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Abstract

Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic 
resonance imaging (MRI) has revolutionized our ability to detect and monitor MS 
pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weight-
ings that yield superb in vivo visualization of central nervous system tissue and have 
proved invaluable as diagnostic and patient management tools in MS. However, 
standard clinical MR methods are not specific to the types of tissue damage they 
visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise 
normal on conventional MRIs. Myelin water imaging is an MR method that provides 
in vivo measurement of myelin. Histological validation work in both human brain 
and spinal cord tissue demonstrates a strong correlation between myelin water and 
staining for myelin, validating myelin water as a marker for myelin. Myelin water 
varies throughout the brain and spinal cord in healthy controls, and shows good 
intra- and inter-site reproducibility. MS plaques show variably decreased myelin 
water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal 
study of myelin water can provide insights into the dynamics of demyelination and 
remyelination in plaques. Normal appearing brain and spinal cord tissues show re-
duced myelin water, an abnormality which becomes progressively more evident over 
a timescale of years. Diffusely abnormal white matter, which is evident in 20%–25% 
of MS patients, also shows reduced myelin water both in vivo and postmortem, and 
appears to originate from a primary lipid abnormality with relative preservation of 
myelin proteins. Active research is ongoing in the quest to refine our ability to im-
age myelin and its perturbations in MS and other disorders of the myelin sheath.

MYELIN IN MULTIPLE SCLEROSIS
The most obvious pathologic feature of multiple sclerosis 
(MS) are multiple white matter plaques, characterized by 
demyelination with varying degrees of remyelination, inflam-
mation, and axonal loss (54,95,110,131,133). As is true of 
all pathologic processes in the central nervous system (CNS) 
MS plaques also show gliosis, comprised of astrocytes rang-
ing in morphology, depending on the inflammatory demy-
elinative activity of the lesion, from marked acute reactive 
hyperplastic forms to chronic fibrillary gliosis, the latter 
imparting the “sclerotic” texture which is responsible for 
the name of this disorder (110). Subsequently, it was rec-
ognized that demyelinated plaques also occur in cortical 
(13,59,156) and deep gray matter (53,56,181). However, from 
the very first descriptions of the pathology of MS 

(17,18,21,22,26), the white matter demyelinated plaque has 
been the most prominently emphasized and consistent feature 
of MS, making it the prototypic “demyelinating disease.” 
While it is becoming increasingly obvious that axonal dam-
age occurs in MS (41,167) and the relentless degeneration 
of axons is probably the most important contributor to 
clinical progression (164), the overwhelming majority of MS 
plaques manifest a greater degree of loss of myelin than 
axons. This would indicate that demyelination, which mani-
fests clinically as focal deficits resulting from conduction 
block of the action potential (152), must be an important 
primary pathogenic event in MS.

Thus, early on in the 1980s when magnetic resonance 
imaging (MRI) was first introduced and it became clear 
that this was an exquisitely sensitive tool for the 
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demonstration of MS plaques in vivo (127,160), one of the 
main objectives was to determine the MRI features that 
could be attributable to each of the histopathologic features 
of MS, but most particularly demyelination, which at that 
time was the major feature thought to be responsible for 
MS symptomatology. However, it soon became apparent 
that routine clinical MR imaging did not correlate with 
any specific histopathologic feature and the MR image 
was probably a composite that resulted from the contribu-
tion of any number of histologic features in a given plaque 
(109). Thus, demyelination (35), macrophage infiltration 
(115), vascular permeability (117), edema (125), gliosis (159), 
could all either individually or in orchestration, produce 
the images seen on conventional clinical MRI.

MAGNETIC RESONANCE AND MYELIN 
WATER IMAGING

Water as the dominant source of contrast in 
MRI

MRI has revolutionized our ability to detect and monitor 
MS pathology in vivo. The most common type of MR is 
known as “proton” MR which is sensitive to signal from 
all of the protons or hydrogen atoms in tissue. The over-
whelming majority of the signal measured by proton MRI 
of the brain and spinal cord originates from hydrogen in 
water molecules. The properties of the hydrogen govern the 
three fundamental contrast mechanisms in MRI: [1] proton 
density (proportional to water content) (165); [2] T1 relaxa-
tion (influenced heavily by water content as well as the 
presence of other tissue constituents such as iron and myelin, 
and factors including field strength, temperature, and MR 
magnetization exchange processes (40,47,138,162)) and [3] T2 
relaxation (related to water content, the nature of the tissue 
microstructure, iron, pH, and MR magnetization exchange).

