 such as GSK3B and YWHAB, and M6
as LAPTMS remains speculative.

CONCLUDING COMMENTS

The study of human cases is irreplaceable in the effort to gain
understanding of the neurodegenerative diseases that are exclusive
to human beings. It can be criticized the limited number of avail-
able cases suitable for molecular studies in the present series. This
limitation may account for certain discrepancies between the obser-
vations obtained with arrays and the subsequent validations with
RT-qPCR, and also by the observation of isolated deregulated
genes which are apparently disconnected from highly represented
deregulated clusters. In spite of these constraints, the present study,
using selected samples with no comorbidity and adequate RNA
preservation, has documented an extraordinary amount of informa-
tion. Validation of the present findings should be expected in other
independent series.

We used a “network medicine” approach to the study of LBDs
aiming at unveiling changes in the transcriptome in frontal cortex
area 8 which may affect particular metabolic pathways and

330

Santpere et al

biological functions. This approach is being increasingly used to
discover relevant pathogenic effectors in neurodegenerative dis-
cases (83). Here, we show early alteration in the regulation of the
axonema and particularly of dyneins, and of taste receptors in
iLBD, maintained and augmented along with the progression of the
LBD spectrum. Interestingly, innate inflammation is downregulated
in iLBD as manifested by decreased AIF1 expression. It is worth
mentioning that the expression of several cytokines and mediators
of the inflammatory response is also reduced in iLBD (unpublished
observations); the small number of cases assessed in this series pre-
cludes further evaluations, but our findings provide insights that
will allow deepening to into the study of reduced innate inflamma-
tory regulation at early stages of LBDs. We have also identified
and validated deregulation of several pathways in the frontal cortex
in DLB; this includes upregulation of RNA/DNA processing and
chaperones, and downregulation of neurotransmission thereby
revealing the vulnerability of the GABAergic system. Altered mito-
chondria and energy metabolism, protein synthesis, and altered
purine metabolism regulation were the subject of previous studies.
Our approach has also identified robust deregulated modules repre-
sented by several genes, hub genes and PPI subnetworks within
these modules. These observations reveal potential candidates for
further analysis as they may involve key pathogenic molecular
events taking place in the frontal cortex in LBDs.
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