Use and limitations of conventional MRI

Proton density, T1 and T2 can provide qualitative contrast 
weightings that yield superb in vivo visualization of CNS 
tissue and have proved invaluable as diagnostic and patient 
management tools in MS (94,140). Conventional MR tech-
niques play a crucial role in the clinic, and while there is 
some evidence that certain aspects of image contrast are 
related to severity of damage (ie, permanent black holes 
evident on T1-weighted imaging are felt to be indicative of 
parenchymal destruction (169)), standard clinical MR meth-
ods are not specific to the types of tissue damage they 
visualize, and they cannot detect subtle abnormalities in 
tissue. Thus, more quantitative approaches have evolved that 
focus on measuring specific tissue properties (165). For 
example, magnetic resonance spectroscopy (MRS) offered 
some histopathologic correlative specificity as it demonstrates 
the presence of molecules that serve as specific markers for 
various CNS cell types. Of particular note is N-acetyl 
aspartate (NAA), a marker of axons and coupling between 
neurons/oligodendrocytes (12,120), which correlates with 

axonal loss in MS plaques (8). With respect to myelin speci-
ficity, an important scientific breakthrough was the discovery 
of the short-T2 component, or myelin water fraction.

Myelin water imaging

Given the important role myelin damage and loss plays 
in MS, there has been much interest in the development, 
validation, and implementation of MR techniques for imag-
ing myelination. While several quantitative methods have 
been proposed as being sensitive to myelin (81), in this 
review we shall focus primarily on one of these techniques—
myelin water imaging. The concept of myelin water imaging 
is based on the fact that, while the entire MR signal is 
from protons in water molecules, individual water molecules 
can experience very different microscopic environments, 
depending on their physical location. If the total MRI 
signal comes from water in different non-exchanging envi-
ronments, the resulting T2 relaxation decay curve of that 
signal is a sum of exponential decays with amplitudes 
proportional to the relative amounts of water in each 
environment. Conceptually, the physical size of the reservoir 
is a key factor in determining the T2 relaxation time of 
the water within that reservoir—water in tightly confined 
spaces will have a shorter T2 than water in less tightly 
confined spaces. For the case of heterogeneous CNS tis-
sue, the T2 decay can be separated into signal from water 
trapped in the restricted water reservoir between myelin 
bilayers (myelin water, Figure  1, T2 time between 10 and 
20 ms), intra/extracellular water (T2~80–100 ms), additional 
longer T2 components seen in some neurological diseases 
including MS (T2 ~200–800 ms), and CSF (T2 of ~2000 ms) 
(82,84,97,151,189). The T2 decay curve can then be separated 
into its exponential components and expressed as a plot 
of signal amplitude vs. T2 time, also known as a T2 dis-
tribution (Figure  2) (188). From the T2 distribution the 
myelin water fraction (MWF) is defined as the ratio of 
the area in the T2 distribution due to myelin water (<40 
ms for humans in vivo at 1.5T and 3T, <30 ms for formalin-
fixed tissue at 1.5T, and <20  ms at 7T) to the area of 
the entire T2 distribution. MWF can be visually presented 
as a myelin water image (Figure  3,4,5,6, 73 to 7).

Myelin water in CNS white matter was first observed 
in a cat model in 1991 (102). The first human in vivo 
myelin water measurements in the mid-1990s were slow to 
acquire and produced only a single brain slice in 25 min-
utes (97); today it is possible to collect whole brain MWF 
images in less than 5 minutes (118). At least four different 
approaches to myelin water imaging have now been explored; 
for a comprehensive technical overview the reader is pointed 
to a recent review by Alonso-Ortiz et  al (6). The pioneer-
ing, most common, and still considered to be the “gold-
standard” approach to myelin water imaging uses a 
Carr–Purcell–Meiboom–Gill (CPMG) multi-echo spin echo 
data acquisition strategy (97,130,193). Variations on the 
CPMG method in recent years have resulted in significantly 
faster imaging times (118,119,122,123,130). Traditional analy-
sis of the T2 decay used a non-negative least squares (NNLS) 
method which makes no a priori assumptions about the 
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number of water environments (129,188), although other 
approaches also exist (2,52,69,70,134,147,157). Several groups 
have obtained myelin water images from gradient echo T2

* 
decay curve measurement which examines the echo train 
derived by magnetic field gradient reversals (32,89,113,142) 
and measurement of multiple T1 relaxation components to 
isolate myelin water has also been used (72,124). Finally, 
the mcDESPOT (multicomponent driven equilibrium single 
pulse observation of T1 and T2) method (29) which uses 
multiple flip angles to examine signal changes of two fast 
gradient echo imaging sequences to enable demonstration 
of the myelin water and intra/extracellular water compo-
nents in CNS tissue has also been used. mcDESPOT is 
fundamentally different from myelin water imaging tech-
niques which are derived from T2, T2*, or T1 decay curves.

VALIDATION OF MYELIN WATER 
IMAGING
MRI-histology studies of myelin water imaging have focused 
almost exclusively on validation of the multi-echo spin-
echo approach to data acquisition. The myelin water signal 
is present both shortly after death in situ and upon tissue 
fixation with formalin, and the shape of the T2 distribu-
tion from formalin fixed CNS tissue is qualitatively similar 
to that from in vivo, albeit with shorter T2s, (Figure  2) 
(77), making MRI-pathology correlation studies possible. 
One of the earliest correlation studies conducted at 1.5T 
in 2000 showed that the anatomic distribution of the short-
T2 component matched the distribution of myelin and its 
absence correlated with the absence of myelin in plaques 

Figure 1. Electron micrograph of myelinated central nervous system 
(CNS) tissue at low and high magnifications ([low magnification (left), 
adapted from Figure 4‒7, originally by Dr. W.T. Norton and Dr. C. S. Raine 
in Morell P, Quarles RH, Myelin formation, structure, and biochemistry. 
In Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (editors) 
Basic Neurochemistry. 6th Edition; 1999. Philadelphia: Lippincott-Raven; 
ISBN 0-397-51820-X with permission; high magnification (middle) with 
permission; high magnification (middle) (adapted from Peters A, Palay 
SL, Webster H deF. Fine Structure of the Nervous System: The Cells and 
Their Processes. 1st edition; 1970; page 89, Figure 33, New York: Paul B. 
Hoeber Inc, with permission from Dr. Alan Peters] depicting the major 
dense line, which represents the fusion of the cytoplasmic aspects of the 
oligodendrocyte cell membrane, and the intraperiod line, a potential 
extracellular space formed by the apposition of the extracellular faces of 

adjacent oligodendrocyte cell membranes. As shown in the accompanying 
schematic, the intraperiod line forms a restricted water reservoir, and, 
thus, is thought to give rise to the short-T2 component, the signal of 
which can be displayed anatomically as the myelin water map (see 
Figure 3, 4, 5, and 6). The oligodendrocyte cell membrane is a bilayer of 
lipids in which are embedded the major myelin proteins, which include 
myelin basic protein (MBP), proteolipid protein (PLP), 2′,3′-cyclic 
nucleotide 3′-phosphodiesterase (CNP), myelin oligodendrocyte protein 
(MOG), and myelin-associated glycoprotein (MAG). Note, however, that 
on the inner aspect of the myelin sheath MAG is restricted to the 
membrane adjacent to the adaxonal space, which it spans to bind the 
myelin sheath to its axolemmal ganglioside receptors, GD1a and GT1b. 
The exact position of some of the components of myelin shown in this 
schematic has not been determined.
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with relative axonal sparing (Figure 3) (111). Visual cor-
respondence between MRI and histology has improved 
significantly with the advent of higher field strength MR 

systems that can produce MR images from much thinner 
volumes of tissue (Figure  4, 1mm thick at 7T (80) vs. 
Figure  3, 5mm thick at 1.5T). Further quantitative brain 
studies showed a tight relationship between the strength 
of the short-T2 signal and the optical density of myelin 
staining as indicated by the myelin phospholipid stain 
Luxol Fast Blue (LFB) (63,96,141,146). (Figure 5) (75,76). 
Likewise, comparisons between MWF and myelin staining 
in human spinal cord also show excellent correspondence 
between the MR and histology markers for myelin (Figure 6) 
(88). As a consequence, the distribution of the short-T2 
component has been referred to as the “myelin water map.”

In addition to the above mentioned human validation 
studies, a number of animal studies have also demon-
strated a strong correlation between myelin water and 
various myelin histological stains in both peripheral 
 nervous system (121,132,158,168,185) and CNS animal mod-
els (45,67,68,100,161).

IN VIVO APPLICATIONS OF MYELIN 
WATER IMAGING IN RESEARCH AND 
CLINICAL TRIALS

Myelin variation in healthy brain and spinal 
cord white matter

Initial in vivo studies by MacKay et  al of the brain almost 
25 years ago demonstrated MWF of white matter to be 
substantially higher than gray matter, and regional 

Figure 2. T2 distribution from multiple sclerosis (MS) normal-appearing 
white matter (NAWM) in formalin at 7T (black), 1.5T (gray) and in vivo 
(light gray). All three distributions have a similar shape, showing two 
distinct peaks with the myelin water peak on the left and intra/
extracellular (IE) component on the right. However, the IE component is 
shifted to shorter times for the 1.5T formalin sample, and even shorter 
for the 7T formalin sample when compared to in vivo. (Reprinted from 
NeuroImage. 2008;40(4): Laule C, Kozlowski P, Leung E, Li DKB, Mackay 
AL, Moore GRW. Myelin water imaging of multiple sclerosis at 7 T: 
Correlations with histopathology. pages 1575–1580, Figure 1, Copyright 
2008, with permission from Elsevier).

Figure 3. 58-year-old male with a 34-year history of secondary progressive 
multiple sclerosis (MS) with clinical evidence of optic, cerebellar and 
spinal involvement. Note the large, irregular lesion in the periventricular 
occipital white matter, which appears as an area of increased signal on 
the proton density scan, an area of absent signal on the myelin water/
short-T2 component distribution, and an area of gray discoloration of the 
white matter in the gross photograph. A band of reduced signal is seen in 
the lesion on both scans and correlates with the gross appearance (long 
arrows). More rostrally, several smaller lesions are evident (short arrows), 
which appear as areas of reduced intensity on the short-T2 component 
image. The Luxol fast blue and 2′,3′-cyclic nucleotide 3′-phosphohydrolase 

(CNPase) stains show absence of myelin in most regions of the large 
periventricular occipital lesion. The Bielschowsky stain for axons is 
reduced in the lesions but not to the degree of the myelin stains. The faint 
band detected by the short-T2 distribution component and the proton 
density scan is particularly evident on the CNPase stain (long arrows). 
(Moore, G.R.W., Leung, E., MacKay, A.L., Vavasour, I.M., Whittall, K.P., 
Cover, K.S., Li, D.K., Hashimoto, S.A., Oger, J., Sprinkle, T.J., Paty, D.W. A 
pathology-MRI study of the short-T2 component in formalin-fixed multiple 
sclerosis brain. Neurology 2000;55(10):1506–1510. Figure 1. Published by 
The American Academy of Neurology, with permission. http://n.neurology.
org/content/55/10/1506.long).

http://n.neurology.org/content/55/10/1506.long
http://n.neurology.org/content/55/10/1506.long
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Figure 4. Example of diffusely abnormal white matter (DAWM) at 7T 
with corresponding myelin water map and histological stains for 
phospholipids (Luxol fast blue, Weil’s), sialic acid groups (Alcian Blue), 
axons (Bielschowsky), myelin proteins (myelin-associated glycoprotein 
(MAG), myelin basic protein (MBP), myelin oligodendrocyte protein 
(MOG), proteolipid protein (PLP), 2′,3′-cyclic nucleotide 
3′-phosphohydrolase (CNP)), and astrocytes (GFAP). DAWM, 
characterized by an area of reduced intensity on the proton density 
(arrows) and myelin water map, matches a region of reduced staining 
intensity on the Luxol Fast Blue, Weil’s, Alcian Blue, Bielschowsky, 

and, to a lesser degree, MAG stains. Several small plaques are seen 
within this region. Note the improvement in resolution in this high-field 
strength compared to that at 1.5T shown in Figure  3. (Laule, C., 
Pavlova, V., Leung, E., Zhao, G., MacKay, A.L., Kozlowski, P., 
Traboulsee, A.L., Li, D.K., Moore, G.R.W. Diffusely abnormal white 
matter in multiple sclerosis: further histologic studies provide evidence 
for a primary lipid abnormality with neurodegeneration. Journal of 
Neuropathology and Experimental Neurology 2013; 72(1): 42–52, 
Figure 2, by permission of Oxford University Press and the American 
Association of Neuropathologists) 

Figure 5. Examples of the quantitative correlation between myelin 
water fraction (MWF) and Luxol Fast Blue optical density (LFB OD) for 
gray matter (GM), lesion, diffusely-abnormal white matter (DAWM), and 
normal appearing white matter (NAWM) for 2 multiple sclerosis (MS) 

cases. (Reprinted from NeuroImage. 2008;40(1): Laule C, Kozlowski P, 
Leung E, Li DKB, Mackay AL, Moore GRW. Myelin water imaging of 
multiple sclerosis at 7 T: Correlations with histopathology. pages 1575–
1580, Figure 4, Copyright 2008, with permission from Elsevier).
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variation of MWF across different white matter structures 
(97); this observation has been confirmed by numerous 
studies since (11,20,85,123,180,189). Frontal lobe MWF is 
correlated with age, as well as years of education and 
reading IQ in healthy adults (44,73). mcDESPOT-derived 
MWF shows a positive correlation between physical activ-
ity level and MWF in the right parahippocampal cingulum 
(16) and one study found regional differences in MWF 
of the corpus callosum between males and females (91). 
Reproducibility and reliability of MWF in healthy controls, 
both at a single site and multiple sites is very good 
(14,103,171,174).

Myelin water techniques applied in the brain can also 
be used to study spinal cord myelination. However, spinal 
cord myelin water imaging studies are far less common, 
since imaging the spinal cord is difficult for a number of 
reasons including the small diameter of the cord, cardiac 
and respiratory motion, magnetic field inhomogeneties, and 
the presence of flow from CSF. Nevertheless, it is feasible 
to measure MWF in the spinal cord in vivo. MWF is 
approximately 50% higher in spinal cord than normal brain 
white matter and varies along the length of the cord 
(66,87,98,105,193). Younger adults (20–30 years old) have 
a higher cervical cord MWF compared to older (50–75 
year) study participants (98). An in-depth review of myelin 
water in the cord can be found elsewhere (78).

The aforementioned work, which characterizes MWF 
in controls and demonstrates sufficiently stable reproduc-
ibility, supports the application of myelin water imaging 
in disease states.

Multiple sclerosis plaques

Much of the pioneering in vivo work in myelin water imag-
ing has been studies of MS. MS plaques, or lesions, show 
variably decreased MWF (Figure  7) (38,58,64,85,93,97,122, 
166,171,180), averaging approximately half that of 

Figure 6. Magnetic resonance imaging (MRI) and corresponding 
histology from a formalin-fixed multiple sclerosis (MS) spinal cord. 
Cervical, thoracic, and lumbar regions show anatomical variation in 
myelin with white matter showing increased myelin water relative to 
the central gray matter butterfly. MS lesions (arrows) demonstrate 
myelin water loss. Staining for myelin (Luxol Fast Blue) demonstrates 
excellent correspondence between MRI and histology. (adapted from 
Figure 1a, Laule, C., Yung, A., Pavolva, V., Bohnet, B., Kozlowski, P., 
Hashimoto, S.A., Yip, S., Li, D.K., Moore, G.R.W. High-resolution myelin 
water imaging in post-mortem multiple sclerosis spinal cord: A case 
report. Multiple Sclerosis Oct 22 2016, 1485–1489, published by SAGE 
Publications). 

Figure 7. Heat map of myelin water fraction. Left side: T2 weighted image 
of a Multiple Sclerosis (MS) patient. Right side: heat map of a myelin water 
image (MWI). T2-hyperintense MS-lesions show clear reductions of myelin 
water fraction (MWF) (white arrows, right side). (Faizy TD, Thaler C, Kumar 

D, Sedlacik J, Broocks G, Grosser M, Stellmann J-P, Heesen C, Fiehler J, 
Siemonsen S. (2016) Heterogeneity of Multiple Sclerosis Lesions in 
Multislice Myelin Water Imaging. PLoS ONE 11(3): e0151496. https://doi.
org/10.1371/journal.pone.0151496, Figure 2).

https://doi.org/10.1371/journal.pone.0151496
https://doi.org/10.1371/journal.pone.0151496
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normal-appearing white matter (NAWM) (85). This vari-
ability in MWF is probably reflective of the myelin content 
or pathology in different lesions. Indeed, MWF can vary 
between lesions change to observed on T2-weighted imag-
ing, black holes evident on T1-weighted imaging and lesions 
with contrast enhancement (38,85,166). MWF can also be 
used to distinguish plaques based on their age, with older 
lesions change to showing a larger reduction in myelin 
water (178). The difference in MWF between new and old 
lesions suggests there is less advanced demyelination in 
new lesions or possibly ongoing remyelination which even-
tually fails in older lesions. Longitudinal study of MWF 
can provide insights into demyelination and remyelination 
in plaques, where a much as reduction in MWF in some 
lesions can be followed by MWF increase, suggesting 
remyelination over time (90,171,176).

Multiple sclerosis normal-appearing white 
matter

It has become increasingly apparent that what on routine 
MRI and casual histopathologic examination appears to 
be “normal-appearing white matter” is far from normal 
when more sophisticated tools in either of these spheres 
are used for interrogation of this region (110). Furthermore, 
these changes in MS NAWM are clinically relevant as 
they present very early in the course of the disease at the 
time of the first clinical presentation, and they correlate 
with disability, cognitive impairment, and the degree of 
brain atrophy (104).

The literature prior to the MRI era showed conflicting 
results with respect to MS NAWM neurochemistry and 
myelin damage (108). Some studies showed reductions in 
total phospholipid (23,49,136), phosphatidylserine (116), 
phosphatidlylinositol (116), fatty acids particularly linoleic 
acid (9,49), cerebroside (1,135,136), sulfatide (5), the gan-
gliosides GM4, GM1, GD1b, GQ1b (195). Other studies 
showed increased levels of cholesterol esters in NAWM 
(1,23,195). However, others reported normal levels of cho-
lesterol esters (194), total cholesterol (194), total phospho-
lipids (194), ethanolamine phospholipids (24), cerebroside 
(24), and sulfatide (24). In addition, while a variety of 
enzymes were found to be increased in NAWM, these 
results were also inconsistent (108). At the time, it was 
felt that these discrepant results were due the inadvertent 
inclusion of small macroscopically invisible plaques in the 
material assayed as NAWM and it was thought that bio-
chemically NAWM was truly normal (163). Nevertheless, 
the very few neuropathologic studies of MS NAWM showed 
subtle abnormalities that could not be necessarily consid-
ered plaques. These included perivascular inflammation, 
perivascular lipofuscin deposition, cells with increased 
numbers of lysosomes, and occasional demyelination (3). 
Subsequent studies showed microglial activation (4), upregu-
lation of factors involved in Class II Major 
Histocompatibility Complex (MHC) expression (50), expres-
sion of peripheral benzodiazepine binding sites (50), upregu-
lation of osteopontin and αB-crystallin (150), extracellular 
matrix enzymes, and modification of extracellular matrix 

components (154). Further studies showed blood–brain 
barrier breakdown in MS NAWM (61,128).

Very consistently, however, is the axonal loss that is 
evident in NAWM (36) and this loss correlates with plaque 
volume, consistent with the notion that it is due to Wallerian 
degeneration as a consequence of axons transected in 
plaques (37). Furthermore, this axonal loss appears to 
involve small-diameter axons predominately (28). Evidence 
for axonal degeneration is also apparent in the upregula-
tion of ephrin A1 and receptors to ephrin-A3, -A4, and 
-A7 (153) and axonal amyloid precursor protein, dephos-
phorylated neurofilament, and neuropeptide Y receptor Y1 
in periplaque white matter (33). An important driver of 
neurodegeneration in MS NAWM may be the bystander 
effect on the axon by the products of inflammatory infil-
trates, which, while mild in degree, are scattered throughout 
the NAWM (71), and may be sequestered behind the 
blood–brain barrier (74).

There is compelling evidence from unconventional MRI 
techniques for abnormalities in NAWM. Reinforcing the 
neuropathologic findings of axonal degeneration and loss 
in NAWM is the finding of reduced NAA by MRS (27). 
In general, MRI-demonstrable axonal degeneration does 
not correlate with plaque load, suggesting that factors in 
addition to Wallerian degeneration may contribute to neu-
rodegeneration in NAWM (104). Numerous studies support 
widespread and varying abnormalities in MS NAWM 
including increases in creatine (57), myo-inositol (42), cho-
line (57), and lipid peaks (114), a higher apparent diffusion 
coefficient (187), reduced fractional anisotropy (51), reduced 
magnetization transfer ratio (43), prolonged T1 (170), and 
increased total water content (85).

There is also strong in vivo MR evidence of myelin 
damage in MS NAWM. When compared to healthy con-
trols, MWF is reduced in brain NAWM by 6%–37% 
(38,64,85,90,122) and in spinal cord by 11%–25% (87,193). 
NAWM MWF can differentiate between different subtypes 
of MS, with greater myelin loss found in more progressive 
forms of the disease (62), and reduction of MWF is related 
to increased clinical disability (62,64). Changes in NAWM 
MWF can also be discerned over time (60); for example, 
in untreated relapsing-remitting   MS patients there was 
an 8% reduction in brain MWF over 5 years (175), sug-
gesting that chronic, progressive myelin damage is an 
evolving process occurring over many years. Longitudinal 
assessment of brain myelin water in non-lesional tissue 
has also been successfully used in clinical trials, with a 
recent study demonstrating NAWM MWF stability after 
24 months on MS disease-modifying therapy (179). Changes 
in NAWM MWF can also be reliably detected in the 
spinal cord, with one study showing a 10% myelin loss 
in primary progressive MS cervical cord over 2 years, 
while controls remained stable, suggesting ongoing demy-
elination may be contributing to the disease process in 
this subgroup of patients (87).

The histopathologic correlate of the NAWM MWF 
abnormality has not yet been determined. Based on the 
discussion of the origin of the MWF above, it could rep-
resent a change in the periodicity of the spacing of myelin 
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lamellae in the myelin which by the usual histologic stains 
appears normal. Another alternative is that it may simply 
be a reflection of the concomitant widespread loss of axons 
in NAWM (36,37,149). Supporting these notions, one study 
showed that NAWM, as defined by magnetization transfer 
imaging, showed histopathologic correlates that were spa-
tially dependent (106). NAWM near a plaque shows cor-
relation with microglial and axonal pathology, that latter 
presumably being secondary to axonal damage within the 
plaque. Whereas, NAWM remote from the plaque cor-
relates with microglial activation but not axonal damage, 
suggesting again a factor in addition to Wallerian degen-
eration is operative in these regions (27,106).

Multiple sclerosis diffusely-abnormal white 
matter

In 2000, Zhao, Li, and colleagues first described “dirty-
appearing white matter” in routine MRI in MS (197). 
This abnormality, which has subsequently been referred 
to as “diffusely-abnormal white matter” (DAWM), has a 
signal intensity intermediate between that of NAWM and 
that of plaque, similar to gray matter on proton density 
and T2 weighted imaging. It is evident in approximately 
20%–25% of MS patients, who tend to have a more rapidly 
progressive clinical course (196). DAWM shows ill-defined 
boundaries and is sometimes adjacent to a plaque, par-
ticularly in the periventricular occipital white matter.

Pathologic studies have shown reduced myelin on the 
LFB stain and reduced numbers of axons in DAWM (145). 
There is also evidence of blood–brain barrier breakdown 
in DAWM (182). When the DAWM myelin abnormality 
is interrogated with a variety of stains, it is apparent that 
while LFB (96,141,146) and another phospholipid stain, 
the Weil’s stain (186), are reduced in DAWM, immuno-
histochemical staining for various myelin proteins is rela-
tively preserved (Figure  4), suggesting that there is a 
selective lipid abnormality in DAWM myelin (80,83,107). 
There is also a reduction of staining for sialic acid groups 
(on the Alcian blue stain) (80). Since the major source of 
sialic acid groups in the CNS is gangliosides, this finding 
suggests that in DAWM there is a perturbation of gan-
gliosides, which are located particularly in the axolemma 
rather than the myelin sheath (Figure  1). Interestingly, the 
only myelin protein that is occasionally reduced in DAWM 
is myelin-associated glycoprotein (MAG) (80), which is 
located adjacent to the adaxonal space and serves as the 
ligand that binds the myelin sheath to the axon by inter-
action with its axolemmal ganglioside receptors GD1a and 
GT1b (48,101). Axonal loss, as evident on the modified 
Bielschowsky stain, is often but not always evident in 
DAWM, indicating neurodegeneration may occur in DAWM 
and this might possibly be a result of the MAG-axolemmal 
ganglioside perturbation.

It is also of considerable interest, from the point of 
view of myelin biology and imaging, that the MWF is 
exquisitely sensitive for the detection of DAWM, showing 
23% reduction of MWF in this region in vivo (83) and 
30% loss post-mortem (80). Again, given that it is thought 

the MWF emanates from restricted water in the tight 
lamellar compaction of myelin, we postulate that the lipid 
abnormality in DAWM leads to myelin membrane perme-
ability to water, which would result in widening of the 
myelin lamellar water reservoir resulting in reduction of 
the value of the short-T2 component and also lead to the 
observed increase in mean T2 and total water content 
seen in vivo (83). This, however, would not necessarily 
affect the concentration of myelin protein constituents 
within the myelin lipid bilayers, with the exception of the 
perturbed ganglioside-MAG interactions and subsequent 
axonal degeneration in more advanced DAWM pathology. 
Other quantitative MRI studies also show abnormalities 
in DAWM (46,79,83,126,139) and differences in DAWM in 
different clinical subtypes of MS, with primary progressive 
MS showing higher T1 and lower magnetization transfer 
ratio than the secondary progressive form of the disease 
(183). Clearly, further research is necessary to sort out 
the complex but fascinating changes in DAWM, which 
may well be important clinically and could represent the 
early events in propagating the expansion of the MS plaque 
that it borders.

Neurological applications beyond MS

Beyond MS, myelin water imaging has been used to study 
many other neurological disease applications include neu-
romyelitis optica (58,99), schizophrenia and first episode 
psychosis (44,73), phenylketonuria (151), autism (30), stroke 
(14), neurofibromatosis (10), Niemann–Pick disease (25), 
primary lateral sclerosis (65), amyotrophic lateral sclerosis 
(65), concussion (192), and Krabbe disease (86). Other 
spinal cord applications are also feasible, for example, a 
recent study of cervical spondylotic myelopathy demon-
strated a correlation between MWF in the dorsal columns 
and functional measures of myelin through somatosensory 
evoked potential latency times (92).

OTHER MR METHODS SENSITIVE TO 
MYELIN
Several other MRI techniques have been proposed to be 
sensitive to changes in myelin. Magnetization transfer (MT) 
imaging measures decreases in MR signal following off-
resonance excitations (191); the effect is typically quantified 
by a magnetization transfer ratio, which is sensitive to 
small differences between groups. There is an extensive 
literature on using MT to study myelination in MS (7) 
and several studies have showed correlation between MT 
parameters and histological measures of myelin (19,144). 
A limitation of using MT to monitor myelin is that while 
a change in myelin will cause a change in MT, a change 
in MT is not necessarily due to a change in myelin. Changes 
in other tissue components such as axons and glia, as 
well as changes in water content due to inflammation or 
edema will result in changes in MT (112,177). A newer 
magnetization transfer related method termed inhomogene-
ous magnetization transfer (ihMT) shows promise for being 
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more specific to CNS lipids; given that myelin is 70%–80% 
lipids and ihMT correlates well with MWF, this is a excit-
ing area of ongoing myelin imaging research (34,172,173). 
Several metrics acquired using diffusion tensor imaging 
(DTI), which examines water movement, have been linked 
to myelin. Most notably the perpendicular component of 
the diffusion tensor (often called lambda perp or radial 
diffusivity) is inversely related to myelination in animal 
models (155,184). However, the presence of edema and 
neuroanatomy such as crossing fibers can confound DTI 
measurements. More sophisticated diffusion modeling and 
analysis approaches are now emerging including constrained 
spherical deconvolution (CSD), Q-ball imaging (QBI), dif-
fusion orientation transform (DOT), persistent angular 
structure (PAS), and neurite orientation dispersion and 
density imaging (NODDI) and diffusion basis spectrum 
imaging (DBSI) which may provide more specific links to 
tissue components, including myelin (143,184). Finally, 
ultrashort echo time (UTE) measures signal from non-water 
sources of hydrogen, including, but not limited to, the 
lipids and proteins that make up myelin (137). Several 
studies have used UTE for myelin measurement (15,55,190) 
and, as this method is becoming more commonly available 
on newer MR systems, it is expected that research on 
using UTE for myelin imaging will continue to expand 
(31,39,148).

CONCLUSION
There have been numerous substantial advances in myelin 
imaging and exciting research is ongoing in this area. 
New techniques or modifications of currently employed 
techniques to demonstrate myelin in vivo will continue to 
be developed. All of these new methodologies, however, 
must pass the scrutiny of histopathologic validation before 
they can be accepted as appropriate tools to image myelin 
and its disorders.
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